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TO ESTIMATE THE POPULATION MEAN 
AND ITS ROBUSTNESS TO OPTIMUM VALUE 
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1. INTRODUCTION 

To reduce the cost of the survey, most large scale sample surveys are con-
ducted to estimate the parameters of several characteristics simultaneously. In 
multistage sampling the primary units are selected with probability proportional 
to size (pps) with or without replacement. It is well known that the selection of 
primaries with pps of an auxiliary variable, highly positively correlated with char-
acteristics of interest, may improve the efficiency of the estimate of population 
mean/total. A vast literature (Agarwal et al., 1978); (Chaudhuri and Vos, 1988); is 
available on this topic. (Rao and Bayless, 1969); carried out an empirical study for 
a wide variety of populations for pps estimators to develop the confidence of 
survey practitioners. For those characteristics of interest having low or very low 
correlation with size measure, (Rao, 1966a,b); introduced certain biased alterna-
tive estimators. (Singh, 1978); (Bansal, 1985); (Amahia et al., 1989); (Bansal, 1990); 
and others have extended these alternative estimators by considering other situa-
tions which one may come across in real life. The variance expressions of the al-
ternative estimators are very complicated and the direct comparison is not possi-
ble. Therefore, to see the relative efficiency for alternative biased estimators, an 
empirical study is conducted by (Agarwal and Kumar, 1998); and (Agarwal et al., 
2003); for a wide variety of populations. 

In the last four decades several linear weighted estimators are suggested for es-
timating population mean/total [see (Singh, 1967); (Murthy, 1967); (Rubin and 
Weisberg, 1975); (Agarwal and Kumar, 1980); (Pandey and Singh, 1984); (Amahia 
et al., 1989); (Bansal, 1990); (Agarwal et al., 2003)]. However, a glance at the re-
ports of various large scale sample surveys carried out by various organizations 
shows that sample survey practitioners have not shown much interest in these 
developments. This is a sort of paradox and there appears to be a gap in the the-
ory developed on linear weighted estimators and its applications in actual surveys. 
One of the reasons appears to be that the weighted estimator involves unknown 
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parameter values in the estimator, and the other reason might be non availability 
of computational facilities till the eighties of the last century. Therefore, the per-
formance of these estimators over conventional estimators could not be studied 
for a wide variety of populations. 

In this paper, an attempt has been made to show the importance of linear 
weighted estimators under ppswr sampling over the alternative estimator and also 
over the conventional estimators through an empirical study for a wide variety of 
populations available in literature. This study is more useful for primary unit po-
pulations. The linear weighted estimators involve unknown weights, and normally 
a guess value based on the past experience or an expert’s opinion is used for un-
known weights in the linear weighted estimators. The survey practitioners are not 
sure how close these guess values are from the optimum values. Therefore, an 
empirical study is also carried out to see the robustness of the linear weighted es-
timators by deviating the optimum value of the unknown weights up to 50% on 
either side. This study may help to develop the confidence of survey practitioners, 
on the use of linear weighted estimators. 

2. STATEMENT OF THE PROBLEM 

Consider a finite population U of size N identifiable, distinct units u1, u2,  
ui, ..., uN. It is assumed that several study variables y are defined on U. The infor-
mation on auxiliary variables x2 is also defined on U, besides the selection prob-
abilities based on x1. Some y’s have high positive correlation with x1, some y’s 
have low positive correlation or have low negative correlation or have very low 
correlation with x1. The problem is to estimate the population mean/total of 
those study variables y’s which do not have high linear relationship with x1. In 
such cases the conventional pps estimator doesn’t estimate mean/total of y’s with 
higher precision. Therefore, there is a need to use an additional auxiliary variable 
to estimate mean /total of these y’s with higher precision. One of the approaches 
is by using linear weighted estimator. The selection probabilities are 

p1i (= x1i/X1; X1= 1
1

N

i
i

x
=
∑ ); i=1,2, ..., N. 

