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NONPARAMETRIC ESTIMATION IN RANDOM SUM MODELS 

H.S. Bakouch, T.A. Severini 

1. INTRODUCTION 

The motivation for this paper arises from the fact that the random sum models 
are widely used in risk theory, queueing systems, reliability theory, economics, 
communications, and medicine. In insurance contexts, the compound distribution 
of random sum variables (see, e.g., Cai and Willmot (2005), Charalambides (2005) 
and Panjer (2006)) arises naturally as follows. Let iX  be the number of persons 
involved in the i th accident on a particular day in a certain city and let N  be an-
other random variable that represents the number of accidents occurring on that 
day. Then, the random variable given by 

=1
= ,N

N iiS X∑  0 0= = 0,S X  denotes the 
total number of persons involved in accidents in a day, and is called compound 
random variable. In queueing model, at a bus station, assume that the number of 
passengers on the i th bus is iX  and the number of arriving buses is the random 
variable N ; then the number of passengers arriving buses during a period of time 
is the random sum 

=1
= N

N iiS X∑ . In communications, let us consider the random 
variable N  as the number of data packets transmitted over a communication link 
in one minute such that each packet is successfully decoded with probability p , in-
dependent of the decoding of any other packet. Hence, the number of successfully 
decoded packets in one minute span is the random sum 

=1
= N

N iiS X∑ , where iX  
is 1  if the i th packet is decoded correctly and 0  otherwise. That is, the compound 
random variable NS  follows a binomial distribution with random and fixed pa-
rameters N  and p , respectively. The distribution of the random variable NS , is 
known as a compound distribution of the random variables iX  and N , where 

=1, 2,...,i N ; see, e.g., Chatfield and Thoebald (1973), Lundberg (1964), Medhi 
(1972), Peköz and Ross (2004), and Sahinoglu (1992). Thus, the distribution of  
a random sum is based on two distributions: the distribution of N , which we  
will call the event distribution and the distribution of the random variables 

1 2, , , NX X X… , which we will call the compounding distribution. 
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Many authors (e.g. Pitts (1994), Buchmann and Grübel (2003, 2004), and Cai 
and Willmot (2005)) have been investigated the distributional properties of the 
random sum NS  including its distribution function and the asymptotic behaviour 
of the tail. Pitts (1994) discussed the nonparametric estimation of the distribution 
function of NS  based on topological concepts and assumed that the event distri-
bution is known and the compounding distribution is unknown. Buchmann and 
Grübel (2003, 2004) considered the estimation problem of a probability set of the 
compounding distribution of ,iX  =1, 2,..., ,i N  and the compound distribution 
of iX  and N  assuming that the event distribution follows Poisson distribution. 
Weba (2007) investigated prediction of the compound mixed Poisson process as-
suming that the event distribution is a mixed Poisson process and the compound-
ing distribution is unknown. Meanwhile, we here deal with unknown event and 
compounding distributions. Also, our work is more general than Pitts (1994),and 
Buchmann and Grübel (2003, 2004), since it can be applied to any event and 
compounding distributions as long as they obey the assumptions that are in sec-
tion 4.1. Recently, Bakouch and Ristić (2009), and Ristić et al. (2009) employed 
this random sum, ,NS  to model integer-valued time series that are used in fore-
casting and regression analysis of count data. Also, they discussed some proper-
ties of NS  for a known event distribution and an unknown compounding distri-
bution, and then obtained estimators of the parameters of such distributions after 
giving a known compounding distribution. In section 4.2 of this paper, we con-
sider a nonparametric estimation of the compounding distribution in the com-
pound Poisson model. The approach in this case is similar to the estimation 
method of Buchmann and Grübel (2003, 2004) but our approach is of interest to 
any problem concerning the compound Poisson model. On the other hand, 
Buchmann and Grübel (2003, 2004) are interested only in the compound Poisson 
model that is commonly used in queueing theory for modeling the arrival distri-
bution of the number of customers. 

Let 1 , , nY Y…  denote independent random variables, each with the distribution 
of NS . Based on the information provided by the random variables 1 , , nY Y… , 
we wish to estimate features of the distributions of iX  and N . A common used 
approach to this problem is to use parametric models for the event and com-
pounding distributions. This leads to a parametric model for the distribution of 

1, , nY Y… . Estimating the parameters of this model leads to estimators for the pa-
rameters of the distributions of iX  and N . The drawback of this approach is 
that it requires strong assumptions about the distributions of iX  and N . How-
ever, since we do not observe a random sample from both distributions, these 
assumptions are difficult to verify empirically. 

