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1. INTRODUCTION

If all present forms of life descend from a common ancestor, the characteristics of such
ancestor need to be searched among universally shared traits of extant organisms, non
universal traits being the consequence of accumulated divergence through evolution-
ary time. One of the most remarkable of these universal traits is represented by the
molecular aspects of genetic information processing, including the translational appa-
ratus responsible for protein synthesis. Unfortunately, since biochemical pathways do
not fossilize, we do not have access to the information on ancestral biological steps that
led to present structures. As these previous biological steps are of primary importance
for explaining the origin of life on earth, it seems that absence of evidence may hinder
the finding of the ultimate causes of such origin. A similar problem arises in Cosmol-
ogy when it comes to understand the origin of the matter in our known universe. The
task might appear an impossible one since we would need to go back to the beginning
of time. However, with the discovering of sky background radiation, different theo-
retical hypotheses about the origin and early evolution of our universe have become
verifiable. Different theories are tested according to their predictions about the radia-
tion background structure, for example, regarding the frequency content and the spatial
distribution of the relic radiation produced at the time of the Big Bang. Again, we can-
not reproduce experimentally the origin of the universe but this does not prevent us to
obtain quantitative information about how the different proposed origin scenarios may



144 D.L. Gonzalez, S. Giannerini, R. Rosa

have shaped the presently observed background radiation.
As we have already pointed out, the situation regarding the origin of life appears

similar. Of course, in this context, the problem resides in the identification of what is
the analogous of the background radiation and of its relics. To this aim, it is important
to remind that the more universal is a trait, the more ancient should be its origin. In this
article we present a review of our work on the (recently found) mathematical structure
of the nuclear genetic code. We will show how such structure can be seen as a good
candidate for this scope. We apply the Cosmology analogy regarding the background
radiation and study the organization of the genetic code accordingly: hypotheses on
origins are verified by comparing theoretical predictions against the empirical evidence
of the existing organization. We cannot reproduce the origin of life but we can propose
verifiable theories. We might even hope to find “mathematical relics” that go back
close to the life “Big Bang”. Perhaps it is not a simple coincidence that the theoretical
physicist George Gamow, which first proposed the Big Bang theory for the origin of
the universe, was also the first to propose a mathematical organization (turned out to
be wrong) for the coding of amino acids along the double helix of DNA, the so called
Gamow’s diamond code. Quoting Knight and Landweber (2000):

“. . . In the absence of evidence, many of the most interesting questions
about the genetic code have fallen into a twilight zone of speculation and
controversy. Although it is generally accepted that the modern code evolved
from a simpler form, there has not been consensus about when the initial
code evolved or what is was like, how and when particular amino acids
were added, how and when the modern tRNA/synthetase system arose, or
the processes by which the code could have expanded. . . ”

thus, the authors appeal to the necessity of using and/or developing extraordinary tools
for tackling these formidable problems. As many say, “absence of evidence is evidence
of absence”; hence, the main aim of this paper is to contribute to fill in the gap from
a theoretical “first principles” point of view. The basic methods involved are rooted
in some key properties pertaining to the fields of number theory, i.e., non-power po-
sitional integer representations, and group theory. The new theoretical approach pre-
sented allows a deep insight onto the difficult problem of the origin and evolution of
the genetic code and, consequently, on the origin and evolution of life. The model has
both descriptive and predictive power; description is very accurate as it allows hypothe-
ses testing on the basis of actual structures; predictions are very intriguing and suggest
biological candidates as mathematical remnants of life origins. In particular, the model
allows the uncovering of several hidden symmetries and the definition of new mathe-
matical objects that are natural extensions of the well known Rumer’s dichotomic class.
Moreover, on the basis of such new classes, we implement appropriate statistical tech-
niques that allow to share new light on the informational structure of protein coding
DNA sequences.