There are three main situations using linear weighted estimators: 
(i) The variables y and x1 are uncorrelated or have very low correlation, and y 

and x2 may have negative or positive correlation. 
(ii) The variables y and x1 are linearly, but not highly positively correlated, and y 

and x2 have positive correlation. 
(iii) The variables y and x1 are linearly, but not having high correlation and y and 

x2 have negative correlation. 
For situation (i), Rao (1966) suggested alternative biased estimators. Since the 

direct comparison of the mean square error of Rao’s estimator is not possible 
with the mean square error of the linear weighted estimator due to complicated 
expressions, hence we have made an empirical study for wide variety of popula-
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tions to see the performance of linear weighted estimators over Rao’s alternative 
biased estimator. Several other authors have also suggested alternative biased es-
timators, but we preferred Rao’s biased estimator for comparison because it 
doesn’t require any other additional information. Moreover Agarwal and Kumar 
(1998) when compared all seventeen biased alternative estimators, didn’t find sig-
nificant gain of other estimators over Rao (1966) estimator. 

A linear weighted estimator under ppswr is suggested by Agarwal and Kumar 
(1980) for situation (ii). However, they have not carried out an extensive empiri-
cal study to demonstrate the usefulness of their estimator in real life surveys. In 
section 4, we have carried out an empirical study, to show its usefulness in prac-
tice, by deviating the unknown parameters up to 50% on either side from its op-
timum value. 

To meet situation (iii), we extend product method of estimation to pps sam-
pling in the next section.  

3. LINEAR WEIGHTED ESTIMATOR WHEN STUDY VARIABLE y AND x2 HAVE EITHER POSI-
TIVE OR NEGATIVE LINEAR RELATIONSHIP 

Let, 
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1 2 2 2( ) ( 2 )R u v uv u vM y n Y C C C Cρ−≅ + −  (5) 
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1 2 2 2( ) ( 2 )p u v uv u vM y n Y C C C Cρ−≅ + +  (6) 

1 2 2( , ) ( )R pps u uv u vCov y y n Y C C Cρ−≅ −  (7) 

1 2 2( , ) ( )p pps u uv u vCov y y n Y C C Cρ−≅ +  (8) 

The proposed estimator 1y  of the population mean Y  is a linear weighted esti-
mator, when the study variable y and x2 are linearly but negatively correlated: 

1 (1 )p ppsy wy w y= + −  (9) 

where w is the weight to be determined. The bias and mean squared error of 1y  
are respectively 

1( ) ( )pB y wB y=  (10) 

and 

2 2
1( ) ( ) (1 ) ( ) 2 (1 ) ( , )p pps p ppsM y w M y w V y w w Cov y y= + − + −  (11) 

The value of w  which minimizes eqn (11) is 

optw = 
( ) ( , )

( ) ( ) 2 ( , )
pps p pps

p pps p pps

V y Cov y y
M y V y Cov y y

−

+ −
 (12) 

On substitution of w opt from (12) into eqn (11) we get 

2

1 min

( ) ( ) ( , )
( )

( ) ( ) 2 ( , )
pps p p pps

p pps p pps

V y M y Cov y y
M y

M y V y Cov y y
−

=
+ −

 (13) 

Substituting the values from eqns (1), (3), (6) and (8), into eqn (10), eqn (12) and 
eqn (13), we get optw , the bias and the mean square error of 1y , to the first de-
gree of approximations, as follows: 

optw = u
uv

v

C
C

ρ
⎛ ⎞

−⎜ ⎟
⎝ ⎠

 (14) 

1 2
1( ) ( )uv u uB y n Cρ σ−= −  (15) 

and 

1 2 2
1( ) (1 )uv uM y n ρ σ−= −  (16) 
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It can be noted that 1( )M y  in equation (16) is of the same form as the mean 
square error of the regression estimator under ppswr sampling. Thus, it can be 
estimated approximately the same way as we do in the regression method of es-
timation under ppswr sampling. 

