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1. INTRODUCTION

Biological systems are inherently dynamic and gene expression levels may be tempo-
rally regulated for a wide range of reasons including the cell cycle, circadian rythms,
developmental processes or in response to stimuli (e.g. drug treatment or environmen-
tal stress) (Spellman et al., 1998; Wang and Kim, 2003; Calvano et al., 2005). Microarrays
are a high throughput assaying technique for measuring these expression levels of thou-
sands of genes simultaneously. Each microarray hybridisation provides a snapshot of
expression levels at a single point in time; by carrying out sequential hybridisations on
biological samples arising from the same source (e.g. a human patient), the evolution of
these expression levels over time can then be elucidated.

The resulting microarray time series give rise to data that possess certain character-
istics which make their analysis particularly challenging. Specifically, due to the large
number of genes under study simultaneously, the data is very highly dimensional and
there are many more genes than there are time points. Each time series will be repli-
cated typically no more than ten times, and experiments with no replication are not
uncommon. The number of genes will often number in the tens of thousands while
there are rarely more than ten time points. Even with the falling cost of microarray
technology, the limiting factor is often the ability to obtain biological samples which
may be restricted due to ethical concerns or other practical, experimental issues. Other
challenges include the fact that the data is noisy, with frequent missing observations,
and individual heterogeneity.

Our focus is on longitudinal study designs. In this type of microarray experiment,
multiple biological units — for example human patients, individual mice or cell lines —
are each repeatedly sampled over time to give a collection of observed time series for
each gene under study. This type of biological replication is essential for making in-
ference about population parameters but is often overlooked in microarray studies due
to experimental issues. A longitudinal microarray experiment is described in Section 2
and provides the data for our case study. The purpose of the study was to follow twelve
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female and ten male adult human subjects over a period of 6 months, in order to charac-
terise the change in gene expression levels over time in healthy humans. Figure 1 shows
some of the raw data for a probe corresponding to the TMEFF1 gene from this exam-
ple data set where some of the characteristics discussed above can be seen to manifest
themselves. A key aspect of human data sets is that the gene expression levels are often
collected with covariates - for example, the individual’s age, sex and other phenotypic
data such as height or weight may be recorded. In the case study, the individuals were
stratified by age and gender which allows us to explore not only the evolution of gene
expression levels over time but also which genes are differentially expressed between the
two gender or age groups.

When modelling experimental data arising from longitudinal microarray experi-
ments there are three distinct challenges: (a) modelling each individual time series,
across all genes and individuals, (b) accounting for the correlation between individu-
als on a gene by gene basis and (c) modelling the correlation between genes. Account-
ing for each of these sources of correlation — the temporal, the within-gene (between-
individual) and the between-gene — is vital for obtaining better parameter estimates and
avoiding a loss of power when testing for genes which are differentially or temporally
expressed. With less than 10 timepoints, achieving (a) is not possible with standard time
series analysis techniques — it is unlikely, for instance, that we would observe any pe-
riodicity. Instead, a field which has proven to be quite successful in this area is that of
functional data analysis (FDA). In the FDA paradigm, it is assumed that our observa-
tions are noisy realisations of an underlying smooth function of time which is to be
estimated. These estimated functions, or curves, are then treated as the fundamental
unit of data in any subsequent analysis. Formally, the signal-in-noise model assumed is
that observation yi taken at time ti is given by

yi = f (ti )+ εi (1)

where f (·) is the function of interest to be estimated and εi is an error term. Typically
the infinite dimensional function f (·) is projected onto some finite dimensional basis
using parameterisations such as splines, wavelets or fourier bases. In our discussion we
will focus on splines in particular as these regularly occur in the literature in terms of
both microarray and functional data analysis. For a thorough treatment of FDA, the
monograph Ramsay and Silverman (2005) provides an excellent introduction.

In a longitudinal study, for a particular gene, observations will be collected on not
just a single function f (·), but a collection of n functions fi (·), i = 1, · · · , n, one for each
individual biological unit. Often the main quantity of interest is the population mean
function µ(·) characterising the overall population gene expression level over time. In
this case we extend the signal-in-noise model (1) so that the j th observation on individ-
ual at time ti j is given by

yi j =µ(ti j )+ fi (ti j )+ εi j (2)

This is known as the functional mixed-effects model and is an extension of the stan-
dard linear mixed-effects model (Harville, 1977) where the fixed- and random-effects are
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both considered functions. Function µ(·) is treated as a fixed-effect as it is assumed to
be some fixed, but unknown, population function to be estimated. In constrast, the
functions fi (·), i = 1, · · · , n represent a random sample from the population as a whole
and are assumed to be i.i.d realisations of an underlying stochastic process. Model (2)
has appeared in a number of different forms depending upon the exact parameterisa-
tion of the fixed- and random-effects. For instance, Guo (2002) models both as cubic
smoothing splines while Rice and Wu (2001) prefer a B-spline representation.

The task of handling correlations amongst the genes has, to date, generally been
overlooked by researchers. It is a challenging, open problem to model both the between-
and within-gene correlation simultaneously given the size of the data. Although it is
well known that genes are co-regulated, for the sake of tractability the most common
approach is to simply model each gene independently. In other words, given the frame-
work outlined thus far, each gene would be modelled as a separate functional mixed-
effects model.

In this paper we propose a functional-mixed effects model and a framework for
estimation and testing in one-sample problems. The model enables the estimation of
a mean response curve with the inclusion of covariates, such as gender and age, also
modeled as time-varying smooth functions. We also show how a functional PCA can
be applied to the estimated mean curves in order to identify the principal modes of
functional variation in the data set, and visually represent the entire set of genes in a
low-dimensional plot.

The structure of the paper is as follow. Section 2 provides a description of a data set,
previously collected and analysed by Karlovich et al. (2009), that we use here as a case
study. The proposed model, inferential procedures and functional PCA are provided
in Section 3. In Section 4 we present the experimenal results obtained in the context
of our case study. In Section 5 we discuss how our methodology compares to related
models that have appeared in the literature and compare our experimental results to that
of the original study, as well as highlight some of the biological implications. Finally,
we conclude in Section 6.

