
STATISTICA, anno LXIX, n. 2–3, 2009

EVOLUTIONARY COMPUTATION METHODS AND THEIR
APPLICATIONS IN STATISTICS

Francesco Battaglia

Department of Statistics, Sapienza University, Rome, Italy.

1. EVOLUTIONARY COMPUTATION BETWEEN ARTIFICIAL INTELLIGENCE AND

NATURAL EVOLUTION

Drawing an history of evolutionary computation is not an easy task, we shall spend
only some words to outline where and when the framework, which has later become
that of evolutionary computation, originated.

The term “evolutionary” started to be associated with concepts linked to computing
and algorithms towards the beginning of the sixties, in the scientific community con-
cerned with developing and studying computing machines, and specifically in a field
which has been known as artificial intelligence. An excellent discussion may be found
in Chapter 1 of Fogel (1998). The distinctive feature of changing continuously the be-
havior in order to obtain benefits according to a given measure of satisfaction has been
advocated as an essential characteristic of intelligence, and provides the link between
artificial intelligence and evolutionary computation.

A similar link may be drawn in nature between intelligence and adaptation. In ef-
fect, it is doubtless that intelligence arises when an organism reacts to the external forces
(say, the environment) and many reactions are possible, with different consequences. In-
telligence may be thought of as related to choosing reactions that ensure best results and
it in turn calls for a definition and a measure of reaching goals, or satisfaction. Thus,
the concept of intelligence requires, on one hand, that different courses of action may
be alternatively chosen, in other terms, is concerned with decision maker entities, and,
on the other hand, requires that each possible action may be evaluated, in order that
good and bad behaviors may be distinguished. But the outcome of each action depends
generally on the environment, therefore intelligence requires that information from the
environment may be recovered and analyzed. Fogel et al. (1966) state: “intelligence is
the capability of a system to adapt its behavior to meet its goal in a range of environ-
ments”. In a word, though extremizing: intelligence is evolution.

The last word, evolution, introduces the second framework which inspired the de-
velopment of evolutionary computation methods, and from which they inherited the
name itself, the terminology and the fundamental ideas: the theory of natural evolu-
tion, named after Charles Darwin.

202 F. Battaglia

The main results obtained by Darwin in the middle of the nineteenth century re-
ceived confirmation later and further development from the progress of genetics, and
now a systematic theory of natural evolution has been formulated and its validity rec-
ognized almost everywhere, also known as neo-Darwinism. The dynamics of life is
explained through few interaction mechanisms among individuals, and between indi-
viduals and the environment. Each of such mechanisms is subject to random forces,
and their outcome is stochastic.

The first process is reproduction, where each individual, or each pair if sexual re-
production is considered, bears new individuals that have some features of their par-
ents, and can mix characters of their two parents in sexual reproduction. Mutation is
the second process, which arises also in the transition from parents to children, and al-
lows new characters to appear in the population. The competition mechanism implies
that individuals in the same population, owing to finite resources, are antagonists and
compete to ensure sufficient (or satisfying) benefits, and implies also that some individ-
uals are successful while others are not and are, at various extent, eliminated from the
population. Finally, the selection process dictates that not all individuals have the same
reproduction ability, and such differences are related to the capacity of the individual to
adapt to the environment and survive to the competitors and predators.

Given a population at a certain time (the initial generation), a new population (the
new generation) is formed, after all such processes have acted on each individual of the
initial population. Some individuals of the initial population survive to the new popu-
lation, and some new individuals are born. Modifications are random but the essential
feature is that individuals that are more adapted (fitted) to the environment tend to
survive and reproduce to a larger extent than individuals that are less fitted, therefore
favorable characteristics tend to spread into populations, generation after generation.

Once the fundamental processes of natural evolution were understood, it became
possible to formalize them into a mathematical algorithm: the Genetic Algorithm, though
only relying on simplifying assumptions, because such processes are too complex.

The description of genetical evolution given above is very approximate and impre-
cise and does not approach in any detail the physical and chemical processes involved:
really, we have not mentioned DNA at all. However, it is rich enough to be suitable for
most purposes, and indeed the best mathematical metaphor of the evolution process,
the genetic algorithm, is based on an even more simplified scheme.

In a genetic algorithm, each individual is assigned only one chromosome which
characterizes all its features (possibly including several distinct fragments), and most of-
ten the information carried by each gene is simply binary. Moreover, there is no sex
distinction, thus any individual may mate with any other to bear an offspring; finally,
no growing up or ageing exist, and the fitness of each individual is constant in time.
In spite of its simplicity, the genetic algorithm proved a formidable, all purposes opti-
mizing tool; its simplicity explains also why an overwhelming number of variants and
generalizations have been proposed in the literature.

Genetic algorithms originate from the work of John Holland in the sixties, and were
developed by him and his students at the University of Michigan during several years.
The fundamental reference, where genetic algorithms are formally introduced and thor-

Evolutionary Computation Methods 203

oughly explored, is Holland’s book Adaptation in Natural and Artificial Systems printed
in 1975. As is clear from the title, Holland’s idea was to formalize and describe a quan-
titative framework for studying the process of adaptation and evolution of a biological
population, and to learn rules and principles which could allow artificial systems, in a
similar fashion, to evolve. The latter are often related to optimization problems, thus
employing the genetic algorithm environment for solving optimization problems has
obvious advantages.

Each individual of the population is associated to a possible solution of the problem,
and the function to be optimized assumes the meaning of fitness. Therefore, the fittest
individual in each generation represents the best solution reached thus far, and evolution
allows to discover a solution that gets better, as the generations evolve. In this way,
running a genetic algorithm allows to produce a sequence of solutions (the best fitted
individuals at each generation) which approach the optimum.

Genetic algorithms have been successfully employed for solving optimization prob-
lems in many fields, from physics to engineering to medicine; we shall address here only
some applications in Statistics.

What all these problems have in common is complexity. In effect, there is no point
in trying to solve by means of a genetic algorithm a problem whose solution may be
found by means of analytical methods (such as equating derivatives to zero), or sim-
ple and well-behaved problems where classical numerical techniques such as Newton’s
method are generally adequate. Therefore genetic algorithms are employed in problems
for which, essentially, no method for determining the optimum is known better than
enumerating all the possible solutions. Such problems are known in the computational
complexity theory as NP-complete problems.

The last 30 years have seen an enormous development of the theory originated by
John Holland, bridges have been built between the several similar attempts linked to
the idea of evolution, and now a generally accepted framework called evolutionary com-

putation has been established; however, genetic algorithms still appear the most general
and flexible tool for evolutionary computation, and often evolutionary computing and
genetic algorithms are used as synonymous.

2. EVOLUTIONARY COMPUTATION METHODS

Though evolutionary computation is not only optimization, most applications in Statis-
tics are concerned, at least at present, with optimization problems.

Schematically, an optimization problem may be defined as a pair (f ,Ω) where f is a
function from Ω to the set of real numbers R, and Ω is the set of possible solutions. If Ω
is a subset ofRn but is not a subset ofRn−1, then n is the dimension of the problem. The
aim may be to maximize or minimize the value of the objective function f . Solving the
problem means finding the element(s) ofΩ for which f attains its maximum (minimum)
value, if they exist.

In many lucky (or simplified) cases, f is a well-behaved mathematical function of
n real arguments, and Ω is a sufficiently regular subset of Rn so that the solution is
found simply by equating to zero the derivatives of f . But in the great majority of

204 F. Battaglia

cases this is not possible, the most relevant instance in Statistics is when Ω is a discrete,
though very large, set. In that case we speak of combinatorial optimization problems.
In practice such problems can be exactly solved only enumerating, and evaluating, all
possible solutions (all elements of the set Ω) and this becomes rapidly impossible as n

increases. Thus, we have to be satisfied with approximate solution methods, trying to
build algorithms which enable to obtain “sufficiently good” solutions in a reasonable
time: such methods are called heuristic algorithms.