In section 1 we describe briefly the theoretical model and its main features and im-
plications such as the definition of dichotomic classes. In section 2 we introduce and
motivate the statistical methods that have been used for the analysis of protein coding
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T C A G

TTT Phe TCT Ser TAT Tyr TGT Cys T

TTC Phe TCC Ser TAC Tyr TGC Cys C

T TTA Leu TCA Ser TAA Stop TGA Cys A

TTG Leu TCG Ser TAG Stop TGG Trp G

CTT Leu CCT Pro CAT His CGT Arg T

CTC Leu CCC Pro CAT His CGC Arg C

C CTA Leu CCA Pro CAA Gln CGA Arg A

CTG Leu CCG Pro CAG Gln CGG Arg G

ATT Ile ACT Thr AAT Asn AGT Ser T

ATC Ile ACC Thr AAC Asn AGC Ser C

A ATA Ile ACA Thr AAA Lys AGA Arg A

ATG Met ACG Thr AAG Lys AGG Arg G

GTT Val GCT Ala GAT Asp GGT Gly T

GTC Val GCC Ala GAC Asp GGC Gly C

G GTA Val GCA Ala GAA Glu GGA Gly A

GTG Val GCG Ala GAG Glu GGG Gly G

T C A G

TTT Phe TCT Ser TAT Tyr TGT Cys T

TTC Phe TCC Ser TAC Tyr TGC Cys C

T TTA Leu TCA Ser TAA Stop TGA Cys A

TTG Leu TCG Ser TAG Stop TGG Trp G

CTT Leu CCT Pro CAT His CGT Arg T

CTC Leu CCC Pro CAT His CGC Arg C

C CTA Leu CCA Pro CAA Gln CGA Arg A

CTG Leu CCG Pro CAG Gln CGG Arg G

ATT Ile ACT Thr AAT Asn AGT Ser T

ATC Ile ACC Thr AAC Asn AGC Ser C

A ATA Ile ACA Thr AAA Lys AGA Arg A

ATG Met ACG Thr AAG Lys AGG Arg G

GTT Val GCT Ala GAT Asp GGT Gly T

GTC Val GCC Ala GAC Asp GGC Gly C

G GTA Val GCA Ala GAA Glu GGA Gly A

GTG Val GCG Ala GAG Glu GGG Gly G

Figure 1 – (left) representation of the standard nuclear genetic code; (right) graphical representa-
tion of the classification of triplets in Rumer’s classes. White boxes indicate triplets belonging to
the class {4}, grey boxes indicate triplets belonging to the class {1,2,3}.

DNA sequences which is presented and discussed in Section 3. Conclusions and per-
spectives are outlined in section 4.

2. THE THEORETICAL MODEL

The genetic code is a translation table that connects two different biochemical worlds:
that of nucleic acids, where biological information is stored, and the world of proteins,
the chemical bricks of cellular metabolism. The genetic information is stored in double
helix DNA molecules. The protein coding part of such molecules is converted into the
single helix messenger RNA (mRNA) through a process called transcription. In this
process, the Thymine (T) one of the four bases Thymine (T), Cytosine (C), Adenine
(A), and Guanine (G) that compose the DNA is replaced by Uracil (U). Counting from
the start signal, every group of three contiguous bases in mRNA forms a codon. The
genetic code assigns an amino acid to every possible codon; this determines the linear
assembling order of such amino acids that form a polymeric chain of a specific protein.
Such process is called translation. In Fig 1 (left) we show the standard nuclear genetic
code i.e. the assignment of amino acids to codons.

The total possible number of codons in mRNA is 64, i.e., all the combination of
four objects (the 4 bases U,C,A,G) in groups of three (the number of bases in a codon).
As the amino acids used for proteins synthesis are only 20 (21 if we include the stop

signal,l marking the end of protein synthesis), it follows that the genetic code is not a
one to one application; in fact, different codons represent the same amino acid. This
fact, is referred to as degeneracy. Indeed, one of the main topics related to the research
on the genetic code has been the study of such degeneracy properties. Historically, the
Russian theoretical physicist Yu. B. Rumer in the 60’s (Yu. B. Rumer, 1966) was the first
to study this problem from a theoretical point of view. In fact he showed that exactly
one half of the quartets of the genetic code (a quartet is a group of 4 codons sharing
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# 8 7 4 2 1 1 8 7 4 2 1 1 8 7 4 2 1 1 8 7 4 2 1 1 D Amino acids pairs 8 7 4 2 1 1 8 7 4 2 1 1 8 7 4 2 1 1 8 7 4 2 1 1 #