2. DATA DESCRIPTION

The data set used in our case study is taken from Karlovich et al. (2009). The purpose
of the study was to characterise the gene expression levels of healthy human individuals
over a period of 6 months. 22 subjects were studied, with gene expression levels assayed
from blood samples at days 1, 14, 28, 90 and 180. One subject developed lung cancer
during the course of the study and died prior to Day 180, thus contributing only a
partial time series. All other individuals completed the study and were observed at all
5 time points. Twelve of the individuals were female and ten were male. In the original
study, the subjects were divided into two age groups, with the younger group taken to
be those subjects less than or equal to 55 years of age, and the older group those subjects
over 55.

In the original paper, the observation for a given gene on individual i at time t was
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Figure 1 – Raw data for TMEFF1, females. Several key characteristics of the data can be observed:
(1) irregularly spaced time points (2) missing data - individual 10 is only observed for the first
three time points (3) significant individual heterogeneity (4) noisy observations
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modelled as

yi t =µ+αi +βg g end e ri +βaa g ei +βt t i met + εi t

This is a standard linear mixed-effects model. µ is the average gene expression level
across all individuals after controlling for gender, age and time effects. αi is an individual
specific term allowing for a deviation in terms of the intercept of the model. The βg ,

βa and βt parameters separate out the gender, age and time effects respectively while
εi t is an error term.

The model and study design permitted a wide range of biological issue to be ex-
plored. Using t-tests, the significance of the age and gender effects was determined.
After correcting for multiple-testing by controlling the false discovery rate (FDR) using
the procedure of Benjamini and Hochberg (1995), no genes showed a significant age ef-
fect. This was somewhat unexpected given previous studies (Eady et al., 2005; Whitney
et al., 2003; Tang et al., 2004) but it was noted that these age effects might be harder to
detect in blood than in other tissuses. 78 unique gender genes were identified including
XIST, responsible for deactivating one of the X chromosomes in females in order to
ensure dosage equivalence, and 23 genes mapped to the Y chromosome. Temporally
regulated genes were identified by performing pairwise comparisons between Day 14
and Day 1, Day 28 and Day 14, and Day 180 to Day 90. This was partly due to con-
cerns about a potential batch effect, as Days 1, 14 and 28 were processed in one batch,
with Days 90 and 180 being processed in a second batch. No temporally regulated genes
were identified in the Day 14 vs Day 1 or the Day 28 vs Day 14 comparisons, but 248
probes were found to be differentially expressed when comparing Day 180 to Day 90,
corresponding to 157 unique genes.

Our proposed approach is to replace the original linear mixed-effects model with a
functional one. The age and gender effects will be modelled as functions of time, along
with the mean and individual curves. To avoid over-parameterisation, all curves will be
represented using smoothing splines. The result is a flexible model which permits the
interaction of age and gender with time, if the data supports it. During our preprocess-
ing we found little evidence of a batch effect and we will use the entire time course to
identify temporally regulated genes, on the basis of the fitted mean function.

3. METHODS

We propose the following functional mixed-effects model for the data described in Sec-
tion 2. Each gene is modelled independently. For a given gene, the observed gene
expression level for individual i at time ti j is given by

yi (ti j ) =µ(ti j )+αk (ti j )+βl (ti j )+ γi (ti j )+ εi j (3)

where µ(·) models the mean expression levels across all individuals after accounting
for age and gender effects; αk (·) is the gender effect for gender k to which individual
i belongs with k = {Male, Female}; βl (·) is the age group effect for group l to which
individual i belongs where l = {Young, Old}; γi (·) is the individual specific effect for
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individual i and εi j is an error term. The functions µ(·), αk (·), βl (·) and γi (·) are as-

sumed to be smooth functions of time which we wish to estimate based on the noisy
observations. We treat µ(·), αk (·) and βl (·) as fixed-effects, unknown population func-
tions to be estimated, and the γi (·) functions which are treated as random-effects as they
represent a random sample of functions from the population as a whole. Formally, the
γi (·) are assumed to be i.i.d. realisations of an underlying Gaussian Process with mean
0 and covariance function δ(r, s).

The functions can be parameterized in a number of ways but we favour smooth-
ing splines as these offer a fine degree of control over the amount to which the data
is smoothed. Writing the vector of all observed time points for individual i as ti =
[ti1, ti2, · · · , tini

]T where ni is the total number of observations on individual i , (3) can

be written in matrix form as

yi =Xiµ+Xiαk +Xiβl +Xiγi + εi (4)

where yi = [yi (ti1), yi (ti2), · · · yi (tini
)]T and εi = [εi1,εi2, · · · ,εini

]T are vectors of length

ni and µ = [µ(τ1),µ(τ2), · · · ,µ(τM )]
T is a vector of length M . The vectors αk , βl

and γi are defined similarly to µ. The values τ1,τ2, · · · ,τM denote the distinct de-
sign time points, of which there are M in total, and ti may differ from these may
differ if individual i has missing data or duplicate observations for some time points.
The matrix Xi is an incidence matrix of dimension ni ×M where each row xi j con-

tains all zeroes aside from the column m where ti j = τm . Further details on form-

ing the incidence matrices and an example can be found in Appendix A.1. Recall that
γi (·)∼GP (0,δ), i = 1, · · · , n, then the vectors γi are multivariate-normally distributed
with mean 0 and covariance matrix D where D (r, s) = δ(τr ,τs ). Similarly the noise
term εi is multivariate-normally distributed with mean 0 and covariance matrix Ri ,
and we assume that the vectors γi and εi are independent. For simplicty we assume
that Ri = σ