When the study variables y and x2 are linearly and low positively correlated 
(Agarwal and Kumar, 1980); defined the linear weighted estimator as follows: 

0 (1 )R ppsy ky k y= + −  (17) 

The value of k  which minimizes 0( )M y  is 

optk = u
uv

v

C
C

ρ  

The bias and mean square error of 0y  for optk , to the first degree of approxima-
tions are: 

1
0( ) ( )uv u v uv uB y n C Cρ σ ρ−= −  (18) 

and 

1 2 2
0( ) (1 )uv uM y n ρ σ−= −  (19) 

Rao (1966) defined alternative estimators for situation (i) by modifying the con-
ventional ppswr estimator of the population mean by replacing iy′ by i iNy p  in 
the following equations. 

'
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= ∑  (20) 

with 

' 2
2

2
1

1ˆ( ') '
n

i

i i

yV Y Y
pnN =

⎛ ⎞
= −⎜ ⎟

⎝ ⎠
∑  (21) 

where iy′ is a prime characteristic under study and iy′ and ip  are high positively 
correlated. The estimator defined by equation (20) is unbiased while Rao’s (1966) 
following alternative estimator is biased. 

2
1

1 n

i
i

y y
n =

= ∑  (22) 

The bias of the estimator is 
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In the next section we will study the respective percentage relative bias to its 
standard error for Rao’s alternative estimator and that of linear weighted estima-
tors. We will also study the gain of efficiency of linear weighted estimators over 
Rao’s alternative estimator. 

4. GAIN IN EFFICIENCY 

Let the guess value of weights “w” in eqn (9) or “k” in eqn (17) be d  and the 
optimum value of the weight is optd . The percentage gain in efficiency of 0y  or 

1y  over ppsy  is 

2 2

2 2 2 100opt v

u opt v

d C
C d C

⎛ ⎞
⎜ ⎟⎜ ⎟−⎝ ⎠

 (25) 

The estimators 0y  or 1y  will be more efficient than ppsy  if 2 optd d< . It means 

that even if the value of d departs from optd  by 100%, the estimators 0y  or 1y  

will remain more efficient than ppsy . 

The percentage gain in efficiency of 0y  over Ry  or 1y  over py  is 

2 2

2 2 2

(1 )
100v opt

u opt v

C d
C d C

⎡ ⎤−
⎢ ⎥

−⎢ ⎥⎣ ⎦
 (26) 

The estimators 0y  will be more efficient than Ry , if the condition 

1opt optd d d− < −  (27) 

holds. 

5. EMPIRICAL STUDY 

To study the relative efficiency and the relative bias of linear weighted estima-
tors over conventional estimator/s under probability proportional to size with 
replacement (ppswr) sampling we have considered a wide variety of populations 
that cover most of the practical situations we come across in real life surveys. 
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These populations are taken from the available literature ((Freund and Perles, 
1999); (Hines and Montgomery, 1990); (Mendenhall et al., 2003); (Milton and Ar-
nold, 2003); (Neter et al., 1985) and (Ott, 1984)). 

5.1. Description of populations 

Table 1 gives the characteristics of the populations such as population size N, 
coefficients of variation of the study variable (y), and of the auxiliary variables x1 
and x2, the correlation coefficients between (y, x1) and (y, x2). The population size 
varies from 14 to 113, the coefficient of variation of y from 13.44 % to 49.67%, the 
coefficient of variation of x1 from 17.87% to 80.39%, the coefficient of variation of 
x2 from 2.41% to 75.75%. The correlation coefficient between (y, x1) varies from  
-0.002 to 0.587, while the correlation coefficient between (y, x2) varies from -0.833 
to 0.988. The above described populations thus represent a variety of situations and 
we further divide these into three categories for comparison purpose. Category (i) 
represents those populations for which the study variable y and x1 either uncorre-
lated or have very low correlation, and y and x2 have negative or positive correlation 
with y. Category (ii) represents those populations for which the study variables y 
and x1 are linearly, but not highly positively correlated, and y and x2 have positive 
correlation. Category (iii) represents those populations for which the study variables 
y and x1 not having high correlation and y and x2 have negative correlation. 