An exact and widely shared definition of heuristic algorithm does not exist, but a
generally accepted idea is that a heuristic method searches for best solutions of a prob-
lem at a reasonable computational cost, without ensuring to reach optimality, and con-
sists in an iterative sequence of moves inside the solution space towards better points,
trying to avoid evident errors.

Most heuristic methods are based on local search algorithms, in the sense that they
wander inside the solution space, and each move is determined by evaluating neighbor-
ing candidates, and entering those which are considered more promising according to
pre-specified given criteria.

Since heuristics may profit of the particular and specific features of each single prob-
lem, it is likely that ad-hoc techniques be suitable, and that a heuristic that performs well
on a kind of problem does not work so good in another. A series of theorems (called no

free lunch theorems) originated by the work of D. H. Wolpert and W. G. Macready (see e.
g. Wolpert and Macready, 1997) state, essentially, that, if averaged on sufficiently broad
classes of problems, any pair of heuristic algorithm give equivalent results. Therefore,
heuristic methods are often tailored to the specific problems they have to solve.

There are, however, some all-purposes stochastic search methods which rely on
basic ideas useful for any optimization problem, and for this reason are called meta-

heuristic.
A heuristic optimization algorithm may be essentially described as an iterative method

which defines a sequence of elements in the solution space, with the aim of progressively
improving the values of the objective function. It is based at least on the following items:

(a) A set of possible solutions Ω

(b) A function f (.) defined on Ω and taking values on the set of real numbers (or some
subset), called the objective (or target, or score) function, and a scope: maximiza-
tion or minimization

(c) A set of neighborhoods defined for each element of Ω, or a rule for describing the
neighboring elements of each point ω ∈Ω, say {N (ω),ω ∈Ω}.

(d) A set of moving rules, which determine, for each ω ∈ Ω, which element in the
neighborhood N (ω) is chosen as the next solution to be evaluated. Rules are
often random, in that case they specify a probability distribution on the elements
of the neighborhood N (ω).

(e) A starting point ω0 ∈Ω

Evolutionary Computation Methods 205

(f) A stopping rule for deciding when the iterative process should be terminated, and
the best-so-far found solution to be declared the result of optimization.

The heuristic is iterative: starting from ω0, it computes its neighborhood N (ω0) ac-
cording to (c), chooses a point ω1 ∈ N (ω0) according to (d), and turns from ω0 to ω1;
then the elements of N (ω1) are examined and one of them, ω2, is selected; then N (ω2)
is computed and a new elementω3 in it is selected and so on. If the stopping rule is met
at iteration n, then ωn is assumed as the solution and f (ωn) as the optimized value of
the objective function.

If the decisions concerning items (c), (d), (e) and (f) do not depend on the particu-
lar behavior of the objective function f (.), but are specified in terms of mathematical
procedures defined on the formal objects f (.) and Ω, and may therefore applied to any
particularization of them, the algorithm is called a meta-heuristic.

Many different heuristic methods have been proposed and are employed in various
fields, their differences are essentially in the way the neighborhoods, and, more impor-
tant, the moving rules, are selected, the most relevant alternatives being between deter-
ministic and stochastic procedures, and between monotonic — f (ωk+1) always better
than f (ωk) — or non-monotonic rules.

Relevant examples of meta-heuristic methods are the descent methods, threshold
accepting, simulated annealing, tabu search.

Evolutionary computation methods share the common features of meta-heuristics,
but in addition have specific characteristics:

1. Evolutionary computation methods are population-based algorithms. It means
that they consider at each stage an entire subset of possible solutions as the indi-
viduals of a population, and at each iteration (in this framework called generation)
each member of the population changes (or only some of them); furthermore, the
number of individuals may also change iteration by iteration. The essential fea-
ture, however, is that evolution originates from reciprocal interactions among
individuals, in other terms the choice of which individual will become part of the
population at generation n depends on the whole set of individuals in generation
n− 1.

2. The moving rules are stochastic. Therefore, at each step, each individual is as-
signed a neighborhood and a probability distribution on that, and the individual
is changed to a new one inside the neighborhood according to a random trial on
that probability distribution.

In summary, and reconciling the naturally inspired terminology of the previous Section
with the more mathematical style of this Section, an evolutionary computation method
may be described as follows:

(a) The algorithm motivation is to search for the maximum value of a given function
f :Ω→R. Each element of the set Ω is called an individual, and the value of f (.)
measures the success of that individual in its environment, therefore f is called
the fitness function and the aim is to maximize it.

206 F. Battaglia

(b) The algorithm is iterative and at each stage n (called a generation) produces a subset
of Ω, called the population at generation n. A rule for choosing the population at
the initial stage (generation 0 population) is therefore needed, and also a stopping
rule for determining at which generation the iterations should terminate, has to
be selected.

(c) The composition of population at generation n is determined by the population
of the previous generation according to a stochastic procedure, which is inspired
by the natural evolution theory, and tries to translate into formal mathematical
operations the biological processes of reproduction, mutation, recombination.
Members of generation n − 1 are seen as parents, and those of generation n as
children. The number of individuals in the population may remain constant,
increase or even decrease at each iteration (according to the different evolutionary
computation algorithms).

The essential innovation of population based methods is that the “destiny” of each indi-
vidual at generation n depends on the whole set of individuals in the population at that
time; this means that for each individual ω ∈Ω its neighborhood, defining what it will
become in the next generation, depends on the other individuals of the contemporary
population. Furthermore, different individuals in the same generations may have dif-
ferent types of neighborhood. Thus, the most common way of analyzing and following
the evolution across generations does not refer to neighborhoods of each individual, but
rather focuses on offsprings arising at each generation from the population as a whole.

Since the transition from a generation to the next one has a complicate mechanism,
it may be generally decomposed into different successive phases. The first one consists
in selecting, from the individuals of the population at the current generation, a set of
candidates for bearing new offsprings (a stage often referred to as selection); then, each
of them (or more frequently each pair) undergoes a process consisting in the succes-
sive application of some modification rules (the evolutionary “operators”, frequently
inspired by analogies with nature), ending up in the creation of one (or sometimes two)
new individual (the child). Finally, children may replace their parents (totally or partly
or not at all according to different replacement schemes), and constitute the population
for the next generation.

A classification of evolutionary computation method is not simple, and many dif-
ferent criteria have been proposed. However, at least on an historical ground, there is a
general agreement that three methods: evolutionary programming, evolution strategies
and genetic algorithms, originated the family of evolutionary computation algorithms.
For an account of evolutionary programming, the reader is referred to Fogel et al. (1966)
and Koza (1992). We describe evolution strategies and genetic algorithms briefly in the
next sections. More recently, many new methods have been proposed and explored.
Among them, we shall address only a few methods which appear more suitable for
applications in Statistics: the estimation of distribution algorithm, the differential evo-
lution and some evolutionary behavior algorithms.

Evolutionary Computation Methods 207

2.1. Evolution strategies

An optimization approach which is also based on the idea of evolution was proposed in
the sixties by I. Rechenberg and H. P. Schwefel at Berlin Technical University. Here the
motivation comes from a process control problem in an engineering framework, and
was soon extended to optimization of general functions of multiple variables. A detailed
account may be found in Back (1996), and a more concise and recent introduction in
Beyer and Schwefel (2002).

In its original formulation, an evolution strategy is an algorithm for optimizing a
real valued function of M real variables: f :RM

→R. Evolution strategies also are based
on populations of individuals, which evolve through successive generations. An indi-
vidual is a possible solution to the problem, and therefore is identified by a vector inRM .
The fitness evaluation is obviously made through the function to be optimized f (thus
proportional to f if the maximum is needed, and to − f , or inversely proportional, if
the minimum is required).