2Ini×ni
, although a more complicated structure could be modelled at the

expense of fitting more parameters. It is further necessary to impose the identifiabil-
ity constraint that the age and gender fixed-effects for the two groups sum to zero, i.e.
αmal e+α f e mal e = 0 andβyoun g +βol d = 0. For simplicity, therefore, we model a single

gender and age effect, α = α f e mal e and β = βol d respectively. These constraints can

equivalently be expressed be rewriting (4) as

yi =Xiµ+Wiα+Ziβl +Xiγi + εi (5)

where

Wi =

�

−Xi if i is male
Xi if i is female

Zi =

�

−Xi if i is young
Xi if i is old

Let η= [µ,α,β]T , then (5) can be rewritten more compactly as

yi =X∗
i
η+Xiγi + εi
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where

X∗
i
=
�

Xi Wi Zi

�

Finally, the complete data vector for all individuals, y, can be expressed as

y =X∗η+ eXγ + ε (6)

where y = [yT
1

, yT
2

, · · · , yT
n
]T is an N =

∑

i ni length vector, and γ and ε are similarly

defined, X∗ = [X∗
1

T ,X∗
2

T , · · ·X∗
n

T ]T is an N×3M matrix and eX = d ia g (X1,X2, · · · ,Xn)

is an N ×nM matrix, with the d ia g (·) operator denoting a block diagonal matrix. The
vectors γ and ε are both multivariate-normally distributed with mean 0 and covariance

matrix eD = d ia g (D , · · · , D ) and R = d ia g (R1 ,R2, · · · ,Rn) respectively.

3.1. Parameter Estimation

Model (6) is in the form of the standard linear mixed-effects model (Laird and Ware,
1982). Standard practice for obtaining estimates of the fixed- and random-effects, η̂
and γ̂i , i = 1, · · · , n would be to maximise the joint likelihood of η and γi (Robinson,
1991). This is equivalent to minimising the following generalized log likelihood (GLL)
criterion

GLL= (y−X∗η− eXγ )T R−1(y −X∗η− eXγ )+ log | eD | (7)

+γT eD−1γ + log |R|

However, in our model the fixed- and random-effects are the fitted values of the smooth-
ing spline estimates of the functions µ(·), α(·),β(·), γi (·), i = 1, · · · , n, and it is necessary
to incorporate a penalty term for the roughness of the smoothing splines into the like-
lihood. The penalized GLL is then given by

PGLL=GLL+λγ

n
∑

i=1

(

∫ b

a

[γ ′′
i
(t )]2d t

)

+λ

∫ b

a

[µ′′(t )]2d t (8)

+λ

∫ b

a

[α′′(t )]2d t +λ

∫ b

a

[β′′(t )]2d t

where the integrals quantify the roughness of the curves µ(·), α(·), β(·), γi (·),
i = 1, · · · , n in terms of their squared second derivative, although other penalties could
be used. The scalars λ and λγ are positive-valued smoothing parameters that control the

roughness of the fit. For a given smoothing spline fit, λ= 0 would correspond to an in-
terpolation of the data points while as λ tends to infinity, the fit tends to a straight line.
Note that the same smoothing parameter λ is used for the three fixed-effects functions,
µ(·), α(·), β(·), and similarly the same smoothing parameter, λγ , is used for all random-

effect functions γi (·), i = 1, · · · , n. This is conceptually justified as each function γi is
assumed to be a realisation of the same underlying Gaussian Process, but it is possible
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to envisage selecting a separate smoothing parameter for each fixed- and random-effect
function, albeit at the expense of a far greater computational cost.

Minimization of (8) requires calculation of the integral of the squared second
derivative of the fixed- and random-effects. In the case of cubic smoothing splines,
for a given function f (t ) observed at time points t1, t2, · · · , tn such that f =
[ f (t1), f (t2), · · · , f (tn)]

T , there is a roughness matrix G which can be calculated in a
computationally efficient manner that satisfies:

∫ b

a

[ f ′′(t )]2d t = f T G f

this result can be found in Green and Silverman (1994) and we have reproduced the
derivation in Appendix A.2 for completeness. Incorporating the roughness matrix into
(8) gives

PGLL = GLL+λγ

n
∑

i=1

γT

i
Gγi +λ(µ

T Gµ+αT Gα+βT Gβ)

= GLL+λγ γ
T
eGγ +ληT G∗η

where eG is a block diagonal matrix comprised of the matrix G repeated n times. Simi-
larly, G∗ is a block diagonal matrix comprised of G repeated three times.

After a rearrangement on the terms featuring in the penalised log-likelihood,
the model can be re-written in terms of the regularised covariance matrices
eDγ = (

eD−1+λγ
eG)−1 and V = eX eDγ

eXT + R, so called because the matrix eDγ is ob-

tained by regularising the covariance matrix eD with the term λγ
eG. This method of

imposing the smoothness constraints by regularisation of the covariance matrix can be
credited to Wu and Zhang (2006).

Minimising (8) gives the BLUE and BLUP of the fixed- and random-effects as

η̂= (X∗T V−1X∗+λG∗)−1X∗T V−1y (9)

γ̂ = eDγ eX
T V−1(y −X∗η) (10)

The discussion thus far has assumed that the variance components D and σ2 were
known. Of course, in practical applications this will not be the case. Assuming the

random-effects γi and error terms ε are known, the maximum likelihood estimators D̂
and σ̂2 are given as

D̂ =
1

n

n
∑

i=1

γiγ
T

i
σ̂2 =

1

N
εT ε (11)

As the random-effects γi and error terms are not, in fact, directly observed, we resort
to the Expectation-Maximisation algorithm where they can be treated as missing data.

In this procedure the sufficient statistics of D̂ and σ̂2 — γiγ
T
i

, i = 1, · · · , n and εT ε
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respectively — are replaced by their conditional expectations which are calculated at the
E-step. In the M-step, the maximum likelihood estimators are then calculated having
replaced the sufficient statistics by these conditional expectations, which are given by

E[γiγ
T

i
|y,η= η̂] = γ̂i γ̂

T

i
+ D̂γ − D̂γX

T

i
V−1

i
Xi D̂γ (12)

E[εT ε|y,η= η̂] = ε̂T ε̂+ σ̂2N − σ̂4 t r (V−1) (13)

where t r (·) denotes the trace of a matrix and Vi =Xi DγX
T
i
+σ2Ini×ni

. Derivations of

these conditional expectations are given in Appendix A.3.