TABLE 1 

Description of the populations with five number summary 

S.No N Cy Cx1 Cx2 ρyx1 |ρyx2| Situation 
  1 113 19.81 80.39   8.38 0.34 0.19 ii 
  2   16 14.01 34.43 32.99 0.41 0.89 ii 
  3   50 13.44 31.27 39.17 0.59 0.29 ii 
  4 107 19.81 64.81 19.42 0.33 0.30 iii 
  5   63 19.51 33.46 41.65 0.52 0.48 iii 
  6   22 14.19 55.96   2.41 0.00 0.03 i 
  7   97 18.09 63.10 19.04 0.35 0.22 iii 
  8   43 13.67 51.11 30.38 0.45 0.01 iii 
  9 113 19.81 30.79 19.42 0.53 0.30 iii 
10   25 21.07 19.64 16.20 0.51 0.50 ii 
11   26 49.67 33.88 28.32 0.16 0.83 i 
12   33 36.52 17.87 31.73 0.35 0.67 iii 
13   48 27.12 27.80 73.69 0.10 0.37 i 
14   54 26.92 39.00 71.69 0.50 0.37 ii 
15   18 31.09 42.76 75.75 0.25 0.99 i 
16   14 27.02 19.78 41.24 0.45 0.88 ii 
17   54 27.72 39.00 73.69 0.50 0.37 ii 
18   52 27.56 39.65 75.52 0.51 0.36 ii 
19   47 27.45 72.65 12.32 0.36 0.32 ii 
20   27 49.67 33.88 27.42 0.16 0.78 i 
21   22 48.56 27.31 25.86 0.76 0.80 iii 
22   20 48.64 24.56 35.03 0.74 0.18 ii 
23   18 31.09 42.76 75.75 0.25 0.99 i 
24   19   6.64 28.87   6.56 0.69 0.24 iii 
25   17 21.84 22.60 20.99 0.62 0.35 ii 
26   22 21.31   8.28 10.84 0.88 0.89 ii 

min   14   6.64   8.28   2.41 0.00 0.01  
max 113 49.67 80.39 75.75 0.88 0.99  
q1   24 17.12 30.04 19.32 0.31 0.28  
q2   46 19.81 34.15 31.06 0.38 0.37  
q3   72 27.04 52.32 41.34 0.51 0.71  
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Table 2 gives the bias relative to the standard error for the estimators 2y , 0y  
and 1y  for a sample of size 10% of the population. The relative bias of 2y  over 

0y  and 1y  along with five number summary is also given. It can be noted that 
the bias of 0y  and 1y  relative to their respective standard errors are more than 
that of Rao’s estimator 2y . The reason appears to be that the standard error de-
creases considerably for the estimators 0y  and 1y . When we look into the rela-
tive bias of 2y  over 0y  and 1y , we find that for approximately 70% of the 
populations, the bias of Rao’s estimator is more than that of the bias of 0y  while 
for 50% of the populations, the bias of Rao’s estimator is more than that of the 
bias of 1y . The range of relative bias of 2y  over 0y  is more than 20 while the 
relative bias of 2y  over 1y  is more than 137. It indicates that there are significant 
fluctuations in relative bias of Rao’s estimator over 0y  or 1y . 

TABLE 2 

Bias relative to standard error and the bias relative to the bias of Rao’s estimator with five number summary 

S.No. 2

2

( )
. ( )
B y

S E y
 0

0

( )
. ( )
B y

S E y
 1

1

( )
. ( )
B y

S E y
 2

0

( )
( )

B y
B y

 2

1

( )
( )