The purpose of this paper is to consider two methods of nonparametric esti-
mation in random sum models; that is, we consider methods that do not require 
full parametric models for the compounding distribution and the event distribu-



Nonparametric estimation in random sum models 75 

tion. The first considers estimation of the means of the distributions of iX  and 
N  based on the second-moment assumptions regarding compounding and event 
distributions. The second problem is the nonparametric estimation of the com-
pounding distribution based on a parametric model for the event distribution. 

The outline of the paper is as follows. In section 2 some basic results regarding 
random sum distributions are presented; although these results are well-known, 
they are central to the proposed estimation procedures and, hence, they are pre-
sented for completeness. The approach based on second-moment assumptions is 
presented in section 3. In section 4, nonparametric estimation of the compound-
ing distribution is developed.  

2. SOME PROPERTIES OF RANDOM SUMS 

Let 
=1

= N
N iiS X∑ , where iX  is independent, identically distributed, non-

negative, integer-valued random variables and let N  be a non-negative, integer-
valued random variable independent of 1 2, , , NX X X… . In this section, we 
briefly review some statistical properties of NS  (see, e.g., Klugman et al., 2004). 

Let NP  denote the probability generating function of N  and let Xi
P  denote 

the probability generating function of iX . Therefore, the probability generating 
function of NS  is given by 

( )= [ ( )].S N XN i
P t P P t  (2.1) 

The function ( )SN
P t  is well defined for 1.t ≤  Similarly, let NM  and Xi

M  de-

note the moment generating functions of N  and iX , respectively. Hence, the 
moment generating function of NS  is 

( )= [ ( )]= [ ln ( )].S N X N XN i i
M t P M t M M t  (2.2) 

The function ( )SN
M t  is well defined for t a≤  for some > 0a . Hence, it fol-

lows that 

[ ]= [ ] [ ],N iE S E N E X  (2.3) 

2 2[ ]= [ ] [ ] [ ( 1)] [ ] [ ],N i i jE S E N E X E N N E X E X+ −  (2.4) 

2[ ]= [ ] [ ] [ ]( [ ]) .N i iVar S E N Var X Var N E X+  (2.5) 



 H.S. Bakouch, T.A. Severini 76 

3. ESTIMATION OF THE DISTRIBUTION MEANS UNDER SECOND-MOMENT ASSUMPTIONS 

Let = ( ; )iE Xθ θ  and let = ( ; )E Nλ λ . Suppose we observe 1, , nY Y… , inde-
pendent, identically distributed random variables such that 1Y  has the distribu-
tion of 1=N NS X X+ +" . Note that neither N  nor 1, , NX X…  are directly 
observed; the data only consists of n  realizations of the random variable NS  and 
are denoted by 1, , nY Y… . 

Our goal is to estimate θ  and λ , the means of the distributions of iX  and 
N , respectively, based on 1( , , )nY Y… . Clearly, this will be impossible without 
further assumptions regarding the distributions of iX  and N . 

Define the functions : [0, )V Λ→ ∞  and : [0, )W Θ→ ∞  by  

( )= ( ; ) ( )= ( ; )iV Var N and W Var Xλ λ θ θ  

and assume that V  and W  are known. Using equations (2.3) and (2.5) we can 
show that 1Y  has mean θλ  and variance  

2 ( ) ( ).V Wθ λ λ θ+  

We propose to estimate ( , )θ λ  using the first two moments of the distribution of 

1Y . Expressing the parameters θ  and λ  in terms of the first two moments of 
the distribution of 1Y  proceeds this approach. The assumption that V  and W  
are known is meant to be a weaker version of the assumption of parametric mod-
els for the distributions. This method might be used when one is willing to as-
sume that ( )=V λ λ , as in the Poisson distribution, but is not willing to assume 
that the Poisson distribution actually holds. Thus, our approach in this section is 
similar to the quasi-likelihood method described, e.g., in McCullagh and Nelder 
(1989, chapter 9). 