3.2. Model Selection

Thus far we have treated the smoothing parameters λ and λγ as fixed. In reality, opti-

mal values of these parameters must be found using a model selection procedure. Guo
(2002) made use of the relationship between a smoothing spline and a linear mixed-
effects model in order to treat the smoothing parameters as variances components that
could be estimated during the normal course of the EM-algorithm. We prefer, however,
to dissociate the model selection from parameter estimation and numerically optimise
over the two dimensional space of non-negative reals (Λ×Λγ ) as this is a much more

flexible approach. There are a number of different criteria for scoring the smoothing
parameters, all of which essentially trade off between model fit and model complexity.

Ma et al. (2006)’s smoothing-spline clustering approach for microarray data, for in-
stance, employed Wahba (1977)’s generalized cross validation (GCV) criterion. It is well
known, however, that GCV tends to undersmooth (Lee, 2003). Alternatively, we can
employ either the Akaike Information Criterion (AIC) or the Bayesian Information
Criterion (BIC):

AI C (λ,λγ ) =−2lik+ 2df

BI C (λ,λγ ) =−2lik+ l o g (N )df

These two criteria both score the smoothing parameters in terms of the likelihood —
measuring the model fit — adjusted for a penalty term for the model complexity, in
terms of degrees of freedom. The difference lies in the size of the penalty term, with
BIC giving more conservative results when l o g (N )> 2, in other words when there are
more than 9 data points.

Both of these criteria, and GCV, have a sound theoretical basis. We suggest, there-
fore, to choose which one to use on the basis of a priori knowledge about the kind of
patterns we expect to observe in a given data set. If, as in our example data set, we do
not expect there to be many genes with curvy temporal profiles, then we may prefer
the more conservative BIC. On the other hand, in a data set with a greater number of
time points and with more expected variability — in response to infection for instance
— then we may prefer the AIC in order to better capture the more complex patterns
expected.
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3.2.1. Smoother Matrices

In order to evaluate the criteria, it is necessary to calculate the degrees of freedom of
the model. As per Buja et al. (1989), the degrees of freedom associated with the fixed-
and random-effects, η and γ , can be expressed as the trace of some smoother matrix A
such that ŷ = Ay. Equivalently, it is useful to determine the two smoother matrices
A = Aη +Aγ so that the degrees of freedom of the fixed- and random-effects can be

accounted for separately.
Recall that the fitted values of the fixed-effects at the design time points can be writ-

ten as X∗η̂. Replacing η̂ with (9) gives

X∗η̂=X∗(X∗T V−1X∗+λG∗)−1X∗T V−1y =Aηy

and so the smoother matrix Aη is given by

Aη =X∗(X∗T V−1X∗+λG∗)−1X∗T V−1

Similarly, the fitted values of the random-effects at the design time points can be written

as eX γ̂ , which gives

eX γ̂ = eX eDγ
eXT V−1(IN −Aη)y =Aγ y

The degrees of freedom of the model can then be calculated as d f = t r (Aη+Aγ )+ 1,

which is the trace of the smoother matrix plus an additional paramter for fitting the
noise variance σ2.

With the scoring function in place any kind of two-dimensional optimisation rou-
tine can be used, although in practice a simple grid search or sequential line optimisa-
tion is recommended (Wu and Zhang, 2006). We have found that a more sophisticated
simplex-search optimiser (Nelder and Mead, 1965) can be employed without incurring
a significant computational cost. This allows optimisation over the two smoothing pa-
rameters λ and λγ simultaneously without needing to calculate the derivative of the

criterion.

3.3. Confidence Bands

Pointwise confidence bands at the design time points for each of the fixed-effects func-
tions can be determined either theoretically or using a bootstrap resampling procedure.
In the case of the former, we have

cov(η̂) = (X∗T V−1X∗+λG∗)−1X∗T V−1X∗(X∗T V−1X∗+λG∗)−1

The diagonal elements of cov(η̂), therefore, give the variance of the fixed-effects at the
design time points with the first M elements corresponding toµ(·), the next M elements
to α(·), and the final M elements to β(·). In fact, due to the block diagonal structure
of cov(η̂), these M elements will be the same across all three fixed-effects. Confidence
bands for a significance level α at the design time points τi can then be calculated for µ̂
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as µ̂(τi )± z
p

cov(µ̂(τi )), where z is the critical value under the normality assumption
such that φ(z) = 1− 1

2
α. These bands can be calculated for the other fixed-effects α̂ and

β̂ in an identical fashion.
Alternatively, confidence intervals can be estimated by resampling the between- and

within-individual residuals. To construct a bootstrapped sample for a single individ-
ual, first one of the individual functions γi is randomly selected and evaluated at the
design time points - denote this vector as γ ∗. Next, M residuals from the noise vector
ε, are resampled with replacement, writing this vector as ε∗. Then, the bootstrapped
observation vector y∗ is given by

y∗ =µ+α∗+β∗+ γ ∗ + ε∗

where α∗ = α if the individual is female and−α otherwise, similarly forβ. This process
is then repeated for n individuals, sampling the individual functions with replacement,
to give a complete bootstrapped data set. The model is then fit to this resampled data and
new estimates for the fixed-effects obtained. Repeating this process for a large number
of iterations gives a large number of fixed-effects estimates from which the confidence
bands at a given significance level can be determined empirically.

3.4. Testing for temporal regulation and other effects

Fitting model (6) allows us to separate out the mean, age and gender effects for each
gene. It is then possible to determine whether there is a significant group or gender
effect by testing the null hypothesis that the corresponding population coefficients are
zero. As the effects are modelled as functions, a natural way to quantify their size is
the L2 norm. For instance, the hypothesis of absence of an age effect, for a given gene,
versus the alternative hypothesis of an age affect, can be framed as

H0 : ||α(·)||2 = 0, H1 : ||α(·)||2 > 0

which is tested using the L2 norm of the estimated coefficients.
Assessing the statistical significance in settings similar to ours is complicated by the

fact that the sample sizes are generally very small. On the basis of this, and in agree-
ment with previous published studies, we suggest deteriming the null distribution em-
pirically by using data resampling schemes. For example, in Storey et al. (2005), the null
distribution of their F-type test-statistic was determined using a nonparametric boot-
strap procedure by resampling the individual effects and error terms with replacement.
In out study, the null distribution of the L2 norm of the age and gender effects has
been estimated empirically using a permutation procedure where the class assignments
— male/female or young/old — are randomly permuted. We take a similar approach
when testing for temporal regulation. In this case, the null hypothesis of no change over
time is formulated as ||µ′(·)||2 = 0 where µ′(·) is the first derivative of the mean curve.
The null distribution in again obtained empirically by randomly permuting the time
points.