B y
B y

 Situation 

  1 0.1976 1.1623 1.5909   4.3360     0.8530 ii 
  2 0.0827 2.1426 0.0889   0.5083     0.3039 ii 
  3 0.0623 2.4959 0.0061   2.2463     4.7161 ii 
  4 0.1148 1.1072 0.4930   3.5006     0.9786 iii 
  5 0.0616 0.8073 0.0285   3.0431     9.1014 iii 
  6 0.0009 0.2791 3.6211   0.0125     0.0012 i 
  7 0.1158 1.0513 0.4944   3.3379     0.9641 iii 
  8 0.0868 3.7835 0.0337   1.0715     0.5905 iii 
  9 0.1039 0.7264 0.1353   6.6641     6.5586 iii 
10 0.1056 1.1638 0.0071   3.4766     3.3751 ii 
11 0.0373 1.6869 0.0000   3.9975   39.8656 i 
12 0.0347 3.1574 0.0065   0.6175     1.6993 iii 
13 0.0102 0.5490 0.0112   0.6035     2.6886 i 
14 0.0851 0.3701 0.0029 12.1542 137.4944 ii 
15 0.0571 4.4281 0.1708   0.1468     0.0891 i 
16 0.1036 0.6421 0.5696   0.7070     0.5773 ii 
17 0.0851 0.3701 0.0029 12.1542 137.4944 ii 
18 0.0847 0.4110 0.0041   9.6165   93.9787 ii 
19 0.2210 0.4541 0.6364   9.2680     0.9191 ii 
20 0.0840 1.6327 0.0138   4.4314     0.3194 i 
21 0.1376 5.3049 0.0104   1.2436     3.3332 iii 
22 0.1459 2.5332 0.0004   4.3132   25.7247 ii 
23 0.0571 4.4281 0.1708   0.1468     0.0891 i 
24 0.1251 0.5447 0.2277   3.9045     0.2216 iii 
25 0.1170 1.3267 0.0060   2.3331     4.0920 ii 
26 0.1195 0.3698 0.0041 20.3573     6.2104 ii 

min 0.0009 0.2791 0.0000   0.0125     0.0012  
max 0.2210 5.3049 3.6211 20.3573 137.4944  
q1 0.0521 0.7053 0.0069   0.6140     0.5872  
q2 0.0839 1.1348 0.0613   2.6447     1.3389  
q3 0.1043 2.2309 0.4934   3.6249     5.1767  

 

Table 3 gives the relative efficiency of linear weighted estimator 0y  or 1y  over 

ppsy  and also the loss in gain of efficiency when unknown weight in the estimator 
is deviated from its optimum value from ± 10% to ± 50%, along with the five 



Linear combination of estimators in probability proportional etc. 67 

number summary. Normally, the guess value of the weight is obtained either 
from the past surveys or an opinion of the expert is taken. It can be noted that 
for all the populations the relative efficiency of linear weighted estimator 0y  or 

1y  over ppsy  is significantly high even if the unknown value of weight in the  
estimators is deviated by up to 50%. From the summary statistics, it is evident 
that for more than 50% populations the gain is more than three times even if  
the optimum value is deviated by up to 25%. For 50% of the populations the gain 
in efficiency is more than 2 times even if the optimum value is deviated up to 
50%. 

TABLE 3 

Relative efficiency of linear weighted estimator over ppsy  when unknown parameter is deviated 
from its optimum value, with five number summary 

S.No. 
0

( )
( )

ppsV y
M y

 
0

( )
( )

ppsV y
M y

 

±10% 
0

( )
( )

ppsV y
M y

 

±25% 
0

( )
( )

ppsV y
M y

 