The algorithm is iterative and the population at the beginning is composed by indi-
viduals chosen at random, uniformly, in the whole space of solutions. At each genera-
tion, offsprings are generated by selecting a parent and perturbing it by simply adding a
random realization of a M−variate gaussian variable with zero mean and a given (diago-
nal) dispersion matrix. Formally, from the individual x = (x1, x2, . . . , xM)

′ the offspring
y = (y1, y2, . . . , yM)

′ is obtained from

yi = xi + ziσi i = 1,2, . . . , M (1)

where (z1, z2, . . . , zM) are independent realizations of a gaussian N(0,1) variable, and
(σ1,σ2, . . . ,σM) are pre-specified values.

Once all offspring are created, the population for the next generation is formed by
selecting only the fittest individuals, according to different strategies, called (µ+ λ) or
(µ,λ), where µ is the (constant) number of individuals in the population, and λ in the
number of offsprings at each generation:

(µ+λ)–ES : µ parents are employed for creating λ children, then all (µ+λ) individuals
are ranked and the best µ are chosen to constitute the next generation population

(µ,λ)–ES : λ offsprings are generated by µ parents, λ > µ, and only the µ best fitted
out of the λ offsprings are returned for the next generation population: therefore
each individual disappears at the next generation.

A number of important extensions and generalizations were introduced in later
years, so that the actual evolution strategies employed in recent applications are much
more elaborated. Main evolutions of the original strategy concern self-adaptation and
recombination.

Self-adaptation means that the parameters governing mutation are also evolved to-
gether with individuals. Therefore each member of the population is characterized not
only by its numerical vector related to the solution, but also by the vector of the stan-
dard errors of the perturbations: an individual is coded by (y1, . . . , yM ,σ1, . . . ,σM). The

208 F. Battaglia

standard deviation parameters σi are also inherited by the offsprings, and are subject to
mutation too. The mutation operator for σ is often described by:

σnew = σol d exp{τz}

where z is a realization of a gaussian standard variable and τ is a fixed constant (called
the learning parameter).

Recombination was proposed in order to get offspring that share characteristics of
more than one parent solution. The corresponding evolution strategies, indicated with
(µ/ρ,λ)–ES or (µ/ρ+λ)–ES, rely on a fixed number ρ chosen in advance and called the
mixing number (ρ < µ) which defines the number of parents involved in an offspring.
For each offspring to be born, ρ parents are selected at random from the population, let
xi (k), i = 1, . . . , M ; k = 1, . . . ,ρ be the solution coordinates of the selected parents: then
each coordinate yi of the offspring depends on the set of the corresponding coordinates
of its parents {xi (k), k = 1, . . . ,ρ}, and two alternative recombination operators may be
adopted:

• discrete (or dominant) recombination: yi is selected at random with equal proba-
bilities from {xi (1), xi (2), . . . , xi (ρ)}, for each i = 1,2, . . . , M .

• intermediate recombination: yi is chosen equal to the arithmetic mean of the
parents coordinates:

yi =
1

ρ

ρ
∑

k=1

xi (k)

Evolution strategies are more naturally employed when the space of the solutions
is RM or at least a compact subset, but they have been modified and generalized to
cope also with discrete spaces or even with mixed, or constrained spaces, though it may
impose several restrictions on the mutation and recombination operators.

2.2. Genetic algorithms

Among the evolutionary computation methods, genetic algorithms are those which
most rely on biological inspiration and try to develop more closely a metaphor of the
natural evolution of biological populations. The terminology itself bears many analo-
gies with genetics and biology.

A genetic algorithm is an iterative procedure that follows the evolution of a popula-
tion of individuals through successive generations . The features of each individual are
formalized in a vector of symbols from a given alphabet (usually a binary or decimal
digit) called the chromosome. Each entry of this vector is called a gene. Not only the
value of each gene, but also its position (the locus) in the chromosome is relevant in
defining the characteristics of the individual. The whole set of characteristics of each in-
dividual determines its ability to survive and reproduce in the environment, and this is
supposed to be measurable by means of a positive number, called the fitness of the indi-
vidual. Thus, a positive function is defined on the set of chromosomes, which measures
the fitness and is called the fitness function.

Evolutionary Computation Methods 209

We shall denote by g the index of the generation, by i the index of the individual in
the population (i = 1,2, . . . ,N) and by j the index of the gene in the chromosome (j =
1,2, . . . , M) . Therefore the individual i at generation g is associated to the following
chromosome :

x
(g)

i
= (x

(g)

i ,1
, x
(g)

i ,2
, . . . , x

(g)

i ,M
)′

and f [x
(g)

i
] will denote its fitness value.

Transition from a generation to the next consists in a reproduction process, of a
stochastic nature, articulated in the three stages of selection, recombination and muta-
tion.

The selection step results in choosing which individuals of the current population
are going to reproduce. In agreement with the concept of natural evolution, we want
that most fitted individuals reproduce more frequently than less fitted ones, therefore,
we set up a random procedure where the probability of being selected for reproduction
is an increasing function of the fitness value. Most popular rules (or selection operators)
are the roulette wheel, the stochastic universal sampling, and the tournament selection.

The roulette wheel method simply selects an individual with probability propor-
tional to its fitness. Therefore, each choice of a candidate to reproduction is made by a

random trial with possible results {x(g)
i

, i = 1, . . . ,N} and associated probability

P[x
(g)

i
] = f [x

(g)

i
]/

N
∑

k=1

f [x
(g)

k
].

The roulette wheel rule may be also seen in terms of the fitness empirical distribution
function Fg (y) = Freq {individuals with fitness < y at generation g }, and amounts

simply to choosing independently N times a number r uniformly distributed between
0 and 1, and selecting the corresponding r -quantile of Fg (i.e., the individual that has

the largest value of Fg less than r).

Stochastic universal sampling, on the contrary, is obtained by generating uniformly
at random only one number ℓ in (0,1/N), and choosing the individuals corresponding
to quantiles ℓ,ℓ+ 1/N ,ℓ+ 2/N , . . . ,ℓ+(N − 1)/N of Fg .

Tournament selection is a method which tries to exploit further similarities with
natural populations, and is based on comparisons of individuals (a tournament) where
the best fitted wins. For each candidate to reproduction to be selected, a group of in-
dividuals is chosen at random (but with different modalities according to variants of
this method), they are compared and the one with the largest fitness is selected. The
replacement actually takes place with probability ps (selection pressure).

Once the selection stage has produced candidates for reproduction, the recombina-
tion stage considers randomly chosen pairs of individuals. They mate and produce a
pair of offsprings that may share genes of both parents. This process, also called cross-

over, is applied with a fixed probability (usually larger than 0.5 but smaller than one)
to each pair. Several different types of cross-over are common, the simplest is called
one point cross-over. It consists in pairing the chromosomes of the two individuals and

210 F. Battaglia

choosing at random one locus: the genes which appear before that locus remain un-
changed, while the genes appearing after the cross-over point are exchanged together.
The process produces, from two parents, two children, each of which inherits part of
the gene sequence from one parent, and the remaining part from the other parent. If
cross-over does not take place, the two children remain identical to their parents. A
more elaborated cross-over type is called uniform cross-over: each gene of the offspring
is selected at random, from the corresponding genes of the two parents, with equal
probability. Note that in this way the number of offsprings from a pair may be chosen
to be one, two or even more.

Once offsprings are generated, they are subject to the mutation operator. Mutation
is needed to introduce innovation into the population (since selection and cross-over
only mix the existing genes), but is generally considered a rare event (like it is in na-
ture). Therefore, a small probability pm is selected, and each gene of each individual’s
chromosome is subject to mutation with that probability, independently of all other
genes. If the gene coding is binary, a mutation simply changes a 0 to a 1 or vice versa,
while if the alphabet for a gene is richer, a mutation rule has to be defined. Often a
uniform random choice among all possible symbols (different from that to be mutated)
is preferred if the alphabet is finite, or a perturbation based on a gaussian variable if the
genes are coded as real numbers.