170 M. Berk, G. Montana

3.5. Functional Principal Components Analysis

Fitting model (6) to each gene yields a set of mean curves µi (t ), i = 1, · · · ,G where G is
the total number of genes in the data set. Performing a functional PCA (fPCA) (Ramsay
and Silverman, 2005) on this set of curves allows us to identify the main patterns of vari-
ation across all genes. We perform this analysis in two stages: (1) the data are smoothed
by fitting model (6) to each gene (2) a fPCA is then performed on the smoothed data —
in the form of the set of curves µi (t ), i = 1, · · · ,G. Alternative methods of fPCA such
as James et al. (2000), which estimate and smooth the PCs directly, cannot be applied in
this case where there are two levels of variation — the between and within-gene. Further
details of our approach are given below.

Initially, each curve is discretised on a fine grid of n equally spaced points across the
range of the time course. If there are N curves in total, this yields a data matrix X , of
dimension N×n, and a standard PCA can then be performed on X . As routinely done,
this entails solving the eigenequation

Vu = λu (14)

where V =N−1XT X is the sample covariance matrix of X , λ is one of the eigenvalues of
V , and u is one of the eigenvectors, or principal components. In the functional setting,
we replace V by a covariance function v(s , t ), and u by a function of s , ξ (s) such that
the eigenequation (14) becomes

∫

v(s , t )ξ (t )d t = ρξ (s) (15)

for a given value of s . Noting that after discretisation of the curves the elements of the
matrix V = v(s j , sk ) where j and k are any of the n discretised points on the fine grid,

the integral in (15) can be approximated as a summation such that

∫

v(s , t )ξ (t )d t = w

n
∑

k=1

v(s , sk )ξ̃k

where w is the spacing between the points on the fine grid, and ξ̃k are the discretised
values of the function ξ (s). The approximate discrete form of the functional eigenequa-
tion is therefore

wV ξ̃ = ρξ̃

which corresponds to (14) with ρ = wλ. Assuming the eigenvectors obtained from
the standard PCA have been normalised, the equivalent functional constraint that
∫

ξ (s)2d s = 1 is achieved by enforicing w||ξ̃ ||2 = 1. The function ξ (·) is then re-

covered by interpolating the points ξ̃ . Assuming the grid is fine enough, the choice of
interpolation method is almost irrelevant.

As with a standard PCA, we will wish to retain only a small number of functional
PCs. As is standard practice, the eigenvalues ρ can be used to facilitate this choice, by
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retaining enough PCs to explain most of the variation in the data. Assuming K PCs are
retained, for curve i we have

yi (t ) =µ(t )+
K
∑

k

κik ξ̂k (t )+ εi (t )

where κik are the PC loadings for curve i . These can be estimated by minimising the

residuals yi (t )−
∑K

k
κik ξ̂k (t ), which in practice again requires discretisation of the curve

i , and the PCs ξ̂k (t ).

4. RESULTS

We fit the functional mixed-effects model described in Section 3 to the example data
set described in Section 2, independently for each probe. Convergence of the EM al-
gorithm was confirmed by convergence of the variance components estimates σ̂2 and

D̂ and typically took around 30 iterations. 100 iterations of the simplex optimisation
procedure were used to select the smoothing parameters. After obtaining estimates of
the mean, age and gender effects, and individual curves, these were assessed for signifi-
cance. To relieve some of the computational burden, permuted null test statistics were
shared across all genes - theoretical results justifying this pooling can be found in Storey
et al. (2004). Each gene was permuted 32 times, yielding in excess of 1 million null
test statistics for each comparison. From these null distributions, empirical p-values
were calculated, which were then corrected for multiple testing using the procedure of
Benjamini and Hochberg (1995) to control the FDR at 10%.

After applying multiple testing corrections, no significant age genes were identified,
as in the original analysis. 21 probes were found to be gender specific. Two of these 21
probes can be found on the Y-chromosome but are not mapped to any known genes.
The remaining probes correspond to 7 known genes and 2 open reading frames, given in
Table 2. Aside from XIST which, as discussed in Section 2 is only expressed in females
and is responsible for X-chromose inactivation to facilitate dosage equivalence between
the sexes, all significant genes and the two open reading frames are found on the Y-
chromosome.

The highest ranked gender-effect gene on an autosomal chromosome was found to
be TUBB2A, located on chromosome 6 and ranked number 23, with an associated FDR
of 13%, hence of borderline significance. The gene and fitted mean and gender-effect
curves is plotted in Figure 3, where a definite difference between the two groups is
apparent, corresponding to between a 3- and 4-fold difference in expression levels.

A total of 299 probes were found to be significantly temporally regulated, corre-
sponding to 183 unique, mapped genes. The highest ranking gene was found to be MBP
— myelin basic protein — given as one of the examples in Figure 5. Myelin is an in-
sulating sheath covering nerve cells, essential for the correct functioning of the central
nervous system and degredation of myelin can be found in many neurodegenerative
diseases such as multiple sclerosis. It is thought that MBP might function to maintain
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TABLE 1
19 probes found to be significantly differentially expressed according to gender by Karlovich

et al. (2009), with a mean log-transformed signal intensity greater than or equal to 7.

Gene Name Chromosome Affymetrix ID Fold Change
- - 211074_at 0.82
EIF1AX X 201019_s_at 0.86
TMEFF2 M 224321_at 0.87
FLOT1 6 210142_x_at 0.87
EIF2S3 X 224936_at 0.90
RPS4X X 213347_x_at 0.91
MGC71993 17 224573_at 0.93
EEF1A1 1 213477_x_at 1.05
EEF1A1 6 206559_x_at 1.07
SPOP 17 204640_s_at 1.07
ERBB2IP 5 217941_s_at 1.09
UHMK1 1 224691_at 1.11
PP784 4 212199_at 1.12
HMGN4 6 209787_s_at 1.13
C10orf45 10 223058_at 1.13
HTATSF1 X 202602_s_at 1.14
GNG2 14 224964_s_at 1.14
HMGN4 6 209786_at 1.17
HMGN4 6 202579_x_at 1.20

the correct structure of myelin, which may explain why we found it to be seasonally
regulated, although we could find no existing evidence of this.