Since the first moment of 1Y  is θλ , it is necessary that the second moment of 

1Y  is not a function of θλ ; hence, we require the following assumption: 
 

Assumption 1 

For ( , )θ λ Θ Λ∈ × , 2 ( ) ( )V Wθ λ λ θ+  is not a function of θλ . 
Let 

=1

1=
n

j
j

Y Y
n∑  

and 
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2 2

=1

1= ( ) .
n

j
j

S Y Y
n

−∑  

Define the estimator ( , )θ λ  as the solution to 

2 2= , ( ) ( )= ,Y V W Sθ λ θ λ λ θ+  (3.1) 

provided that such solution exists. 
Determination of the asymptotic distribution of ( , )θ λ  requires the following 

regularity conditions: 
 

Assumption 2 

The parameter space Θ Λ×  is an open subset of 2ℜ . 
Under assumption 2, the true parameter value ( , )θ λ  is an interior point of the 

parameter space. 
 

Assumption 3 

Define a function :H AΘ Λ× →  by 

2( , )= ( , ( ) ( )).H V Wθ λ θλ θ λ λ θ+  

Then A  is an open subset of 2ℜ  and ( , )H θ λ  is a one-to-one function with a 
continuously differentiable inverse. 

Under assumption 3, the estimators θ  and λ  can be written as functions of 
Y  and 2S . This fact, together with the asymptotic distribution of 2( , )Y S  can be 
used to determine the asymptotic distribution of ( , )θ λ .  
 

Assumption 4 

For all ( , )θ λ Θ Λ∈ × , 4
1( ; , )<E Y θ λ ∞ .  

Assumption 4 is used to apply the strong law of large numbers and the central 
limit theorem to sums of the form 

=1
n

jj Y∑  and 2
=1

n
jj Y∑ .  

For a non-negative definite 2 2×  matrix L, let 2( , )N L0  denote a random 
variable with a bivariate normal distribution with mean vector 0  and covariance 
matrix L ; let 3( , )µ θ λ  and 4 ( , )µ θ λ  denote the third and fourth central mo-
ments, respectively, of 1Y . 
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Theorem 3.1 

Assume that assumptions 2-4 hold. Then, with probability approaching 1  as 
n →∞ , the estimator ( , )θ λ  exists and 

2( , ( , ))n N as n
θ θ

θ λ
λ λ

Σ
−⎛ ⎞

→ →∞⎜ ⎟−⎝ ⎠
0  

where 
1

31
2

3 4 1

( , )( ; , )
( , )= ( , ) ( , )

( , ) ( , ) ( ; , )
TVar Y

M M
Var Y

µ θ λθ λ
θ λ θ λ θ λ

µ θ λ µ θ λ θ λ

−

Σ
⎛ ⎞
⎜ ⎟

−⎝ ⎠
 

and 

2)
( , )= .

2 ( ) ( ( ) ( )' 'M
V W V W

λ θ
θ λ

θ λ θ λ θ θλ
⎛ ⎞
⎜ ⎟

+ +⎝ ⎠
 

 
Proof: 

Since here we are concerned with the limiting behaviour of the estimators 
, ,θ λ  we write nY  and 2

nS  for Y  and 2S , respectively, to emphasize their de-
pendence on n . 

First consider consistency of ( , )θ λ . Under assumption 4, 

1( ; , )= . . 1 ,nY E Y w p as nθ λ θλ→ →∞  

where “w.p.” means “with probability”, and 

2 2
1( ; , )= ( ) ( ) . . 1nS Var Y V W w p as nθ λ θ λ λ θ→ + →∞  

so that 2( , )n nY S  converges to ( , )H θ λ  with probability 1. It follows that, with 

probability 1, 2( , )n nY S  lies in A  for sufficiently large n . 

By assumption 3 there exists a continuous function 1= (., .)h H − , the inverse of 

(., .)H , such that, when 2( , )n nY S A∈ , then 2( , )= ( , )n nh Y Sθ λ . Thus, with prob-

ability 1, 2( , )= ( , )n nh Y Sθ λ  for sufficiently large n  and 2( , )n nY S  converges to 
( , )H θ λ . It follows that ( , )θ λ  is a consistent estimator of ( , )θ λ . 
Now consider the asymptotic distribution of ( , )θ λ . Under assumption 4, 