0 0 0 0 0 0 0 1 W Trp M Met 1 1 1 1 1 1 23

1 0 0 0 0 1 0 0 0 0 0 0 1 2 S Ser 2 F Phe 1 1 1 1 1 0 1 1 1 1 0 1 22

2 0 0 0 1 0 0 0 0 0 0 1 1 2 Ter K Lys 1 1 1 1 0 0 1 1 1 0 1 1 21

3 0 0 0 1 1 0 0 0 0 1 0 1 2 Y Tyr N Asn 1 1 1 0 1 0 1 1 1 0 0 1 20

4 0 0 1 0 0 0 0 0 0 1 1 1 2 L Leu 2 R Arg 2 1 1 1 0 0 0 1 1 0 1 1 1 19

5 0 0 1 0 1 0 0 0 1 0 0 1 2 H His D Asp 1 1 0 1 1 0 1 1 0 1 0 1 18

6 0 0 1 1 0 0 0 0 1 0 1 1 2 Q Gln E Glu 1 1 0 1 0 0 1 1 0 0 1 1 17

7 0 0 1 1 1 0 0 0 1 1 0 1 0 1 0 0 0 0 3 C Cys I Ile 1 0 1 1 1 1 1 1 0 0 1 0 1 1 0 0 0 1 16

8 1 0 0 0 0 0 0 1 0 0 1 0 0 1 0 0 0 1 0 0 1 1 1 1 4 S Ser 4 T Thr 1 1 0 0 0 0 1 0 1 1 1 0 1 0 1 1 0 1 0 1 1 1 1 1 15

9 1 0 0 0 1 0 1 0 0 0 0 1 0 1 0 1 0 0 0 1 0 0 1 1 4 P Pro A Ala 1 0 1 1 0 0 1 0 1 0 1 1 0 1 1 1 1 0 0 1 1 1 0 1 14

10 1 0 0 1 0 0 0 1 0 1 1 0 0 1 0 1 0 1 1 0 0 0 1 1 4 V Val G Gly 0 1 1 1 0 0 1 0 1 0 0 1 1 0 1 0 1 0 0 1 1 0 1 1 13

11 1 0 0 1 1 0 1 0 0 1 0 1 0 1 1 0 0 0 0 1 0 1 1 1 4 L Leu 4 R Arg 4 1 0 1 0 0 0 1 0 0 1 1 1 0 1 1 0 1 0 0 1 1 0 0 1 12

Figure 2 – Representation of the first 24 whole numbers (outer columns) in the non power repre-
sentation defined by the positional weights [1 1 2 4 7 8] (length-6 binary strings, horizontal rows).
The degeneracy number (D), number of binary strings that represent the same whole number,
and the corresponding amino acids are shown in the centre of the table. The colors indicate the
parity of each string (white = odd, gray = even), see section 2.1.

the first two letters, as for example, [UUx] = [UUU, UUC, UUA, UUG]) specifies
amino acids with degeneracy 4, while the other half specifies amino acids with non-4
degeneracy (i.e. 1, 2 or 3). Rumer’s key observation was that a global transformation
acting on the bases, i.e., U,C,A,G↔ G,A,C,U, transforms a codon of class 4 into a
codon of class 1,2 or 3, and viceversa. In this respect, Rumer’s transformation reveals
the existence of an intrinsic anti-symmetric property of the genetic code.

In a series of works (Gonzalez, 2004; Gonzalez et al., 2006, 2008) we have proposed
a mathematical theory capable of explaining many structural properties of the degen-
eracy distribution in the genetic code. The model is based on the so called non-power

representation of integer numbers (Wolfram, 2002). In this model, a length-6 binary
string is assigned to every codon of the genetic code and a whole number, from 0 to 23,
to the corresponding amino acid (including the stop signals).

In usual representations every number is additively decomposed in a linear com-
bination that involves the powers of a number b called the basis of the numeration
system. For example, in the decimal system (b = 10) the number 1365, means that
1365 = 1 · 103 + 3 · 102 + 6 · 101 + 5 · 100. Clearly, since such systems are bijective they
cannot describe the genetic code assignments. Hence, we resorted to non-power num-
ber representations. In non-power number representations the positional values grow
more slowly than the powers of the system basis b . In Gonzalez (2004) one of us proved
that a unique set of non-power bases, i.e., 1,1,2,4,7,8 describes exactly the degeneracy
of the genetic code. Figure 2 describes the main features of the model (see caption); for
more details see Gonzalez et al. (2008).