We performed a functional PCA of the gene mean curves. Each curve was discre-
tised into 1,000 equally spaced points, then normalised by subtracting the first observa-
tion from the rest of the points. Thus, each curve represents the change in expression
levels over time, relative to t = 0. The first two PC functions are given in Figure 6.
The first PC accounts for 99.4% of the variation and corresponds to a linear change
in expression levels over time. The second PC accounts for 0.5% of the variation and
describes expression levels which rise over the first threee months before falling for the
next three months, or vice versa. As these two PCs represent almost all of the variation
in the curves, we estimated the loadings for each gene and plotted the results in Figure
4. Four outliers have been highlighted and each of these is plotted in Figure 5. It can
be seen that the outliers in the loadings plot correspond to those genes which change
most over time, with the distinctive line of points in the center corresponding to genes
which change linearly. For these genes with linear dynamics, the size of the first PC
loading is relative to the slope. Genes which can be separated on the y-axis are those
with a quadratic temporal profile.
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Figure 2 – Residual analysis for the TUBB2A model fit. (a) Standardised residuals against fitted
values (b) Standardised residuals against time (c) Standardised residuals against observations (d)
QQ-plot of standardised residuals. These plots can be used to detect patterns in the data which
the model has failed to capture. Aside from the obvious groupings as a result of the difference
in gene expression levels between males and females, there appears to be little structure to the
residuals. In all cases, the triangles correspond to observations on subject 174, who developed
lung cancer during the course of the study and died prior to the final time point. It can be seen
that this subject contributes two obvious outlying residuals, which may have negatively impacted
the goodness of fit criteria calculated by Karlovich et al. (2009), possibly resulting in its removal
from any subsequent analysis.
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Figure 3 – Plot of TUBB2A’s fitted longitudinal profiles. We have identified TUBB2A as a gene
with a potentially novel gender effect. Observations on females are shown as squares, and those
on males are shown as circles. The solid line is the overall mean expression level over time, after
removing age and gender effects. The dotted line is the mean plus gender effect for females, and
the dashed line is the mean plus gender effect for males.
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Figure 4 – Functional principal components analysis loadings plot. Two functional principal
components capture 99.9% of the observed variation in the fitted mean curves for each gene. The
loadings on the first principal component function corresponds to the x-axis, which represents
linear variation over time. The second principal component function captures variation which
is of a more quadratic nature. These two principal component functions are given in Figure
6. Four outliers representing the spectrum of observed temporal profiles have been highlighted;
individual plots for these genes are given in Figure 5.
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Figure 5 – Outlying genes in the fPCA loadings plot shown in Figure 4. These are some of the
genes which show the greatest change in expression levels over time.
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Figure 6 – Two principal component functions which explain 99.9% of the variation observed in
the fitted mean curves for each gene. The first principal component describes a linear relationship
with time. The second principal component captures a more quadratic fit.
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5. DISCUSSION

A number of different models have been proposed in the literature for the analysis of
microarray time series data. One of the earliest examples of a FDA approach to the
modelling of microarray time series data was Bar-Joseph et al. (2003) which dealt with
the issue of clustering unreplicated data. In their model, the curves were parameterised
using B-splines and functional mixed-effects models were used to estimate the cluster
mean curves and model the within-cluster variability. In their approach, the function
µ(·) in (2) represents a given cluster’s mean, and the functions fi (·), i = 1, · · · , n repre-
sent the temporal profiles of each of the genes belonging to this cluster, of which there
are n. A specialised EM algorithm was used to handle dynamic cluster assignments. A
very similar approach was developed independently by Luan and Li (2003).

A limitation of the models in Bar-Joseph et al. (2003) and Luan and Li (2003) is that
the B-spline parameterisation of the curves requires selecting both the number and lo-
cation of the knots — breakpoints for the piecewise polynomials — which control the

overall smoothness of the fitted curve f̂ (·). As the total number of knots is limited by
the number of time points, there is limited scope for controlling the smoothness of the
fit. Furthermore, each curve was parameterised using the same number of knots which
may be unable to fully capture the wide range of temporal profiles we are likely to ob-
serve. Ma et al. (2006) set out to resolve these issues with their alternative framework for
clustering. In their model, the cluster mean curves — µ(·) in (2) — are represented using
smoothing splines, which place a knot at each design time point and use a roughness
penalty to avoid fitted curves which are too ‘wiggly’. One drawback to their approach,
however, is that the individual functions fi (·), i = 1, · · · , n are only modelled as scalar
shifts rather than smooth curves. This leads to a more parsimonious model which
avoids fitting too many parameters but may fail to adequately model the within-cluster
variability.

Angelini et al. (2009) adopt a fully Bayesian approach to estimation and testing in
unreplicated or cross-sectional microarray data sets. Each gene is represented using Leg-
endre polynomials. Three choices for a prior on the noise variance σ2 allows for errors
which are marginally normal, Student t or double exponentially distributed, although
σ2 is assumed the same for all genes. This assumption is unlikely to hold in practice, as
a correlation between gene expression intensity and measurement noise is well known
(Tusher et al., 2001). Given the fully Bayesian framework, hypothesis testing for differ-
ences in expression levels across two biological groups is performed using Bayes Factors.

A handful of models and computer packages have also specifically been suggested
to model longitudinal data. For instance, Timecourse is an R package based on Tai and
Speed (2006), where multivariate analysis techniques are applied directly to the vectors
of observations. This treatment of time as an unordered categorical variable — found
also in ANOVA approaches as in Wang and Kim (2003) — has some significant draw-
backs. In particular, the method cannot handle missing data, the results obtained by an
analysis would be invariant to permutation of the time points, and it is assumed that the
time points are regularly spaced. Furthermore, this method only ranks the genes with
no guidance given as to how to evaluate significance.
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TABLE 2
21 probes found to have a significant gender-effect Aside from XIST, all of these probes can be

found on the Y-chromosome. Q-value indicates the corresponding false discovery rate (FDR) if a
particular gene is taken to be the cut-off between significant and non-significant.