22
( , ) ( , ( , ))n

n

Y
n H N B as n

S
θ λ θ λ

⎛ ⎞⎛ ⎞
− → →∞⎜ ⎟⎜ ⎟⎜ ⎟⎜ ⎟⎝ ⎠⎝ ⎠

0  
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where 

31
2

3 4 1

( , )( ; , )
( , )= ;

( , ) ( , ) ( ; , )
Var Y

B
Var Y

µ θ λθ λ
θ λ

µ θ λ µ θ λ θ λ

⎛ ⎞
⎜ ⎟

−⎝ ⎠
 

see, e.g., example 13.3 of Severini (2005). 
Since, for sufficiently large n , 2( , )= ( , )n nh Y Sθ λ , it follows from the  

δ -method (see, e.g., Severini, 2005, section 13.2), that 

2( , ( , ))n N D
θ θ

θ λ
λ λ

−⎛ ⎞
→⎜ ⎟−⎝ ⎠

0  

where 

( , )= ( ( , )) ( , ) ( ( , ))TD h H B h Hθ λ θ λ θ λ θ λ′ ′  

and h′  denotes the matrix of partial derivatives of h . Note that, since 
1= (., .),h H −  ( ( , )) = ( , )h H θ λ θ λ ; it follows that 

1( ( , ))= ( , ) ,h H Hθ λ θ λ −′ ′  

the matrix inverse of (., .)H ′ , where H ′  denotes the matrix of derivatives of 
( , )H θ λ  with respect to ( , )θ λ . It follows immediately from the expression for 
( , )H θ λ  that 

2( , )= .
2 ( ) ( ) ( ) ( )

H
V W V W

θλ
θ λ

θ λ λ θ θ θλ
⎛ ⎞

′ ⎜ ⎟′+ ′ +⎝ ⎠
 

The result follows. 
 
Let 

3
3

=1

ˆ 1= ( ) ,
n

j
j

Y Y
n

µ −∑  

4
4

=1

ˆ 1= ( )
n

j
j

Y Y
n

µ −∑  

and 

2
3

4
3 4

ˆ

ˆ ˆ
= .n

S
B

S

µ

µ µ

⎛ ⎞
⎜ ⎟

−⎝ ⎠
 



 H.S. Bakouch, T.A. Severini 80 

Define 

1ˆ = ( , ) ( , ) .T
n nM B Mθ λ θ λ−Σ  

 
Theorem 3.2  

Assume that assumptions 2-4 hold. Then 

ˆ ( , ) .n as nθ λΣ Σ→ →∞  

 
Proof: 

Under assumption 4, as n →∞ , 

2
1 3 3 4 4ˆ ˆ,( ; ), ( , ), ( , ).S Var Y andθ λ µ µ θ λ µ µ θ λ→ → →  

It follows that ( , )nB B θ λ→  as n →∞ . Since ( , )M θ λ  is a continuous function 
of ( , )θ λ , and ( , )θ λ  is a consistent estimator of ( , )θ λ , it follows that 

( , ) ( , )M Mθ λ θ λ→  as n →∞ . The result follows. 

4. NONPARAMETRIC ESTIMATION OF THE COMPOUNDING DISTRIBUTION 

4.1 General approach 

Let P  denote the probability generating function of iY , let R  denote the 
probability generating function of the event distribution, and let Q  denote the 
probability generating function of the compounding distribution. Assume that we 
have a parametric model with parameter λ  for the event distribution; hence, we 
write ( ; )R λ⋅  for R  as 

( ( ); )= ( ), 1.R Q t P t tλ ≤  

Let 

=1

1ˆ( )=
n Y j

j
P t t

n∑  

denote the empirical probability generating function based on 1, , nY Y… . Then 
ˆ( )P t  is a consistent estimator of ( )P t for 1t ≤ . Hence, an estimator of the 

compounding distribution can be obtained by setting ˆ( ( ); )R Q t λ  equal to ˆ( )P t , 
where λ̂  is an appropriate estimator of λ . 
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In order to carry out this approach, there are several issues which must be con-
sidered. First, we must ensure that λ  and Q  are identified in this model. Second, 
an estimator of λ  must be constructed. Finally, we must be able to use the iden-
tity 

ˆ ˆ( ( ); )= ( )R Q t P tλ  (4.1) 

in order to obtain an estimator of the compounding distribution. 
First consider identification. The following assumption is sufficient for Q  and 

λ  to be identified. 
 