A final important topic is the way new offsprings replace their parents, also called
reproduction (sometimes replacement) strategy. We assume that the number of individ-
uals in the population for each generation remains equal and fixed to N ; the simplest
rule is generating N offsprings and replacing entirely the population at each generation.
However, this way may eliminate the best fitted individual with non zero probability,
therefore a common modification is as follows: if the best fitted offspring is worse than
the best fitted parent, this last is retained in the next generation population, usually
replacing the least fitted offspring. It is called the elitist strategy . More generally, we
may decide to replace at each generation only a fraction (called the generation gap) of the
population, or even to replace just one individual (usually the worst) at each generation
(a procedure called steady state or incremental rule).

Many modifications of the genetic algorithm have been proposed in literature, and
several types of different procedures concerning mutation, recombination and replace-
ment have been introduced. Furthermore, some new operators have been considered,
for example inversion (which consists in reversing the order of the genes in a chromo-
some) that are employed less frequently.

Genetic algorithms start from an initial population (generation 0) whose individu-
als are usually selected at random uniformly in the solution space, or, sometimes, are
chosen in a deterministic fashion in order to represent different subsets of that space. As
generations proceed, new individuals appear: owing to the selection mechanism, their
fitness is on the average larger than their parents; moreover, the cross-over operator
allows appearance of new individuals that may enjoy favorable characteristics of both
parents. Thus, it is likely that after many generations the best chromosome that may
be obtained by combining the genes of the initial population is discovered and starts to
replicate itself; however, this process would be unable to experiment new genetic ma-

Evolutionary Computation Methods 211

terial. In other words, in case that all individuals at generation 0 have say a gene code
equal to 1 in the first locus of their chromosome, this would be true for any offspring,
indefinitely, and if the maximum fitness corresponds to a chromosome whose first gene
equals 0, this would never be discovered. The solution to this drawback is obviously
mutation: such operator ensures that all possible gene sequences may be obtained in
the chromosome of the offspring, and therefore, in principle, we may be confident that
running a genetic algorithm for a sufficiently large number of generations the space of
solutions is thoroughly explored, and the best individual found. Formal convergence
properties of the genetic algorithm have been analyzed in depth, see Reeves and Rowe
(2003) for reference.

2.3. Estimation of distribution algorithms

These algorithms are best explained, and were originally derived, in the case that the
chromosomes are real vectors x = (x1, x2, . . . , xM)

′, though they have been extended to
more general settings. In the real vector case, the problem may be formulated as that of
maximizing a fitness function f (x) where x is a real vector x ∈RM .

The proposal originates from the attempt of explicitly taking into account the cor-
relation between genes of different loci (components of the vector x), that may be seen
in good solutions, assuming that such correlation structure could be different from that
of the less fitted individuals. The key idea is to deliver an explicit probability model and
associate to each population (or a subset of it) a multivariate probability distribution.

An initial version of the estimation of distribution algorithm was originally pro-
posed by H. Muhlenbein and G. Paas (1996), and then many further contributions
developed, generalized and improved the implementation. A thorough account may be
found in Larrañaga and Lozano (2002) and in a second more recent book (Lozano et al.,
2006).

The estimation of distribution algorithm is a regular stochastic population based
evolutionary method, and therefore evolves populations through generations. The typ-
ical evolution process from one generation to the next may be described as follows:

1. Generate an initial population P (0) = {x
(0)

i
, i = 1, . . . ,N} ; c = 0 .

2. If P (c) denotes the current population, select a subset of P (c) : {x(c)
j

, j ∈ S(c)} with

|S(c) |= n <N individuals, according to a selection operator.

3. Consider the subset {x(c)
j

, j ∈ S(c)} as a random sample from a multivariate ran-

dom variable with absolutely continuous distribution and probability density
p(c)(x), and estimate p(c)(x) from the sample.

4. Generate a random sample of N individuals form p(c)(x): this is the population
at generation c + 1, P (c+1).

5. If a stopping rule is met, stop; otherwise c + 1→ c and return to 2.

212 F. Battaglia

The originally proposed selection operator was the truncation selection, in other
words only the n individuals with the largest fitness out of the N members of the pop-
ulation are selected. Later, it was proposed that other common selection mechanism
such as the roulette wheel (proportional selection) or the tournament selection (choice
of the best fitted inside a group of k individuals chosen at random) can be adopted.

Note that the most critical and difficult step is the third one: the aim is to sum-
marize the properties of the most fitted part of the population through a probability
distribution, and then to employ that distribution to generate new offsprings. Many
papers concentrated on the problem of “estimating” the distribution, meaning to de-

rive, from the finite set of individuals {x(c)
j

, j ∈ S(c)}, the probability density function

p(c)(x). It can be observed that this is not an uncommon problem in Statistics, and
many proposals (frequently based on non parametric density estimation) appear in the
statistics literature. However, the estimation of distribution algorithms were developed
in a different field, and methods for deriving p(c)(x)were proposed which are somewhat
unusual in Statistics.

The simplest way is called Univariate Marginal Distribution Algorithm (UMDA)
and assumes that p(c)(x) is a multivariate normal with independent components, there-
fore its parameters (means and variances) are obtained by the usual estimators on the
marginal distributions of each gene in the subset S(c) . Obviously, this is in principle a
very inefficient choice, which also contradicts the basic assumption of exploiting corre-
lations among genes, though it has been reported that in some cases it leads to successful
algorithms.

A more elaborated solution takes into account the dependence between genes, but to
this aim a simplifying assumption is formulated, and is known as Factorial Distribution
Algorithm (FDA). The key assumption is that the fitness function may be additively
decomposed in terms, each depending only on a subset of genes. In other words, if
s1, s2, . . . , sk all are subsets of {1,2, . . . , M}, it is assumed that there exist k functions
f1, f2, . . . , fk , each of which depends on x only through the coordinates corresponding
to the subset s j , and the fitness f (x)may be written as follows:

f (x) =
k
∑

j=1

f j [x(s j)]

where x(s j) = {xi , i ∈ s j }. If it is true, the multivariate probability distribution p(c)(x) is

factorized as a product of conditional distributions on smaller subsets, and this simpler
factorization helps to estimate the whole distribution. The choice of the subsets may
be done also using graphical models.

More complicated ways of estimating the multivariate distribution have also been
proposed, based on Bayesian Networks.

As should be clear, the accent in estimation of distribution algorithms is essentially
on extracting the typical features of best fitted individuals, and reproducing them in the
next generation. Since the use of the complete multivariate probability distributions
accounts for relationships between genes, no recombination tool (cross-over operator)
is contemplated. Neither mutation operators are used: new individuals (carrying never

Evolutionary Computation Methods 213

experienced gene values) may be generated by random sampling the estimated multi-
variate probability distribution. In fact, since p(c)(x) is a density, sampling may result
in elements not belonging to S(c) .

2.4. Differential evolution

Differential evolution is an algorithm arising in a pure optimization framework, and is
best explained by referring to a real function f of M real variables: f : RM

→ R to be
optimized. Though differential evolution papers refer generally to minimization, we
shall continue our biological populations similitude and consider f as a fitness function
to be maximized.

Differential evolution is a recent method, which was first proposed by R. Storn and
K. V. Price in 1995. A complete account may be found in Price et al. (2005).

Differential evolution is also a population based method, and evolves populations of
solutions through successive generations. Each individual represents a possible solution,
and is codified by a real vector x = (x1, x2, . . . , xM)

′
∈ R

M . Though not frequently used
in the present framework, we continue to denote x by the word chromosome, and their
components by the word gene.

The transition from one generation to the next is obtained by treating each individ-
ual separately, and producing an offspring which replaces it in the next generation. This
makes differential evolution particularly suitable for a parallel implementation.

The evolution mechanism is based on difference vectors (the difference between two
randomly selected chromosomes of the current population) which is the basic perturba-
tion type allowing new features to appear in the population. The word vector is usually
preferred to chromosome, because differential evolution has a convenient geometrical
interpretation, and individuals may be advantageously seen as points (or vectors) inRM .