Gene Name Chromosome Affymetrix ID L2 norm q-value
XIST X 224588_at 57.2 0.00248
XIST X 224590_at 53.9 0.00248
EIF1AY Y 204409_s_at 48.8 0.00248
RPS4Y1 Y 201909_at 42.9 0.00248
DDX3Y Y 205000_at 36.7 0.00248
XIST X 214218_s_at 35.4 0.00248
EIF1AY Y 204410_at 34.5 0.00248
XIST X 221728_x_at 33.2 0.00248
CYorf15B Y 214131_at 30.3 0.00248
CYorf15A Y 232618_at 29.2 0.00248
USP9Y Y 228492_at 27.8 0.00248
JARID1D Y 206700_s_at 25.3 0.00248
XIST X 224589_at 24.8 0.00248
- Y 244482_at 22.4 0.00430
XIST X 227671_at 22.2 0.00430
TSIX X 231592_at 18.4 0.0247
BCORL2 Y 1562313_at 18.4 0.0247
- Y 1560800_at 16.3 0.0323
DDX3Y Y 205001_s_at 16.1 0.0543
CYorf15B Y 223646_s_at 14.1 0.0597
CYorf15A Y 236694_at 13.8 0.0845

The EDGE method of Storey et al. (2005) is a FDA approach to modelling both
longitudinal and cross-sectional microarray data. In their method for longitudinal data
analysis, each gene is modelled independently as a separate functional mixed-effects
model. The mean curve — µ(·) in (2) — is modelled as a B-spline while the individual
effects are treated as scalar shifts as in Ma et al. (2006). A complete framework for detect-
ing genes differentially expressed across two or more biological groupings is presented,
with the model estimation performed by an EM algorithm. Differential expression is
quantified using an F-type statistic which compares the residuals of a null model where
the biological groupings are ignored to an alternative model where the groupings are
taken into account. Significance is assessed by using a resampling bootstrap procedure
to estimate the null distribution of this F-type statistic, and the multiple testing prob-
lem is handled by analysing the empirical p-value histogram (Storey and Tibshirani,
2003) to estimate the positive false discovery rate.

Another way of accounting for the within-gene variance is to perform a functional
PCA. As we have pointed out, this is analagous to the standard PCA, except the princi-
pal components (PCs) are functions rather than finite dimensional vectors. There have
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been a number of different methods suggested for estimating the PCs in a functional
context including direct estimation in a mixed-effects model framework (James et al.,
2000), standard PCA on discretised curves (Ramsay and Silverman, 2005) and ‘Princi-
pal Components Analysis through Conditional Expectation’ (PACE) (Yao et al., 2005).
It is this latter approach which Liu and Yang (2009) applied to the analysis of microar-
ray data; however, PACE was originally proposed for data where the observations on
each individual are taken at different time points — for example, in the case of growth
curve data — in our experience, microarray experiments tend to have much more regu-
lar designs, with each individual observed at the same time points, although these may,
indeed, be unequally spaced.

Some key shortcomings of these methods should be noted. Firstly, none of the
methods can incorporate the gender and age covariates, particularly as functions of
time. Secondly, all of these approachs either use B-splines and/or model the individ-
ual ‘functions’ as scalar-shifts, both of which lead to inflexible models. Finally, we are
not aware of any existing methods which address the issue of modelling both the within-
and between-gene variation. Our proposed methodology has been developed to address
some of these limitations.

Our results related to the case study presented in section 2 can be compared to
the original findings of Karlovich et al. (2009), who used a non-functional mixed-effect
model. Those authors listed 19 probes detected as having a significant gender effect and
with a log-transformed signal intensity greater than 7, which we have reproduced here in
Table 1. No justification for this cut-off of 7 is provided, and this filter gives misleading
results. For instance, all of the significant gender genes we have identified fail to meet
the cut-off. This is because the mean log-transformed signal intensity is taken across
both genders, and all of our genes aside from XIST are found on the Y-chromosome
and hence completely unexpressed in females.

We were unable to find any confirmation in the literature that TUBB2A is a sex-
related gene, and it does not appear in the 15 probes given by Karlovich et al. (2009).
With a mean log-transformed signal intesity of 7.4, it meets their cut-off criteria. It
is possible that they removed the probe from their analysis if the residuals from their
model were found to be non-normally distributed. Indeed, the unadjusted p-value for
the Shapiro-Wilk test on the residuals of our model for this probe is 2.54e−5. However,
looking at the residual analysis plotted in Figure 2, it is easy to see that there is one very
large outlier. This observation corresponds to subject 174 at Day 90. Subject 174 is the
individual who developed lung cancer between days 28 and 90, and died prior to day
180. If this observation is removed then the unadjusted Shapiro-Wilk p-value is 0.297,
and the null hypothesis that the residuals are normally distributed is no longer rejected.
Hence, TUBB2A may indeed be a novel gender regulated gene.

The number of temporally regulated genes we identified are consistent with
Karlovich et al. (2009), although their method for identifying differentially expressed
genes is quite dissimilar to ours (see Section 2). Indeed, although they found 66 signifi-
cant genes associated with apoptosis, we found only 15, suggesting the actual significant
genes found may vary more widely than the numbers suggest.
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6. CONCLUSIONS

In this paper we have demonstrated a complete framework for the analysis of microar-
ray time series data. The unique characteristics of microarry data lend themselves well
to a functional data analysis approach and we have shown how this naturally extends to
the inclusion of covariates such as age and sex. Our model presented here is a specialisa-
tion of the more general functional mixed-effects model (Rice and Wu, 2001; Guo, 2002)
and, to the best of our knowledge, we are the first to show how to derive the maximum-
likelihood estimators, EM-algorithm, confidence intervals and smoother matrix with
more than one fixed-effects function.