Assumption 5  

1. 1 2( ; )= ( ; )R t R tλ λ  if and only if 1 2=t t . 

2. 1 2(0; )= (0; )R Rλ λ  if and only if 1 2=λ λ .  

 
Lemma 4.1 

Assume that assumption 5 is satisfied. Then 1 1 2 2( ( ); )= ( ( ); )R Q t R Q tλ λ  for 
1t ≤  if and only if 1 2=Q Q  and 1 2=λ λ . 

 

Proof: 

Clearly, if 1 2=Q Q  and 1 2=λ λ , then 1 1 2 2( ( ); )= ( ( ); )R Q t R Q tλ λ  for 1t ≤ . 
Hence, assume that 1 1 2 2( ( ); )= ( ( ); )R Q t R Q tλ λ  for 1t ≤ . Note that 

1 2(0)= (0)= 0Q Q . Hence, setting = 0t , it follows that 1 2(0; )= (0; )R Rλ λ ; by 
part (1) of assumption 5, it follows that 1 2=λ λ . 

Fix t . By part (2) of assumption 5, 1 2( ( ); )= ( ( ); )R Q t R Q tλ λ  implies that 

1 2( ) = ( )Q t Q t . Since t  is arbitrary, 1 2=Q Q , proving the result. 
Now consider estimation of λ . It follows from the identification result that an 

estimator of λ  can be obtained by solving 

ˆ ˆ(0; )= (0)R Pλ  (4.2) 

for λ̂ . However, the estimator given in (4.2) will only be useful for those distri-
butions for which (0)P  is not close to 0 . An alternative approach is to base an 
estimator of a second-moment assumption, as discussed in section 3. 

Finally, we must use the identity in (4.1) to obtain an estimator of the com-
pounding distribution. The details of this will depend on the parametric model 
used for the event distribution. In the remainder of this section we consider two 
choices for this distribution. In section 4.2, the event distribution is taken to be a 
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Poisson distribution; this case was also considered by Buchmann and Grübel 
(2003), who developed a similar method of estimation. In section 4.3, the event 
distribution is taken to be a geometric distribution. 
 

4.2 Estimation under a compound Poisson model  

The compound Poisson distribution has a major importance in the class of 
compound distributions. This is because of using it in the probability theory and 
its applications in biology, risk theory, meteorology, health science, etc. 

Under the assumption that N  has a Poisson distribution with mean λ , it fol-
lows from the discussion in section 4.1 that 

( )= exp{ [ ( ) 1]}, 1.P t Q t tλ − ≤  

Suppose that the parameter λ  is known. Hence, we can estimate Q  by Q̂  
where 

ˆ ˆexp{ [ ( ) 1]}= ( )Q t P tλ −  (4.3) 

and let  

{ = }
=1

1ˆ =
n

k Y kj
j

p I
n∑  

so that P̂  can also be written as 

=0

ˆ ˆ( )= .k
k

k
P t t p

∞

∑  

Here { = } =1Y kj
I  if =jY k  and 0  otherwise. 

For =1, 2,j … , let = Pr( = )j iq X j . Our goal is to estimate 1 2, ,q q …  based 

on 0 1ˆ ˆ, ,p p …  or, equivalently, based on ˆ( )P t . To do this, we make the following 
assumption: 
 
Assumption 6 

There exists a positive integer M  such that Pr( > )= 0iX M  and, hence, 

1 2= = = 0.M Mq q+ + "  

Under assumption 6, the number of unknown parameters is finite, which sim-
plifies certain technical arguments. Note that M  can be taken to be very large so 
that assumption 6 is nearly always satisfied in practice. 
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We can estimate 1 2, ,q q …  by finding Q̂  to solve (4.3) and then differentiating 
in order to obtain the estimators 1 2ˆ ˆ, ,q q … :  

1 2 3
ˆ ˆ ˆˆ ˆ ˆ= (0), = (0)/2!, = (0)/3!q Q q Q q Q′ ′′ ′′′  

and so on. 
Define Q  to be the solution to 

ˆexp{ ( ) 1}= ( ), 1.Q t P t t− ≤  (4.4) 

Then 

1ˆ ( )= [ ( ) 1] 1Q t Q t
λ

− +  

and 1 2, ,q q … , the probabilities corresponding to Q , are related to 1 2ˆ ˆ, ,q q …  
through 