±50% 

Situation 

  1 16.349 14.174 8.344 3.380 ii 
  2   8.270   7.709 5.686 2.935 ii 
  3   1.717   1.705 1.643 1.456 ii 
  4   5.757   5.495 4.437 2.630 iii 
  5   1.270   1.267 1.249 1.190 iii 
  6 13.249 11.803 7.504 3.262 i 
  7   5.728   5.469 4.421 2.625 iii 
  8   4.937   4.750 3.962 2.488 iii 
  9   2.305   2.276 2.131 1.738 iii 
10   1.654   1.643 1.589 1.421 ii 
11   1.005   1.005 1.005 1.004 i 
12   1.557   1.548 1.504 1.366 iii 
13   1.017   1.017 1.016 1.013 i 
14   9.545   8.794 6.222 3.043 ii 
15   6.329   6.009 4.748 2.714 i 
16   1.084   1.084 1.079 1.062 ii 
17   1.017   2.020 1.916 1.619 ii 
18   1.024   1.023 1.022 1.018 ii 
19   4.715   4.546 3.826 2.445 ii 
20   3.347   3.271 2.919 2.109 i 
21   2.699   2.654 2.440 1.894 iii 
22   1.063   1.062 1.059 1.047 ii 
23   9.545   8.794 6.222 3.043 i 
24 11.877 10.712 7.071 3.193 iii 
25   1.501   1.493 1.455 1.334 ii 
26   1.351   1.346 1.322 1.242 ii 

min   1.005   1.005 1.005 1.004  
max 13.249 11.803 7.504 3.262  
q1   1.224   1.478 1.440 1.322  
q2   2.011   2.148 2.024 1.679  
q3   5.900   5.624 4.515 2.651  

 

Table 4 gives the relative efficiency of the linear weighted estimator 0y  or 1y  
over Ry  and also the loss in gain of efficiency when unknown weight is deviated 
from its optimum value from ± 10% to ± 50%, along with the five number 
summary. From the summary statistics, it can be seen that, for approximately 
75% populations the gain is more or less 1.5 times even if the optimum value is 
deviated by up to 25%. For a few populations such as serial numbers 6, 19, 20, 24 
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and 26, the gain is not significant. One of the reasons might be that the big dif-
ference between the values of the coefficients of variation of the study variable (y) 
and the auxiliary variable (x1). 

TABLE 4 

Relative efficiency of linear weighted estimator over Ry  when unknown parameter is deviated 
from its optimum value, with five number summary 

S.No. 
0

( )
( )

RV y
M y

 
0

( )
( )

RV y
M y

 

±10% 
0

( )
( )

RV y
M y

 

±25% 
0

( )
( )

RV y
M y

 

±50% 
Situation 

  1   1.594   1.382   0.814 0.330 ii 
  2   3.599   3.355   2.475 1.277 ii 
  3   4.160   4.130   3.982 3.528 ii 
  4   1.372   1.309   1.057 0.627 iii 
  5   3.417   3.408   3.360 3.201 iii 
  6   1.121   0.999   0.635 0.276 i 
  7   1.394   1.331   1.076 0.639 iii 
  8   2.196   2.113   1.762 1.107 iii 
  9   2.264   2.235   2.094 1.707 iii 
10   1.616   1.605   1.553 1.389 ii 
11   1.541   1.541   1.540 1.539 i 
12   5.215   5.186   5.039 4.578 iii 
13   3.145   3.145   3.142 3.132 i 
14   4.152   3.826   2.707 1.324 ii 
15   4.553   4.322   3.415 1.952 i 
16   4.751   4.747   4.726 4.652 ii 
17   3.145   3.145   3.142 3.132 ii 
18   3.253   3.252   3.248 3.234 ii 
19   1.037   0.999   0.841 0.537 ii 
20   1.012   0.989   0.883 0.638 i 
21 13.206 12.986 11.938 9.269 iii 
22   3.243   3.241   3.230 3.192 ii 
23   4.152   3.826   2.707 1.324 i 
24   1.035   0.933   0.616 0.278 iii 
25   2.541   2.528   2.464 2.258 ii 
26   1.033   1.029   1.010 0.949 ii 

min   1.012   0.933   0.616 0.276  
max 13.206 12.986 11.938 9.269  
q1   1.581   1.501   1.424 0.990  
q2   2.705   2.690   2.284 1.464  
q3   4.154   3.902   3.374 3.149  

 
 
Table 5 gives the relative efficiency of linear weighted estimator 0y  or 1y  over 