2.1. Dichotomic classes

The model described above assigns a length-6 binary string to each of the 64 codons and
a integer number from 0 to 23 to the corresponding amino acids. Interestingly, in Gon-
zalez et al. (2006, 2008) we have shown that the mathematical properties of these binary
strings are deeply linked to the chemical properties of the bases of a codon. Such find-
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ings led us to the definition of the dichotomic classes. The first and most straightforward
dichotomic class is the parity of a codon, defined as the parity of the number of ones of
the associated binary string. A question arises naturally: a codon is made up of three
letters (bases); hence, how can we relate a mathematical operation on a binary string to
the chemical properties of a codon? The answer is surprising. Biology tells us that each
base — T,C,A, and G — can be classified according to chemical classes as follows:

{Purine; Pyrimidine} {R; Y } {A, G; C, T}
{Keto; Amino} {K; Am} {T, G; A, C}
{Strong; Weak} {S; W} {C, G; A, T}

Now, it can be shown that the parity of the binary string can be obtained from the
chemical classes of the last two bases of the codon. The algorithmic representation of
the parity is shown in Fig. 3a. In words, the rule can be described as follows. If the
last letter of the codon is a purine (R=A, G), the parity of the binary string is obtained
immediately: an A corresponds to an odd string and a G to an even string. If the last
letter is a pyrimidine (Y=U, C), in order to determine the parity we need to observe
the chemical character of the previous base in the codon, that is, the second or middle
base. However in such a case we have to consider a different chemical dichotomy: if the
second base belongs to the Amino class (Am=C, A), the corresponding string is even;
if, instead, it belongs to the Keto class (K=U, G), the corresponding string is odd.

In Gonzalez et al. (2008) we have shown that a similar rule holds also for the de-
termination of the second dichotomic class, the Rumer’s degeneracy class (see Fig. 1
(right)). In order to achieve this: i) shift the analysis window to the first two bases of
the codon, i i) consider the Amino-Keto dichotomy for the middle base, as suggested
by the parity algorithm (see Fig. 3b), i i i) use the dichotomy class Strong (S=C, G) or
Weak (W=U, A) for the first base. Again, it can be shown that the Rumer class can be
obtained from the parity of the associated string (work in progress). A third dichotomic
class, the hidden class, can be obtained by a further shift to the left of the window. The
algorithmic representation of the hidden class is shown in Fig. 3c.

K

0 1 1 0

Am A G
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c)b)a)

b3b2
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1

1
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GCK
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Figure 3 – Algorithmic representation of the dichotomic classes: a) parity class, b) Rumer’s class,
c) hidden class.

Now, we have shown that the mathematical model of the genetic code leads natu-
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rally to the definitions of dichotomic classes associated to codons. Such classes possess a
manifold nature; in fact, from the biology side, they can be obtained from the chemical
classes of the bases. On the mathematics side, they are related to the parity of the as-
sociated binary string and can be seen as nonlinear matrix operators (not shown here).
Furthermore, the dichotomic classes are associated to a set of global transformations of
the bases. In Gonzalez et al. (2008), we have proved that such transformations define a
Klein V commutative group.

The mathematical structure uncovered raises important questions from many dif-
ferent point of views and suggests new directions of research. First, from a foundational
perspective, it is crucial to investigate how such structure relates to the origin and evo-
lution of life. Is it a frozen accident or did it undergo evolution? Is the same structure
present in other codes found in nature? If not, can we put in relation all these structures
from an evolutionary perspective?

A second class of questions regards the impact of the newly found structure on the
understanding of the genetic machinery. In fact, the introduction of dichotomic classes
provides a new way of interpreting the informational structure of DNA sequences.
Also, we have shown that the genetic information contained in a codon is not simply
that of the corresponding amino acid; indeed, there exists a complex structure that cor-
relates the information content of a given codon with that of neighboring ones. This
finding implies some surprising consequences from both chemical and informational
points of view. Such properties seem to be associated with the possibility of error de-
tection/correction mechanisms.

The answer to such questions is not easy but we can get some insights from the
statistical analysis presented in the following sections.

3. STATISTICAL METHODS

The study of the dependence structure of DNA sequences has revealed very important
in many fields, from theoretical biology to the most applied disciplines such as com-
putational biology, phylogenetics and bioinformatics. In this section we discuss and
motivate the use of statistical methods for dependent sequences in the context of the
mathematical model proposed. We are able to uncover the existence of a complex de-
pendence structure in protein coding DNA. Such structure implies that each base plays
a different role in the organization of genetic information. First, we describe the meth-
ods used, that is the Moving Block Bootstrap (hereafter MBB) and an entropy based
dependence metric. Second, we show the results of the application of such methods to
binary sequences of dichotomic classes derived from protein coding portions of DNA.