We were motivated by a real data set and we have aimed to improve upon the existing
results with a more flexible model. By taking a roughness penalty approach, this is
achieved while avoiding overfitting, allowing for a departure from the original linear
mixed-effects model when the data permits it. A deeper biological interpretation is
required to fully assess our success here, but the results we have highlighted in this paper
suggest that we can easily attach meaning to our findings. It may also prove worthwhile
performing a comparative analysis with Eady et al. (2005), which is another, similar
longitudinal study taken over a shorter period of five weeks.

A. APPENDIX

A.1. Example incidence matrix

In our example data set, there are 5 design time points: Day 1, 14, 28, 90 and 180.
Therefore, the incidence matrices for all individuals, Xi , i = 1, · · · , n, all have 5 columns.
The first column corresponds to observations at Day 1, the second to observations at
Day 14 and so on. The rows correspond to the specific observations on a particular
individual. If the individual is observed once at each design time point, then, assuming
their vector of observations yi has been ordered according to the time points, Xi = I .

Now consider the case of subject 174 who died prior to Day 180 and hence only
contributed 4 observations at each of the remaining design time points. The design
matrix for this individual has 4 rows, corresponding to the 4 observations, but still has
5 columns, corresponding to the design time points. Specifically the incidence matrix
in this case is:

Xi =











1 0 0 0 0
0 1 0 0 0
0 0 1 0 0
0 0 0 1 0











Note how there is no 1 in the final column which would correspond to an observation
at Day 180.

A.2. Specification of roughness matrix G

Green and Silverman (1994) show that there is a straight forward way to calculate the
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roughness matrix for a smoothing spline given the set of distinct time points τ1, · · ·τM .
The roughness matrix is given as G =AB−1AT where the matrices A and B are defined
as follows. First calculate hr = τr+1 − τr , r = 1, · · · , M − 1, the differences between
successive time points. Then matrix A is an M × (M − 2) matrix whose entries ar,s are
given by

ar,r = h−1
r

, ar+1,r =−(h
−1
r
+ h−1

r+1
), ar+2,r = h−1

r+1

for r = 1, · · · , M − 2 and 0 elsewhere. B is an (M − 2)× (M − 2)matrix with the entries
given by

b1,1 =
h1+h2

3
, b2,1 =

h2

6

br,r+1 =
hr+1

6
, br+1,r+1 =

hr+1+hr+2

3
, br+2,r+1 =

hr+2

6
, r = 1, · · · , M − 4

bM−3,M−2 =
hM−2

6
, bM−2,M−2 =

hM−2+hM−1

3

A.3. Derivation of conditional expectations

We begin by first considering the posterior expectation of γiγ
T
i

which, using basic prop-

erties of expectations, can be rewritten as:

E





1

n

n
∑

i=1

γiγ
T

i
|y,η= η̂



 =
1

n

n
∑

i=1

E
�

γiγ
T

i
|y,η= η̂

�

The definition of covariance allows us to write:

E
�

γiγ
T

i
|y,η= η̂

�

= E
�

γi |y,η= η̂
�

E
�

γT

i
|y,η= η̂

�

+ C ov(γi |y,η= η̂,γT

i
|y,η= η̂)

The problem is now to determine the mean and covariance of γi |y, for which we use a
standard result conerning the multivariate normal distribution (See, for example, An-
derson, 1958) which says, for any vectors x1 and x2 distributed as

�

x1

x2

�

∼ N

��

µ1

µ2

�

,

�

V11 V12

V21 V22

��

the conditional distribution of x1|x2 is given by

x1|x2 ∼N [µ1+V12V
−1
22
(x2−µ2),V11−V12V

−1
22

V21]

If we let x1 = γ and x2 = y, and derive the covariance of γ and y as C ov(γ , y) = eDγ
eXT

then we have
�

γ
y|η= η̂

�

∼N

 

�

0

X η̂

�

,





eDγ
eDγ
eXT

eX eDγ V





!

γ |y,η= η̂∼N [ eDγ eX
T V−1(y −X η̂), eDγ −

eDγ
eXT V−1

eXD̃γ ]
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Recognising that, because eDγ and V are block diagonal and eX eDγV
−1(y −X η̂) = γ̂ , we

have

γi |y,η= η̂∼N [γ̂i , Dγ −DγX
T

i
V−1

i
Xi Dγ ]

and we can now write

E
�

γiγ
T

i
|y,η= η̂

�

= γ̂i γ̂
T

i
+[Dγ −DγX

T

i
V−1

i
Xi Dγ ]

For the posterior expectation of σ2, we follow exactly the same approach, writing

�

ε
y|η= η̂

�

∼N

��

0

X η̂

�

,

�

R R
R V

��

ε|y,η= η̂∼N [RV−1(y −X η̂),R−RV−1R]

εi |y,η= η̂∼N [Ri V
−1
i
(yi −Xi η̂),Ri −Ri V

−1
i

Ri]

Note that

Ri V
−1
i
(yi −Xi η̂) = (Vi −Xi DXT

i
)V−1

i
(yi −Xi η̂)

= (I −Xi DγX
T

i
V−1

i
)(yi −Xi η̂)

= (yi −Xi η̂)−Xi DγX
T

i
V−1

i
(yi −Xi η̂)

= yi −Xi η̂−Xi γ̂i

= ε̂i

and

Ri −Ri V
−1
i

Ri = σ2Ini
−σ4V−1

i

= σ2(Ini
−σ2V−1

i
)

and using the identity

E[εT

i
εi |y,η= η̂] = t r {E[εiε

T

i
|y,η= η̂]}

allows us to derive

E[εT

i
εi |y,η= η̂] = t r {E[εiε

T

i
|y,η= η̂]}

= t r {E[εi |y,η= η̂]E[εT

i
|y,η= η̂]+σ2(Ini

−σ2V−1
i
)}

= t r {ε̂i ε̂
T

i
+σ2(Ini

−σ2V−1
i
)}
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T

i
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i
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i
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}−σ2 t r {V−1

i
})
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and so

E[εT ε|y,η= η̂] =
n
∑

i=1

[ε̂T

i
ε̂i +σ

2(ni −σ
2 t r {V−1

i
})]
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