The number of individuals in the population is held fixed throughout generations;
the initial population has a special importance, and the authors stress that good perfor-
mances of the differential evolution algorithms are critically influenced by the initial
population : “in order for differential evolution to work, the initial population must
be distributed throughout the problem space” (Price et al., 2005,p. 53). This happens,
as it will be soon clear, because the offsprings always lie in the convex closure of the
set of the points representing parents population. Therefore, the population at gener-
ation 0 should contain points which are as much as possible different with each other,
and anyway it should be reasonably ensured that the best solution vector is a linear
combination of the vectors forming the initial population. The initial individuals are
selected at random by defining a probability distribution on the solutions space, the
chosen distribution is usually uniform but different families of distributions are obvi-
ously possible.

At each generation, each individual is subject to the process of differential evolu-

tion, which may be explained as follows. Let x denote the individual to be evolved. A
completely different individual is formed as follows: select at random a vector in the
population, different from x, and called the base vector v0; also, select at random two
more individuals in the population, different both from x and v0, and different each

214 F. Battaglia

other: v1 and v2. Scale the difference between these two last vectors by a factor F (the
scale factor) obtaining F (v1− v2), and add this difference to the base vector, to obtain a
new individual u called the mutant:

u = v0+ F (v1− v2) .

The scale factor F has a fixed value chosen by the implementer, usually between 0 and 1.
The mutant vector u is then recombined with the initial individual vector x to produce
an offspring by means of uniform cross-over. It means that each gene of the offspring
will be selected at random to be equal to the corresponding gene of the mutant u with
a fixed probability pc , or equal to the original gene of the individual x with probability
(1− pc). This random selection is performed independently on all genes. Formally, if
y = (y1, y2, . . . , yM)

′ denotes the offspring vector, then

yi = δi ui +(1−δi)xi , i = 1, . . . , M

where {δi , i = 1, . . . , M} are independent Bernoulli random variables with equal pa-
rameter pc . The number of genes inherited from the mutant has therefore a binomial
distribution.

Finally, a replacement step is performed: the original individual x and the offspring
y are compared, and only that with the better fitness is retained and entered in the
next generation population. The process of differential evolution is repeated for each
individual in the population.

It is apparent that the process induced by differential evolution is logically simple;
though the evolution of each member takes place separately, it depends on the whole
population because the mutant which may contribute to generate the offspring is ob-
tained by a linear combination of three other individuals selected at random.

A number of different variants and modifications are possible, in various directions
concerning the choice of both the initial population and the base vector, and finally the
scale factor.

Like all other evolutionary computation methods, differential evolution is iterative
and the best individual in the population approaches the optimum as the generations
flow; therefore, a stopping rule has to be selected. Owing to the geometrical interpre-
tation, it would appear natural to stop generations when the points representing all
members of the population appear nearly undistinguishable, however this problem is
not specific to differential evolution, but has similar characteristics for all evolutionary
computation algorithms, and any stopping rule is plausible.

2.5. Evolutionary behavior algorithms

Many more optimization algorithms inspired by nature have been proposed in recent
years. Among them, some methods are particularly interesting, also population based,
but suggested by analogies with the social behavior of the individuals rather than biolog-
ical reproduction features. Rather than concentrating on the evolution of a population
through generations, these methods consider each individual as an agent searching iter-
atively for the solution of a given problem (equal for all of them). At each stage, each

Evolutionary Computation Methods 215

individual proposes a solution, and the stages are iterated until a stopping criterion is
met. The crucial point is that the solution proposed at each stage by each individual de-
pends on the goodness score (or fitness) of the solutions proposed in the previous stage
by all (or some) other individuals in the population. Therefore the solution proposed
by each individual depends on the best results reached by the community. These meth-
ods try to idealize and reproduce the social behavior features of living communities,
thus we have called them evolutionary behavior algorithms.

The main contributions in this field are the ant colony optimization and the particle

swarm optimization.
Ant colony optimization was introduced by Dorigo in his ph. d. thesis in 1992

(Dorigo, 1992) and was developed by himself and his co-workers in the last fifteen years
(e. g., Dorigo and Gambardella, 1997; Dorigo and Stützle, 2004). The method is in-
spired by the way ants search for food. Each ant initially wanders searching for food,
but upon finding it, the ant returns to its colony laying down, in the way back, a sub-
stance called pheromone. Later on, ants tend to follow pheromone trails rather than
wander at random, therefore advantageous paths are characterized by a large amount of
pheromone, and are more attractive. However, pheromone evaporates in time, so that
paths to places where food has been exhausted lose their attractiveness and are soon
neglected.

Ant colony optimization’s most natural application is to problems where any pos-
sible solution may be described by a path on a graph, like in the traveling salesman
problem, and it will described here in that framework, though these methods have been
applied also to different environments.

Let us consider a graph with n vertices denoted by 1,2, . . . , n and edges (i , j) ∈ E ,
and suppose that any possible solution is associated to a path, possibly with some con-
straints. Each edge has a known cost ci j (often proportional to its length if applicable)

and a pheromone loading τi j (initially set to zero). We consider a population of m ants,

and the algorithm is iterative: at each stage each ant proposes a solution, by building
an admissible path on the graph. Each ant starts from a randomly selected vertex and
chooses which vertex to reach by means of a probabilistic rule: if the ant is in vertex

i , it will select vertex j with probability proportional to τα
i j

c
−β

i j
, where α and β are

positive constants. Depending on the nature of the problem, constraints on the edge
set E and on the single solution components, and a rule for deciding when a solution is
complete, have to be fulfilled (e. g., in the traveling salesman problem each vertex has
to be visited once and no more than once).

When each ant k has completed its proposed solution sk (k = 1,2, . . . , m), these are
evaluated by means of a fitness function F (s), and the pheromone values of each edge
are updated:

τi j ← (1−ρ)τi j +ρ
∑

s∈S∗

F (s)

where ρ, between 0 and 1, controls the evaporation rate, and the sum over s is extended
to all solutions including the edge (i , j) contained in a subset of solutions S∗ ; in the
simplest implementation S∗ is the set of the solutions proposed by each ant in the cur-
rent stage, as in ant systems (Dorigo, 1992). Other ant colony optimization algorithm

216 F. Battaglia

differ essentially for the way S∗ is built, therefore the differences are in the pheromone
updating rule: one may add to S∗ the best so far found solution, or on the contrary S∗

may contain only the best solution found so far, or just in the current stage, or S∗ may
contain only the solutions found by the most successful ant at each stage. Finally, the
pheromone values may be limited by a priori chosen minimum and maximum values
(max-min ant systems, Stützle and Hoos, 2000). The fitness F (s) may also be chosen
in various ways, the most common seems an inverse proportionality to the sum of the
costs of all edges in the solution.

Particle swarm optimization is a more recent set of algorithms which tend to re-
produce a sort of social optimization induced by interactions among individuals with
a common problem to solve, also known as swarm intelligence. Particle swarm opti-
mization was introduced by Kennedy and Eberhart (1995, 2001). In its simplest form, a
swarm is composed by many particles moving in a multidimensional continuous space,
and the particle behavior is recorded at discrete times or stages. At each stage, each
particle has a position and a velocity. Suppose that there are m particles moving in Rn ,
denote by xi ∈R

n the position of the particle i , and by vi ∈R
n its velocity: then at the

next stage the particle will move to xi + vi . Each point of the space may be evaluated,
according to the problem, by means of a fitness function F (x) defined on Rn . After
each stage the particle velocities are updated, allowing the particles change directions,
and this is done by exploiting knowledge of the best solution found so far by the parti-
cle (local best l bi), the best solution found so far by all particles (global best g b), and
(possibly) the best solution found by a set of neighboring particles (neighborhood best
nbi). In any case, particles tend to be attracted towards the promising points found by
the neighbors or the community. The velocity updating equations are linear and of the
following type:

vi ← ωvi + c1 r1(l bi − xi)+ c2 r2(g b − xi)+ c3 r3(nbi − xi)

where ω is an inertial constant usually slightly less than 1, c1, c2, c3 are constants repre-
senting the relative strength of personal, community and neighborhood influence, and
r1, r2, r3 are random vectors, introducing a probabilistic perturbation.