3.1. The moving block bootstrap for stationary sequences

Consider the discrete parameter stationary time series Xt = (X1,X2, . . . ,Xn , ). Let
µ,σ2

0
,γk , and ρk (k = 0, . . . , n − 1) be the mean, variance, covariance and autocorre-

lation function of Xt , respectively. Note that γ0 = σ
2
0
, and ρk = γk/γ0. The variance of
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the estimator X̄ of µ, is given by

σ2 =Var
�

X̄
�

=
σ2

0

n
+ 2

n−1
∑

k=1

(n− k)

n2
γk

=
σ2

0

n



1+ 2
n−1
∑

k=1

(n− k)

n
ρk





(1)

This equation is well known in the time series literature. For the general problem of es-
timating the standard error σ one can see, e.g., Ripley (1987), where various approaches
are discussed and where it is stressed out that it is not always a simple matter to find a
reliable estimator for σ2. Especially in statistical mechanics it is introduced the “inte-
grated correlation time”:

τ =

∫

∞

0

ρ(t )d t

and the variance of Xt is usually written as:

σ2 = σ2
0

�

1+
2τ

δ t

�

(2)

where δ t is the time interval between two successive observations. This is a quite
important parameter giving the whole information on the correlation structure of the
observed data. However, in general, the decay law with time for correlation functions is
not known, so that we have to rely on an estimate of τ. It is known that the estimate of
τ through standard methods presents a number of difficulties and necessarily sometimes
rather arbitrary approximations are involved. There are also further important points
to stress. First, even though one succeeds in estimating the autocorrelation through
standard methods based on linear relationships, such an estimate may be misleading
if the time series is not linear. Second, if the series is in the form of a binary series
generated via a discretisation of some other sequence, the autocorrelation estimated by
standard methods depends on the coding procedure. We have shown (see Gonzalez
et al. (2006)) that with the MBB it is possible to estimate directly σ2 and from it derive
an estimate of τ. The method has shown to overcome the issues mentioned above.

In the statistical literature (see, e.g., Bühlmann (2002),Politis (2003)), the break-
through of the MBB is rightly ascribed to Künsch (1989), moreover the related work
by Liu and Singh (1992) is also cited. Some precursory ideas of blocking methods for
estimation in time series are referred to Hall (1985) and back to Bartlett (1946). Curi-
ously enough, people seem to ignore that the idea of the MBB as a extension of the i.i.d.
bootstrap for dependent data appeared in a paper in the field of high energies physics by
Gottlieb et al. (1986). These authors, applied the jackknife procedure to Monte Carlo
calculations in lattice gauge theory. Further, referring explicitly to Efron (1979), they
explained the advantages in bootstrapping blocks to handling dependent data.

To estimate σ in (1) through the MBB the observed time series x = (x1, x2, . . . , xn ),
once stationarity is reached, is divided in overlapping blocks of l observations each and
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all possible contiguous blocks of length l are considered. In this way, q “moving blocks”
Q1,Q2, . . . ,Qq , (q = n− l + 1) are obtained. The i -th block Qi with starting point xi

contains l elements, i.e.:

Qi ≡ (xi , xi+1, . . . , xi+l−1)

with 1≤ i ≤ q .
From these q blocks Qi (i = 1, . . . , q) we draw at random with replacement h

(h× l = n) blocks. The starting point of each block is selected from a uniform distribu-
tion of integer (1, . . . , q), so that all Qi ’s are equally likely to be drawn. The h selected
blocks, placed one after the other, form the new full size series Q∗ = (Q∗

1
,Q∗

2
, . . . ,Q∗

h
).