1ˆ = , =1, 2, .k kq q k
λ

…  

In the usual case in which λ  is unknown, it must be estimated. Let λ̂  denote an 
estimator of λ . Then 1 2, ,q q …  can be estimated by 

ˆ
1ˆ = , =1, 2, .k kq q k
λ

…  

One approach to estimate λ  is to use an estimator based on equation (4.2). This 
yields the estimator 

0
ˆ ˆ= log .pλ −  (4.5) 

An alternative approach is to use the method described in section 3. In this case, 
we assume the existence of a known function W  such that ( )= ( )iW Var Xθ  
where = ( ; )iE Xθ θ . Then an estimator λ̂  is given by the solution to equation 
(3.1), which may be written as 

2
2

2
=1 =1 =1 =1

ˆˆˆ

1 1 1= .
M M M M

j j j
j j j j

j q j q W j q
λλλ

⎛ ⎞ ⎛ ⎞
+⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠
∑ ∑ ∑ ∑  (4.6) 

Other estimators of λ  can be used, provided that the following condition is satis-
fied. 
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Assumption 7 

The estimator λ̂  is a continuously differentiable function of 0 1ˆ ˆ ˆ( , , , )Mp p p…  
and is a consistent estimator of λ .  

Let 1 2ˆ ˆ ˆ ˆ= ( , , , )Mq q q q…  denote the vector of probabilities corresponding to Q̂ ; 
similarly, define 1 2= ( , , , )Mq q q q…  and 1 2ˆ ˆ ˆ ˆ= ( , , , )Mp p p p… . A method of calcu-
lating 1 2ˆ ˆ, ,q q …  is given in the following theorem. 
 

Theorem 4.1 

Assume that assumptions 5-7 hold and that N  has a Poisson distribution with 
mean λ . 

Define an M M×  matrix H  as follows: 

0, ,
= 1, 2, ..., .ˆ , ..., ,ij

i j

if i j
H j Mj p if i j M

i −

<⎧
⎪ =⎨

=⎪⎩

 

Hence  

1 ˆ=q H p−  

and  

ˆ
1ˆ = .q q
λ

 

 

Proof: 

Let ˆ( )= ( )t P tα  and let ( )= ( ) 1t Q tβ − . Therefore 

=1
( )= 1,

M
j

j
j

t q tβ −∑  

=0

ˆ( )= j
j

j
t p tα

∞

∑ , 

and ( )= log ( )t tβ α , using equation (4.4). It now follows from Severini (2005, 
lemma 4.1) that 

1 1
=0

1ˆ ˆ= , = 0,1, 2, .
1

r

r j r j
j

jp q p r
r+ + −
+
+∑ …  (4.7) 
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Expressing in terms of the matrix H  and the vectors q̂  and p̂ , equation (4.7) 
can be written as 

ˆ= .Hq p  

The result for q̂  now follows from the relationship between q̂  and q . 
The following result shows that 1 2ˆ ˆ ˆ( , , , )Mq q q…  is asymptotically normally dis-

tributed.  
 

Theorem 4.2 

Assume that assumptions 5-7 hold and that N  has a Poisson distribution with 
mean λ . Therefore, as n →∞ , 

1 1

2 2

ˆ
ˆ

ˆM M

q q
q q

n

q q

−⎛ ⎞
⎜ ⎟−⎜ ⎟
⎜ ⎟
⎜ ⎟

−⎝ ⎠

#
 

converges in distribution to an M  dimensional multivariate normal distribution 
with mean vector 0 . 
 

Proof: 

It follows from equation (4.7) that 1 2( , , , )Mq q q…  is a continuously differenti-
able function of 0 1ˆ ˆ ˆ( , , , )Mp p p… . Under assumption 7, it follows that 

1 2ˆ ˆ ˆ( , , , )Mq q q…  is a continuously differentiable function of 0 1ˆ ˆ ˆ( , , , )Mp p p… . 
The result now follows from the δ -method (e.g., Severini, 2005, section 13.2) 

together with the fact that 0 1ˆ ˆ ˆ( , , , )Mp p p…  is asymptotically normally distributed 
(e.g., Severini, 2005, example 12.7).  