Though especially suitable for optimization inRn , discretized versions for searching
over discrete spaces have also been proposed.

Ant colony and particle swarm optimization methods have been employed seldom
in statistical analysis applications, but given their increasing development it is likely
that they will be soon found useful and appropriate for statistical problems too.

2.6. Genetic Algorithms and random sampling from a probability distribution

There has been considerable discussion on the role of genetic algorithms as function
optimizers (see De Jong, 1993): it is clear that trying to optimize a function by means
of a genetic algorithm means following only the best fitted individual at each generation,
therefore focusing only on a particular aspect of the algorithm behavior. But the genetic
algorithm may be also employed for evolving a population maintaining diversity, so
resulting in a non-degenerate multivariate statistical distribution of the chromosomes.

Evolutionary Computation Methods 217

This observation led to explore connections between evolutionary computation and
methods for generating random samples according to a given multivariate probability
distribution, that we address shortly here. Though we are dealing in effect with pseudo-
random sampling, since we are not drawing real samples, but using numbers generated
by algorithms running on a computer, we shall discard the prefix pseudo as usual in the
statistical literature.

The problem of generating samples from an assigned distribution is an old one in
Statistics, but received a great deal of attention, essentially for the multivariate case, in
more recent years, when Bayesian researchers started addressing increasingly compli-
cated problems, where the posterior probabilities do not belong to standard families,
and the posterior mean — or other indices — is given by integrals whose primitive is
not known. These studies led to the MCMC (Markov Chain Monte Carlo) methods,
which have been a major research subject in Statistics in the last twenty years.

A detailed illustration of MCMC methods is beyond the scope of this book (and
may be found e.g. in Gilks et al., 1996). Let π(x), x ∈ Rp denote a multivariate prob-
ability distribution whose direct simulation by standard random number generators is
difficult. The MCMC techniques generate a vector sequence {xt } in Rp that may be
considered a random realization of a Markov chain with equilibrium distribution equal
to π(.). To this aim, a proposal distribution q :Rp

×R
p
→ [0,1] is defined from which

random numbers may easily be generated. At time t , given the state xt , a random real-
ization y from the distribution q(.|xt) is generated. The move is accepted, i.e., xt+1 is
set equal to y, with probability given by α(xt , y) =min{1,π(y)q(xt |y)/[π(xt)q(y|xt)]}
. If the move is not accepted, then xt+1 = xt . It may be shown that the chain generated
this way is ergodic, and its equilibrium distribution is π(.). As a consequence, after an
initial “burning-in” period, the generated data are recorded and assumed as a random
sample from π(.), even though they, strictly speaking, are not obviously a sequence of
independent realizations.

This method (known as Metropolis-Hastings) has the main advantage that random
numbers generation is needed only from the proposal distribution q(y|x), which may
be chosen in such a way that generation is conveniently easy.

It was noted that if π(.) is multimodal and with strongly correlated components,
the sequence generated by the chain may easily get trapped in a local maximum, and
many modifications were proposed to avoid such a drawback. A popular idea is to
use many chains in parallel. Several proposals in the literature are aimed at improv-
ing the “mixing” ability of the algorithm, i.e., its capability of generating chains which
are able to visit exhaustively the whole support (for example, the Metropolis Coupled
MCMC of Geyer, 1991, or the Simulated Tempering of Marinari and Parisi, 1992).
As soon as the practice of using N parallel chains became popular (these algorithms
are sometimes called Population Based MCMC), the idea of exploiting interactions be-
tween the different chains arose, and some authors proposed to use techniques simi-
lar to the genetic operators mutation and cross-over to evolve the N contemporane-
ous states of the chains as they would be a population. An important difference here
is that one has to use operators that do not destroy the convergence of the chains
to the equilibrium distribution π. To this aim the operator has to satisfy the prop-

218 F. Battaglia

erty of reversibility. Reversibility may be described as follows: for an operator ω
which changes x to y with probability pω(y|x), ω is reversible with respect to π(.) if
π(x)pω(y|x) =π(y)pω(x|y) for any x, y inRp . For operators that change pairs of states
into pairs of states (as in cross-over), the reversibility property may easily be modified:
ifω changes (xi , x j) into (yi , y j)with probability pω(yi , y j |xi , x j) thenω is reversible w.

r. to π if π(xi)π(x j)pω(yi , y j |xi , x j) =π(yi)π(y j)pω(xi , x j |yi , y j) for any xi , x j , yi , y j in
R

p .
A MCMC procedure exploiting genetic operators, called Parallel Adaptive Metropo-

lis Sampler, was proposed by Holmes and Mallick (1998). Liang and Wong (2000, 2001)
introduced the Evolutionary Monte Carlo methods, combining also concepts from sim-
ulated annealing, and several other papers appeared in the literature, a review may be
found in Drugan and Thierens (2004).

As far as the mutation operator is concerned, since coding is usually real, generally a
small modification by adding a random normally distributed noise with zero mean and
moderate variance is adopted (like in evolution strategies). The probability of mutation,
however, is not constant at pm as before, but is determined by a Metropolis acceptance
rule: if xt is the parent and x∗

t
= xt +ǫ is the candidate offspring (the mutant), then the

mutation is accepted with probability min
¦

1,π(x∗
t
)/π(xt)
©

. This ensures reversibility

so that mutation does not destroy the chain ergodicity. Note however that with this
mechanism the mutation probability is usually rather large compared with the small
values of pm generally adopted in evolutionary computation.

Cross-over operations may be realized through different operators, but always con-
sidering that the ergodic character of the chain should be preserved, therefore the cross-
over results should leave the equilibrium distribution unchanged. In fact, if two states
xi and x j are generated according to π(.), the results of a standard cross-over operation

between xi and x j are not in general distributed exactly according to π(.). Two solu-

tions have been proposed: one is subordinating cross-over results to an acceptance rule
of Metropolis-Hastings type, the other consists in modifying the cross-over mechanism
itself.

Let us consider the first solution. Suppose that two independently randomly chosen
states xi and x j are subject to a cross-over operator ω which generates offsprings yi and

y j with probability φ(yi , y j |xi , x j). We accept the new pair of states yi , y j , substituting

them to xi and x j , with probability

α(xi , x j , yi , y j) =min

(

1,
π(yi)π(y j)φ(xi , x j |yi , y j)

π(xi)π(x j)φ(yi , y j |xi , x j)

)

.

It may be shown that this operator satisfies the reversibility property. It follows that
if xi and x j are independently distributed according to π(.), then the results of cross-

over yi and y j are also independent and distributed according to π(.). The only difficult

task could be determining the exchange distributionφ(yi , y j |xi , x j). However, for most

common cross-over forms, such as fixed one-point and uniform, the distribution sat-
isfies φ(yi , y j |xi , x j) = φ(xi , x j |yi , y j) thus it disappears in the acceptance probability,

Evolutionary Computation Methods 219

which is simply computed as min
¦

1,π(yi)π(y j)/[π(xi)π(x j)]
©

.

The alternative way of proceeding is taking as offsprings not directly yi and y j , but

a suitable transformation which enables maintaining ergodicity. The most common
solution of this type is called snooker cross-over (being inspired by the snooker algorithm
proposed by Roberts and Gilks, 1994, in the MCMC framework). Let, as before, xi and
x j denote the parents, and yi and y j the results of a one-point cross-over operator. The

offsprings from xi , x j are selected as two new points belonging to the lines joining xi to

yi and x j to y j respectively. They are determined by random trials from the conditional

distributions induced by π(.) along the lines. Thus, if x c
i

and x c
j

denote the results of

the snooker cross-over, then

x c

i
= xi + r1(yi − xi) ; x c

j
= x j + r2(y j − x j)

where r1 and r2 are generated at random from the probability distributions g1(.) and
g2(.) defined as follows:

g1(r)∝π[xi + r (yi − xi)]|1− r |p−1 ; g2(r)∝π[x j + r (y j − x j)]|1− r |p−1 , r ∈R.