Analogously to the “classical” i.i.d.-bootstrap, we can form a suitable number of MBB
replications Q∗ from each of which the statistic of interest is computed and the MBB
estimate σ̂∗ of σ is derived. A crucial point is the choice of l with respect to the total
length of the chain, since we require that the correlation between observations belong-
ing to different blocks has to “die out”. So, with increasing l , the data belonging to
different blocks become more and more independent of one another, until the blocks
are actually i.i.d. random variables under the MBB scheme, and at the same time, inside
each block the correlation is retained. In practice, by plotting σ̂∗ as a function of l , it
appears that, in presence of a positive (negative) correlation in the series the plot of σ̂∗

vs l shows an increase (decrease) of σ̂∗ until, for l larger than a certain l ′, it reaches a
region (plateau), in which it remains nearly constant, signalling that the mutual inde-
pendence of the blocks has been achieved and the value found for σ̂∗ may be assumed
as an estimation of the standard error. Moreover the “strength” of the correlation may
be derived from (2).For a review of variants of this method see Politis (2003)

3.2. An entropy based dependence metric

In this section we describe briefly and motivate the use of an entropy based dependence
metric for the analysis of binary sequences. In literature, many different dependence
measures have been proposed. Each of these measures has specific features and different
motivations; an important class of such indices is based on entropy functionals (see e.g.
Crutchfield and Feldman (2003) and ref. therein) that underwent a great diffusion in the
context of nonlinear dynamics as well as time series analysis (Granger et al., 2004). In
this work we have implemented the metric entropy measure Sρ, a normalized version

of the Bhattacharya-Hellinger-Matusita distance, defined as follows:

Sρ(k) =
1

2

∫ ∫
�
q

f(Xt ,Xt+k )
(x1, x2)−
q

fXt
(x1) fXt+k

(x2)
�2

d x1d x2

where fXt
(·) and f(Xt ,Xt+k )

(·, ·) denote the probability density function of Xt and of the

vector (Xt ,Xt+k ) respectively. The measure is in precise relation with other entropy
functionals such as Shannon entropy and Kullback-Leibler divergence and can be inter-
preted as a nonlinear autocorrelation function. Sρ(k) satisfies many desirable proper-

ties: i) it is a metric and is defined for both continuous and discrete variable, i i) it is
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normalized and takes the value 0 if Xt and Xt+k are independent and 1 if there is a mea-
surable exact (nonlinear) relationship between the variables, i i i) it reduces to the linear
autocorrelation function in the case of gaussian variables and, notably, iv) it is invariant
with respect to continuous, strictly increasing transformations. Among other things,
Granger et al. (2004) address the issues of nonparametric kernel estimation of Sρ(k) and

of its utilization in the context of hypothesis testing of serial dependence. The measure
has been proven to have robust power for characterizing nonlinear processes (see e.g.
Giannerini et al. (2007)). In the case of binary series the measure becomes

Sρ(k) =
1

2

1
∑

i =0

1
∑

j =0

�Æ

P r
�

Xt = i ,Xt+k = j
	

−

Æ

P r {Xt = i}P r {Xt+k = j }
�2

Here the probabilities have been estimated in a nonparametric fashion by means of
relative frequencies.

In the following we will how how the measure Sρ(k) can be used for studying the

dependence structure of DNA sequences. The null hypothesis we test is that of indepen-
dence, that is, the absence of an informational organization between codons. Clearly,
such test has to take into account the different proportions of bases across DNA se-
quences, i.e., the possible correlations found does not have to depend either from the
proportion of bases of from the definition of the classes. The above requirements can
be satisfied by resorting to a permutation scheme. The original DNA base sequence is
randomly permuted. On this new sequence, we compute the dichotomic classes and
estimate the measure Sρ(k) on them. The procedure is repeated B times (say B = 5000)

as to obtain the bootstrap distribution of Sρ(k) under the null hypothesis. Clearly, each

permutation of the original data preserves the original proportion of bases. Also, the
computation of the measure Sρ(k) on two binary sequences obtained from the same

random permutation of DNA bases automatically accounts for correlations induced by
the mathematical definition.

4. RESULTS AND DISCUSSION

In this section we present some results of the application of the methods presented in
the previous section to several protein coding DNA sequences. Each sequence can be
considered as is or be complemented, that is, consider the complementary sequence
(anticodon sequence) in the Watson-Crick sense. Furthermore, together with the usual
reading frame, there are the two sequences derived from the frame shifts. In fact, as
redundant information can be codified along the sequences in unknown ways, it is also
interesting to study the out of frame versions of both codon and anticodon sequences.