The asymptotic covariance matrix of 1 2ˆ ˆ ˆ( , , , )Mq q q… , which is not specified in 
theorem 4.2, can be obtained using the δ -method (see, e.g., Severini, 2005, theo-
rem 13.1). Since 1 2ˆ ˆ ˆ( , , , )Mq q q…  is a complicated function of 0ˆ ˆ( , , )Mp p… , we do 
not give its expression here. The computation of such expression can be obtained 
via the formula in Severini (2005, theorem 13.1). Note that the estimators 

1 2ˆ ˆ ˆ, , , Mq q q…  are not guaranteed to be non-negative nor are they guaranteed to 
sum to 1 . Thus, in practice, any negative estimate should be replaced by 0 . It 
may also be helpful to normalize the estimates by dividing them by their sum.  
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4.3 Estimation under a compound geometric model  

In this subsection, we consider the compound geometric distribution which 
plays an important role in reliability, queueing, regenerative processes, and insur-
ance applications. 

We now consider the case in which N  has a geometric distribution with the 
parameter λ  and probability function 

( = )= (1 ) , = 0,1, 2,nP N n nλ λ− …  (4.8) 

where 0 < <1λ . The analysis in this case is very similar to the analysis given in 
section 4.2 for the compound Poisson model and, hence, we keep the treatment 
here in brief. 

For the compound geometric model, 

1( )= , 1.
1 ( )

P t t
Q t
λ

λ
−

≤
−

 

Let λ̂  denote an estimator of λ  satisfying assumption 7 and define Q̂  by 

ˆ
ˆ
1 1 1/ˆ ( )= .ˆ( )

Q t
P t

λ
λ

−
+  (4.9) 

A method of calculating 1 2ˆ ˆ, ,q q …  is given in the following theorem. 
 

Theorem 4.3 

Assume that assumptions 5-7 hold and that the distribution of N  is given by 
(4.8). Hence 

1

=1 00
ˆ

ˆˆ
ˆ ˆ= , =1, 2, .ˆˆ

k
k jk

k j
j

pkpq q k
j ppλ

−
−⎛ ⎞

− ⎜ ⎟
⎝ ⎠

∑ …  (4.10) 

 
Proof: 

Rewriting (4.9) as  

ˆ ˆˆ ˆ ˆ( ) ( )= ( ) 1Q t P t P tλ λ+ −  

for 1t ≤ , and differentiating this expression implies 

( ) ( ) ( )

=0

ˆ ˆ ˆ ˆ( ) ( )= ( ), =1, 2, .
k

j k j k

j

k
Q t P t P t k

j
λ −⎛ ⎞

⎜ ⎟
⎝ ⎠

∑ …  
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Evaluating this expression at = 0t , and setting 0ˆ = 0q , lead to (4.10). 
The following result shows that 1 2ˆ ˆ ˆ( , , , )Mq q q…  is asymptotically normally dis-

tributed. The proof is essentially the same as the proof of theorem 4.2 and, hence, 
is omitted.  
 

Theorem 4.4 

Assume that assumptions 5-7 hold and that the distribution of N  is given by 
(4.8). Therefore, as n →∞ ,  

1 1

2 2

ˆ
ˆ

ˆM M

q q
q q

n

q q

−⎛ ⎞
⎜ ⎟−⎜ ⎟
⎜ ⎟
⎜ ⎟

−⎝ ⎠

#
 

converges in distribution to an M  dimensional multivariate normal distribution 
with mean vector 0 . 

The comments following theorem 4.2 can be applied here as well. 
 
Remark 4.1. 

Our approach in section 4.1 works well with other event distributions (e.g. bi-
nomial and negative binomial) as long as they obey the assumptions in this sec-
tion. Also, the results that can be obtained to such distributions are very similar to 
those already given in subsections 4.2 and 4.3, so it is not necessary to include 
such results here.  
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SUMMARY 

Nonparametric estimation in random sum models 

Let 1 2, , , NX X X…  be independent, identically distributed, non-negative, integer-
valued random variables and let N  be a non-negative, integer-valued random variable 
independent of 1 2, , , NX X X… . In this paper, we consider two nonparametric estimation 

problems for the random sum variable 
=1

= ,N
N ii

S X∑  0 0= = 0S X . The first is the es-

timation of the means of iX  and N  based on the second-moment assumptions on dis-
tributions of iX  and N . The second is the nonparametric estimation of the distribution 
of iX  given a parametric model for the distribution of N . Some asymptotic properties 
of the proposed estimators are discussed. 