The proof that the chain remains ergodic in this case is more difficult and will not be
given here (see, e. g., Goswami and Liu, 2007).

What precedes suggests a close relationship between MCMC methods and genetic
algorithms, and one may expect that the issue of random sample generation according to
a given distribution might be developed in a complete genetic algorithms framework. A
proposal in this direction is in Battaglia (2001), where a genetic algorithm is introduced
for drawing random samples from a given multivariate probability distribution.

3. STATISTICAL APPLICATIONS

Evolutionary computation methods have been employed for solving statistical prob-
lems increasingly often in the last twenty years.

Most addressed problems are multivariate, and concern the choice of an optimal
solution inside a large discrete space, but evolutionary computation was also applied
for point estimation, searching for the maximum likelihood or the optimal value of
different score functions.

A brief, non exhaustive account of the most relevant statistical applications is given
here, and the reader is referred elsewhere for a wider review (see Baragona and Battaglia,
2009).

A first group of applications is concerned with the selection of variables in regres-
sion. Chatterjee et al. (1996) used a genetic algorithm, and many contributions fol-
lowed (e.g., Minerva and Paterlini, 2002; Balcombe, 2005; Kapetanios, 2007). The chro-
mosome is a binary string with length equal to the number of independent variables,
and each bit indicates presence or absence of the corresponding regressor. The fitness
function may be linked to the coefficient of determination R2, or the F statistic or its
p-value, or a form of penalized gaussian likelihood. A genetic algorithm was employed

220 F. Battaglia

also in principal components (Sabatier and Reynés, 2008), in Independent Component
Analysis (Wu and Chang, 2002), and in the selection of a graphical model (Roverato and
Poli, 1998).

An obvious extension is to model selection in time series. Genetic algorithms were
proposed for building autoregressive moving average models (e. g., Gaetan, 2000; Ong
et al., 2005; Bozdogan and Bearse, 2003) and the identification of transfer functions
(Chiogna et al., 2008). The chromosome specifies, generally with an integer encod-
ing, the orders (and also the active lags in case of subset models), and the fitness is
a monotone decreasing function of an identification criterion such as Akaike’s Infor-
mation Criterion, or similar. Recently, evolutionary computation methods have been
proposed for identifying non-linear time series models, which are particularly difficult
to select. In particular, multi-regime threshold and similar models have been addressed
using genetic algorithms (see e. g. Wu and Chang, 2002; Davis et al., 2006; Baragona
et al., 2004; Baragona and Cucina, 2008).

Genetic algorithms were found particularly effective for the design of neural net-
works (e.g. Kim and Shin, 2007). The chromosome encodes the network architecture
(number of layers, neurons and their connections), and the fitness is proportional to a
measure of the outcome.

A typical problem where genetic algorithms are easily applied and useful is out-
lier detection. Crawford and Wainwright (1995) address the independently distributed
observations case. The identification of outliers in time series by means of a genetic
algorithm has been proposed by Baragona et al. (2001). In outlier applications the chro-
mosomes are generally binary strings with length equal to the number of observations,
and the bits set to 1 identify the anomalous observations. The fitness is chosen depen-
dent on a penalized gaussian likelihood, where the penalizing term is proportional to
the number of outliers.

An important field of application of evolutionary computation to statistical prob-
lems is cluster analysis, since its combinatorial nature is particularly suitable for genetic
algorithms. Several genetic clustering methods have been proposed (see, e. g., Murthy
and Chowdhury, 1996; Bandyopadhyay and Maulik, 2002; Tseng and Yang, 2001). The
coding depends on the clustering method. For hierarchical methods, often a binary
chromosome where each bit is assigned to an observed unit is employed. At any stage,
each cluster is split into two new clusters, separating the units with bit equal to one from
those to which a bit equal to zero corresponds in the chromosome. In non-hierarchical
methods with a fixed number of clusters g , often coding is integer and the chromo-
some is an integer vector with length equal to the number of observations; each gene
— a number between 1 and g — specifies what cluster the corresponding observation
belongs to. For a k−means cluster process, it has also been proposed to encode directly
the centroids of each cluster, so that the chromosomes have k genes and coding is real
(and multivariate). The fitness function in genetic clustering is determined by one of
the several existing index of cluster validity, based on measures of the within-group and
between-group dissimilarity. Recent extensions deal with fuzzy clustering (Maulik and
Bandyopadhyay, 2003), multi objective cluster analysis (Handl et al., 2003) and clusters
of time series (Baragona, 2001).

Evolutionary Computation Methods 221

Finally, genetic algorithms were recently proposed also for the design of experi-
ments. Each chromosome corresponds to a particular combination of factors, and the
fitness function is determined by the outcome of the experiment. Satisfactory results
have been reported in complex chemical experiments (see Forlin et al., 2008).

REFERENCES

T. BACK (1996). Evolutionary algorithms in theory and practice. Oxford University Press, Oxford.

K. BALCOMBE (2005). Model selection using information criteria and genetic algorithms. Compu-
tational Economics, 25, pp. 207–228.

S. BANDYOPADHYAY, U. MAULIK (2002). Genetic clustering for automatic evolution of clusters

and application to image classification. Pattern Recognition, 35, pp. 1197–1208.

R. BARAGONA (2001). A simulation study on clustering time series with metaheuristic methods.
Quaderni di Statistica, 3, pp. 1–26.

R. BARAGONA, F. BATTAGLIA (2009). Evolutionary computing in statistical data analysis. In
A. ABRAHAM, A.-E. HASSANIEN, P. SIARRY, A. ENGELBRECHT (eds.), Foundations of Com-

putational Intelligence vol 3 - Global Optimization (Studies in Computational Intelligence vol.

203), Springer, Berlin/Heidelberg, pp. 347–386.

R. BARAGONA, F. BATTAGLIA, C. CALZINI (2001). Genetic algorithms for the identification of

additive and innovation outliers in time series. Computational Statistics & Data Analysis, 37,
pp. 1–12.

R. BARAGONA, F. BATTAGLIA, D. CUCINA (2004). Fitting piecewise linear threshold autoregres-

sive models by means of genetic algorithms. Computational Statistics & Data Analysis, 47, pp.
277–295.

R. BARAGONA, D. CUCINA (2008). Double threshold autoregressive conditionally heteroscedastic

model building by genetic algorithms. Journal of Statistical Computation and Simulation, 78,
pp. 541–558.

F. BATTAGLIA (2001). Genetic algorithms, pseudo-random numbers generators, and Markov chain

Monte Carlo methods. Metron, 59, pp. 131–155.

H. G. BEYER, H. SCHWEFEL (2002). Evolution strategies, a comprehensive introduction. Natural
Computing, 1, pp. 3–52.

H. BOZDOGAN, P. BEARSE (2003). Icomp: A new model-selection criterion. In H. H. BOCK

(ed.), Classification and Related Methods of Data Analysis, Elsevier Science Publishers (North
Holland), Amsterdam, pp. 599–608.

S. CHATTERJEE, M. LAUDATO, L. A. LYNCH (1996). Genetic algorithms and their statistical

applications: an introduction. Computational Statistics & Data Analysis, 22, pp. 633–651.

M. CHIOGNA, C. GAETAN, G. MASAROTTO (2008). Automatic identification of seasonal transfer

function models by means of iterative stepwise and genetic algorithms. Journal of Time Seies
Analysis, 29, pp. 37–50.

222 F. Battaglia

K. D. CRAWFORD, R. L. WAINWRIGHT (1995). Applying genetic algorithms to outlier detection.
In L. J. ESHELMAN (ed.), Proceedings of the Sixth International Conference on Genetic Algo-

rithms, Morgan Kaufmann, San Mateo, pp. 546–550.