Recall that, for independent data, i.e. realizations of i.i.d. binomial variables, the
standard error of the estimator of the proportion p of 0s in the sequences is given by

σ̂0 =
p

( p̂(1− p̂)/n), where p̂ denotes an estimate of p. If there is some form of depen-
dence, the previous estimate is no longer valid, but the MBB is able to reveal it and, at
the same time, to estimate the “true” standard error σ .
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Figure 4 – Moving Block Bootstrap estimates σ̂ ∗ of the standard error of p as a function of the
block length l , for the parity (ap0, full squares) and hidden (ah0, full circles) codon classes, both
computed with no frame shift for the anticodon sequence U53218 (coding region), with n = 739.
Results obtained by applying the MBB to the same codon classes, but with the original DNA base
sequence randomly permuted are reported in empty symbols (ap0_perm and ah0_perm).

A representative example of the MBB application is shown in Figure 4. The figure
reports the behavior of the MBB estimates σ̂∗ of the standard errors of the estimator
of p as a function of the block length l for the parity (ap0, full squares) and hidden
(ah0, full circles) codon classes, both computed with no frame shift for the anticodon
sequence U53218 (house mouse muscle glycogen synthase mRNA), with length of the
codon sequence n = 739. We also report the results obtained by applying the MBB to
the same codon classes, but with the original DNA base sequence is randomly permuted
(ap0_perm and ah0_perm, empty symbols). The bootstrap replications B are 2000 in all
cases. Notice that, the length of the sequence n refers to the codon sequence. The length
of the base sequence in n× 3.

If the data were independent there would be no statistical difference in the standard
errors estimates between observed and i.i.d.-sequences. The values of p̂ are 0.472 and
0.447 for ap0 and ah0, respectively. The values of σ̂0 are 0.018 for both ap0 and ah0.

First, let us follow the trend referring to ah0 (full circles). At the beginning σ̂∗ is
very close to σ̂0, as expected. With increasing l , σ̂∗ grows. Around, say, l ≈ 70, σ̂∗

reaches a plateau. On the plateau, the actual dependence structure of data is captured,
and the value found for σ̂∗ may be retained as an estimate for the standard error σ .
Here, it results σ̂∗ = 0.026. By replacing σ̂0 and σ̂∗ in (2), with δ t = 1, it follows that
the integrated correlation time is τ̂ = 0.51.

The parity codon class (ap0, full squares) displays a decrease of σ̂∗ as l increases
The decrease of σ̂∗ up to the plateau around l ≈ 80 indicates that in this instance the
correlation is negative. Here, it results σ̂∗ = 0.010, τ is negative and equal to −0.35.
Note that for the both original DNA base permuted sequence (empty symbols), σ̂∗

remains always close to σ̂0.
In the following figures we show what happens by permuting only one base in the
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Figure 5 – Moving Block Bootstrap estimates σ̂ ∗ of the standard error of p as a function of the
block length l , for the hidden (ah0, full circles) codon classes, computed with no frame shift for
the anticodon sequence U53218 (coding region), with n = 739. Results obtained by applying the
MBB to the same codon class, but with the original DNA base sequence randomly permuted are
reported in empty circles (ah0_perm), as in Figure 4. Results with only the first base permuted
(ah0_perm1, full squares), with only the third base permuted (ah0_perm3, full triangles) are also
reported.

original DNA sequence. As far as the hidden class is concerned, the second base is
not involved by the non linear rule which determines this class (even for the reverse
complementarity sequence), so we permuted only the first or the second base. Figure
5 shows the behavior of the MBB estimates σ̂∗ as a function of the block length l : i)
for the hidden codon class (ah0, full circles), i i) with the original DNA base sequence
randomly permuted (ah0_perm, empty circles), both as in Figure 4, i i i) with only the
first base permuted (ah0_perm1, full squares), iv) with only the third base permuted
(ah0_perm3, full triangles). It appears that the permutation of the first base does not
alter the dependence structure of the resampled sequences, while such a dependence is
destroyed when the third base is permuted; indeed, in this case the trend of σ̂∗ (full
triangles) remains always close to that of σ̂∗ with all the bases permuted (empty circles).

With regard to the parity class, we observe an analogous behavior, of course with a
different role played by each base. The parity class is determined by the first and second
base, but in this case the sequence is read in reverse sense, so that it is the third base that
plays no role. From Figure 5, it appears that now the dependence structure is destroyed
by the permutation of the first base (full triangles), while when only the second base is
permuted, a negative correlation is still apparent.