Rao’s estimator 2y  and also the loss in gain of efficiency when the unknown 
weight is deviated from its optimum value from ± 10% to ± 50%, along with the 
five number summary. From the summary statistics, it can be seen that for  
approximately 50% of the populations the gain is more than1.5 times even if  
the optimum value is deviated by up to 25%. While the gain is more than 1.3 ti-
mes for more than 50% populations even if the optimum value is deviated up to 
50%. 
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TABLE 5 

Relative efficiency of linear weighted estimator over Rao’s estimator when unknown parameter is deviated  
from its optimum value, with five number summary 

S.No. 2

0

( )
( )

V y
M y

 
2

0

( )
( )

V y
M y

 

±10% 

2

0

( )
( )

V y
M y

 

±25% 

2

0

( )
( )

V y
M y

 

±50% 
Situation 

  1   3.304   2.864   1.686 0.683 ii 
  2   4.098   3.820   2.818 1.455 ii 
  3   1.865   1.852   1.785 1.581 ii 
  4   1.348   1.287   1.039 0.616 iii 
  5   1.314   1.311   1.292 1.231 iii 
  6   1.234   1.100   0.699 0.304 i 
  7   1.374   1.312   1.060 0.630 iii 
  8   1.354   1.303   1.086 0.682 iii 
  9   2.627   2.593   2.429 1.981 iii 
10   3.706   3.682   3.561 3.186 ii 
11   1.084   1.084   1.083 1.082 i 
12   2.236   2.224   2.161 1.963 iii 
13   1.589   1.588   1.587 1.582 i 
14   2.058   1.896   1.342 0.656 ii 
15 11.175 10.610   8.383 4.792 i 
16   1.525   1.524   1.517 1.494 ii 
17   1.589   1.588   1.587 1.582 ii 
18   1.574   1.573   1.571 1.564 ii 
19   2.538   2.447   2.060 1.316 ii 
20   3.608   3.526   3.147 2.274 i 
21   2.266 11.261 10.353 8.038 iii 
22   3.880   3.878   3.865 3.820 ii 
23   2.058   1.896   1.342 0.656 i 
24   2.033   1.833   1.210 0.547 iii 
25   4.357   4.335   4.224 3.872 ii 
26   4.835   4.819   4.732 4.446 ii 

min   1.084   1.084   0.699 0.304  
max 11.175 11.261 10.353 8.038  
q1   1.352   1.309   1.086 0.676  
q2   1.727   1.720   1.552 1.343  
q3   2.796   2.661   2.228 1.677  

6. CONCLUDING REMARKS 

The weighted linear estimator involves unknown parameter values in the es-
timator, hence the practitioner have some reservations of using these estimators 
with a guess value of the weight which is not close to the optimum value. The 
present study, for a wide variety of populations which we normally come across 
in real life situations, shows that the relative efficiency and the relative bias of 
linear weighted estimators over conventional estimator/s, are quite satisfactory 
even if the guess value of the weights in the weighted linear estimator departs 
by 50% from the optimum value. Therefore, our recommendations are that the 
proposed estimators are reasonably satisfactory from bias and efficiency point 
of view to estimate the population mean or total. To reduce the sampling error, 
the survey practitioners can use weighted linear estimators in the multi purpose 
surveys. 
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SUMMARY 

Linear combination of estimators in probability proportional to sizes sampling to estimate the population 
mean and its robustness to optimum value 

In this paper we have studied the gain of efficiency and the relative bias of linear 
weighted estimators over conventional estimators under probability proportional to size 
with replacement (ppswr) sampling for a wide variety of populations. The five number 
summary statistics for the relative bias and the relative efficiency over conventional esti-
mators is given for different magnitude of correlation coefficients. The computational 
study shows that there is a considerable gain in the efficiency of linear weighted estima-
tors over conventional estimators. To develop the confidence of survey practitioners on 
linear weighted estimator, the computational study is extended to see the robustness of 
the linear weighted estimator by deviating the optimum value of the weight up to 50% on 
either side. 

 
 