R. DAVIS, T. LEE, G. RODRIGUEZ-YAM (2006). Structural break estimation for nonstationary

time series models. Journal of the American Statistical Association, 101, pp. 223–239.

K. A. DE JONG (1993). Genetic algorithms are not function optimizers. In D. WHITLEY (ed.),
Foundations of Genetic Algorithms 2, Morgan Kaufman, San Mateo, pp. 1–18.

M. DORIGO (1992). Optimization, Learning and Natural Algorithms. Ph.D. thesis, Politecnico di
Milano, Italy.

M. DORIGO, M. GAMBARDELLA (1997). Ant colony system: a cooperative learning approach to the

traveling salesman problem. IEEE Transactions on Evolutionary Computation, 1, pp. 53–66.

M. DORIGO, T. STÜTZLE (2004). Ant Colony Optimization. MIT Press, Cambridge.

M. DRUGAN, D. THIERENS (2004). Evolutionary Markov chain Monte Carlo. In P. LIARDET

(ed.), Proc. Sixth Intern. Conf. on Artificial Evolution - EA 2003. Springer, Berlin, pp. 63–76.

D. B. FOGEL (1998). Evolutionary computation: toward a new philosophy of machine intelligence.
IEEE Press, New York.

L. J. FOGEL, A. J. OWENS, M. J. WALSH (1966). Artificial intelligence through simulated evolu-

tion. Wiley, New York.

M. FORLIN, I. POLI, D. DE MARCH, N. PACKARD, G. GAZZOLA, R. SERRA (2008). Evo-

lutionary experiments for self-assembling amphiphilic systems. Chemometrics and Intelligent
Laboratory Systems, 90, pp. 153–160.

C. GAETAN (2000). Subset arma model identification using genetic algorithms. Journal of Time
Series Analysis, 21, pp. 559–570.

C. J. GEYER (1991). Markov chain Monte Carlo maximum likelihood. In E. M. KERAMIDAS (ed.),
Computing Science and Statistics, Proc. 23rd Symposium on the Interface. Interface Foundation,
Fairfax Station, pp. 156–163.

W. R. GILKS, R. RICHARDSON, D. J. SPIEGELHALTER (1996). Markov Chain Monte Carlo in

Practice. Chapman and Hall/CRC.

G. GOSWAMI, J. S. LIU (2007). On learning strategies for evolutionary Monte Carlo. Statistics and
Computing, 17, pp. 23–38.

J. HANDL, J. KNOWLES, M. DORIGO (2003). Ant-based clustering: a comparative study

of its relative performance with respect to k-means, average link and 1 d-som. Tech-
nical Report TR/IRIDIA/2003-24, IRIDIA, Université Libre de Bruxelles, Belgium.
Http://wwwcip.informatik.uni-erlangen.de/̂sijuhand/TR-IRIDIA-2003-24.pdf.

C. C. HOLMES, B. K. MALLICK (1998). Parallel Markov chain Monte Carlo sampling. mimeo,
Dept. of Mathematics, Imperial College, London.

G. KAPETANIOS (2007). Variable selection in regression models using nonstandard optimisation of

information criteria. Computational Statistics & Data Analysis, 52, pp. 4–15.

Evolutionary Computation Methods 223

J. KENNEDY, R. EBERHART (1995). Particle swarm optimization. In Proc. IEEE Conference on

Neural Networks. Piscataway, pp. 1942–48.

J. KENNEDY, R. EBERHART (2001). Swarm Intelligence. Morgan Kaufmann, San Mateo.

H.-J. KIM, K.-S. SHIN (2007). A hybrid approach based on neural networks and genetic algorithms

for detecting temporal patterns in stock markets. Applied Soft Computing, 7, pp. 569–576.

J. R. KOZA (1992). Genetic programming: on the programming of computers by means of natural

selection. MIT Press, Cambridge.

P. LARRAÑAGA, J. A. LOZANO (2002). Estimation of distribution algorithms: a new tool for

evolutionary optimization. Kluwer, Boston.

F. LIANG, W. H. WONG (2000). Evolutionary Monte Carlo: applications to cp model sampling and

change point problem. Statistica Sinica, 10, pp. 317–342.

F. LIANG, W. H. WONG (2001). Real-parameter evolutionary Monte Carlo with applications to

Bayesian mixture models. Journal of the American Statistical Association, 96, pp. 653–666.

J. A. LOZANO, P. LARRAÑAGA, I. INZA, G. BENGOETXEA (2006). Towards a new evolutionary

computation. Advances in estimation of distribution algorithms. Springer, Berlin.

E. MARINARI, G. PARISI (1992). Simulated tempering: a new Monte Carlo scheme. Europhysics
Letters, 19, pp. 451–458.

U. MAULIK, S. BANDYOPADHYAY (2003). Fuzzy partitioning using real coded variable length

genetic algorithm for pixel classification. IEEE Transactions on Geoscience and Remote Sensing,
41, pp. 1075–1081.

T. MINERVA, S. PATERLINI (2002). Evolutionary approaches for statistical modelling. In D. B.
FOGEL, M. A. EL-SHARKAM, G. YAO, H. GREENWOOD, P. IBA, P. MARROW, M. SHAKLE-
TON (eds.), Evolutionary Computation 2002. Proceedings of the 2002 Congress on Evolutionary

Computation. IEEE Press, Piscataway, vol. 2, pp. 2023–2028.

C. A. MURTHY, N. CHOWDHURY (1996). In search of optimal clusters using genetic algorithms.
Pattern Recognition Letters, 17, pp. 825–832.

C. S. ONG, J. J. HUANG, G. H. TZENG (2005). Model identification of ARIMA family using genetic

algorithms. Appl. Math. Comput., 164, pp. 885–912.

K. V. PRICE, R. STORN, J. LAMPINEN (2005). Differential evolution, a practical approach to global

optimization. Springer, Berlin.

C. R. REEVES, J. E. ROWE (2003). Genetic algorithms - Principles and Perspective: A Guide to GA

Theory. Kluwer, London.

G. O. ROBERTS, W. R. GILKS (1994). Convergence of adaptive direction sampling. Journal of
Multivariate Analysis, 49, pp. 287–294.

A. ROVERATO, I. POLI (1998). A genetic algorithm for graphical model selection. Journal of the
Italian Statistical Society, 7, pp. 197–208.

224 F. Battaglia

R. SABATIER, C. REYNÉS (2008). Extensions of simple component analysis and simple linear dis-

criminant analysis using genetic algorithms. Computational Statistics & Data Analysis, 52, pp.
4779–4789.

T. STÜTZLE, H. H. HOOS (2000). Max–min ant systems. Future Generation Computer Systems,
16, pp. 889–914.

L. Y. TSENG, S. B. YANG (2001). A genetic approach to the automatic clustering problem. Pattern
Recognition, 34, pp. 415–424.

D. H. WOLPERT, W. G. MACREADY (1997). No free lunch theorems for optimization. IEEE
Transactions on Evolutionary Computation., 1, pp. 67–82.

B. WU, C.-L. CHANG (2002). Using genetic algorithms to parameters (d,r) estimation for threshold

autoregressive models. Computational Statistics & Data Analysis, 38, pp. 315–330.

SUMMARY

Evolutionary Computation Methods and their applications in Statistics

A brief discussion of the genesis of evolutionary computation methods, their relationship to ar-
tificial intelligence, and the contribution of genetics and Darwin’s theory of natural evolution is
provided. Then, the main evolutionary computation methods are illustrated: evolution strate-
gies, genetic algorithms, estimation of distribution algorithms, differential evolution, and a brief
description of some evolutionary behavior methods such as ant colony and particle swarm opti-
mization. We also discuss the role of the genetic algorithm for multivariate probability distribu-
tion random generation, rather than as a function optimizer. Finally, some relevant applications
of genetic algorithm to statistical problems are reviewed: selection of variables in regression, time
series model building, outlier identification, cluster analysis, design of experiments.