Further different DNA sequences have been studied; preliminary results seems to
corroborate the above findings, i.e., that only one base is responsible of the dependence
structure of the binary sequences, whereas the permutation of other bases has a minimal
influence over the correlation of resampled sequences w.r.t. to the original one.

In Figure 7 we show the computation of the measure Sρ(k) (k = 1, . . . , 200) for the
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Figure 6 – Moving Block Bootstrap estimates σ̂ ∗ of the standard error of p as a function of the
block length l , for the parity (ap0, full squares) codon classes, computed with no frame shift for
the anticodon sequence U53218 (coding region), with n = 739. Results obtained by applying the
MBB to the same codon class, but with the original DNA base sequence randomly permuted are
reported in empty squares (ap0_perm), as in Figure 4. Results with only the first base permuted
(ap0_perm1, full triangles), with only the second base permuted (ap0_perm2, full circles) are also
reported.
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Figure 7 – Sρ(k), k = 1, . . . , 200 for the hidden class of the anticodon sequence in frame U53218.

The confidence bands at 95% and 99% are indicated with (light and dark) gray dotted lines. The
bands are obtained by permuting: (left) the whole sequence; (right) the first bases.
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hidden class of the anticodon sequence U53218. The black solid line indicates Sρ(k)

computed on the original sequence. The confidence bands of the two panels reflect two
different hypotheses: in the left panel the bands are obtained by permuting the whole
sequence; this corresponds to testing against a i.i.d. Bernoulli process having the same
global proportion of bases as the original sequences. Clearly, there are many lags at
which the test rejects the hypothesis (15 lags at 99%). This confirms the complex nature
of the structure underlying protein coding sequences. A step towards the explanation of
these correlations is put forward with the test depicted in Figure 7 (right). In this case,
we have hypothesized that the probability distribution of the bases plays a different
role according to its position in the codon. In other words, we take into account the
position of the bases in the codon so that we permute just the first bases. The results
are in agreement with those from the MBB. In fact, we observe that the significant lags
at 99% drop from 15 to 5 (see how the confidence bands change). Notice that if we
permute bases in position one and two the results do not change as long as we do not
change the third bases. This means that the third base is responsible for most of the
(auto)correlation found in the sequence.

5. CONCLUSIONS

In this contribution we have shown that the organization of genetic information can be
studied from first principles, mainly, by using an abstract mathematical description of
the Euplotes nuclear genetic code. The main result we found using different methods
for studying the dependence structure of protein coding sequences is that there exist a
strong correlation related to the mathematical structure of the code. Our hypothesis is
that such correlation structure is related to the possibility of error detection/correction.
In previous works, we have proposed that the structure of the nuclear genetic code is
related to the necessity of maintaining protein synthesis accuracy. Due to the discrete
character of the genetic information this endeavour is very similar to the problem of
transmitting digital information along transmission channels in man made technologi-
cal applications. Thus, in the case of the genetic code, we hypothesize that its structure
is related to the existence of error detection/correction means based on such structure
and directed to ensure the accuracy of protein translation.

One of the main features of our approach is that we can observe under a magnify-
ing mathematical glass the analogies and the differences between the nuclear code and
other types of codes such as the mitochondrial one. This comparison would allow to
infer consequences about their origin and interrelation. The genetic code, due to its
universality and importance, is intimately related to the origin of life on earth; thus, as
we asserted in the introduction, the mathematical structure of the different variants of
the genetic code represents for the origin of life the analog of the structure of the cos-
mological radiation background for studying the origin and evolution of matter in our
universe. Some new results regarding a comparative analysis between the mathematical
properties of both types of codes will be published soon.
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SUMMARY

The mathematical structure of the genetic code: a tool for inquiring on the origin of life

In this paper we present a review and some new thoughts on our work about the mathematical
structure of the genetic code. The model proposed is a new theoretical tool that allows a fresh in-
sight on many open problems related to the origin, the evolution and the present structure of the
genetic machinery. In particular, we show that such model implies the existence of dichotomic
classes, quantities that might play a preeminent role in the management of the genetic informa-
tion including error control mechanisms. We introduce and use techniques for the analysis of
dependent sequences in order to study the correlation structure of series of dichotomic classes
derived from protein coding segments of DNA. The results show the existence of a complex
context-dependent correlation structure; such dependence gives important information about
coding and decoding strategies that nature has implemented along evolutionary times on DNA
and RNA sequences.


