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A CONSISTENT TEST FOR EXPONENTIALITY BASED 
ON THE EMPIRICAL MOMENT PROCESS 

Simos G. Meintanis 

1. INTRODUCTION 

The exponential is one of the most frequently used distributions in survival a-
nalysis, reliability theory and other life–time phenomena. Due to its importance, a 
large number of goodness–of–fit tests have been designed for exponentiality. 
Many of these tests are reviewed by Spurrier (1984), Ascher (1990) and Henze 
and Meintanis (2005). When testing for goodness–of–fit, the spectrum of possi-
ble deviations from the null hypothesis of exponentiality is often restricted to a 
nonparametric class of life distributions. Such classes may be defined via mono-
tonicity properties of the failure rate function, with the class of increasing failure 
rate average (IFRA) distributions being one of the most frequently encountered 
alternatives to the exponential distribution. It will be seen below that although the 
moments of an exponentiated random variable belonging to the IFRA class have 
a certain monotonicity property, the IFRA class is too narrow for this property to 
be characteristic. This will be the point of departure for considering a new class 
of life distributions and for constructing exponentiality tests which is consistent 
within this newly defined family of alternatives. 

Let X  denote a nonnegative random variable with distribution function F  
and finite mean 

( )E Xµ = < ∞ . 

It can be shown that if F  belongs to the class of IFRA distributions, then 

( )g t  is increasing in 0t >  (1.1) 

where 

( ) : [1 ( )]/[ ( )],   t t Xg t E Y tE Y and Y e−= − = . 

Condition (1.1) although necessary it is not sufficient for the IFRA class of distri-
butions. Motivated by this fact, Bartoszewicz and Skolimowska (2007) enlarged 
the IFRA class by introducing the LIFRA as exactly that class of distributions for 
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which (1.1) holds. The letter ‘L’ in the transition from the terminology IFRA to 
LIFRA stands for Laplace (transform) since t tXY e−=  and hence (1.1) essentially 
refers to a monotonicuity property involving the Laplace transform of the origi-
nal random variable X . Bartoszewicz and Skolimowska (2008) showed that 
NBU LIFRA⊂ ⊂ L-class, and derived many interesting results for LIFRA distri-
butions such as closure properties, connections with the notion of the total time 
on transform, and infinite divisibility. 

In the present paper we develop tests for exponentiality which are appropriate 
against the class of LIFRA distributions. To do so notice that if F  is LIFRA, 
(1.1) is equivalent to 

2( ) : ( ) ( ) ( ) 0,  0D t m t m t m t t′= − − ≥ > , (1.2) 

where 

( ) ( )tm t E Y= , 

and that in addition, the exponential distribution is a limiting member of the  
LIFRA class satisfying 

( ) 0,  0.D t t= >  (1.3) 

To see (1.3) recall that under unit exponentiality, XY e−=  is uniformly distrib-
uted in (0, 1). Then ( )tE Y  is the moment of arbitrary order of the uniform 
(0,1)–distribution and therefore m(t)=(1+t)−1. Hence our test statistic may be 
viewed as a test based on the moment process ( )tE Y  of arbitrary order 0t >  of 

the suitably transformed variate XY e−= , in comparison to the corresponding 
moment process of the uniform (0,1)–distribution. Since as it will be seen in the 
sequel, moments of all orders 0t >  will be taken into account, the new test is 
based on a continuum of moment conditions, as oppossed to simple moment–
based tests which are based on the first few moments of integer order. The no-
tion of a continuum of moment conditions has been recently exploited in the 
econometrics literature; see for instance Carrasco and Florens (2000, 2002). 

In view of (1.2) and (1.3), it is reasonable to test 

0 :H F  is exponential, 

against 

1 :H F  is LIFRA and not exponential, 

by devising an empirical version, say ( )nD t , of ( )D t , and reject 0H  in favor of 

1H  for  large values of some distance measure based on ( )nD t . Since however 
the exponential  distribution is invariant under scale transformations of the type 
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,  0X cX c→ > , one has to standardize the original observations X1, ..., Xn by 
their sample mean 

1
1 1 ,  1,  2,  ...,  n

n jjX n X j n−
=

= = =∑ . 

With this in mind, the obvious candidate for ( )nD t  results by replacing the mo-
ment process ( )m t  in (1.2) by the empirical moment process 

 /1
1

( )    j nn X Xt
n j jjm t n Y where Y e−−

=
= =∑ . 

Then ( )D t  in (1.2) is naturally estimated by 

2( ) ( ) ( ) ' ( )n n n nD t m t m t tm t= − − , 

and the null hypothesis is rejected for large values of, 

, 0
( ) at

n a nT n D t e dt
∞ −= ∫ . (1.4) 

In other words we suggest the Laplace transform (LT) with its well known u-
niqueness properties as a appropriate distance measure based on ( )Dn t . This 
choice leads to an interesting limiting interpretation. Specifically we consider the 
behavior of the LT of ( )nnD t  as the argument a > 0 of the LT goes to infinity, 

i.e. as ate−  approaches a Dirac type function. To this end rewrite the test statistic 
in (1.4) as 

, 0
( ) at

n aT g t e dt
∞ −= ∫ , (1.5) 

where 

( ) ( )ng t nD t= . 

Using the expansion 

2 21 ( /2) ( ),  0,   /x t t
j ne x x o x x in Y e Xj X− −= − + + → =  

we have by straightforward algebra 

2 2 2
2

2
1, 1

1 3( )   ( )
2

n n
j k j

j k jn n

X X X tg t n o t
X n Xn = =

⎡ ⎤+⎛ ⎞ ⎛ ⎞
⎢ ⎥= − +⎜ ⎟ ⎜ ⎟
⎢ ⎥⎝ ⎠ ⎝ ⎠⎣ ⎦

∑ ∑ , 

as t → 0. The previous equation along with an Abelian theorem for the LT (see 
Zayed, section 5.11), yields after some further algebra 
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3 2 2
, ,2lim    [ ] :n a n n na

n

na T X S T
X ∞→∞

= − = , 

where 

2 1 2

1

( )
n

n j n
j

S n X X−

=

= −∑ . 

Consequently the test statistic when properly standardized possesses a limit value, 
as a →∞ . Interestingly the limit statistic n,T ∞  involves the distance between the 
sample mean squared and the sample variance, a distance that vanishes under 0H  
(exponentiality), as n →∞ . 

2. CONSISTENCY AND LIMIT DISTRIBUTION 

By straightforward algebra we have from (1.4) that 

,
2 2

, 1 1 1

1 1 1 1 1   
( )

n n n
jn a

j k j jj k j j

YT
Y Y a n Y a nn Y an = = =

= − +
+ + + +∑ ∑ ∑ . (2.1) 

The consistency of the test statistic may be proved as follows. By application to 
(2.1) of the Law of Large Numbers for statistics with estimated parameters, e.g. 
Randles (1982), we have 

, ( )
Pn a

a
T

n
ε µ→ , as n →∞ , 

where 

1
2

1 2 1 1

1 1( )
( )a

XE E E
X X a X a X a

ε µ µ
µ µ µ

⎡ ⎤⎛ ⎞⎛ ⎞ ⎛ ⎞
= − +⎢ ⎥⎜ ⎟⎜ ⎟ ⎜ ⎟+ + + +⎢ ⎥⎝ ⎠ ⎝ ⎠ ⎝ ⎠⎣ ⎦

. (2.2) 

On the other hand Fubini’s Theorem yields that for each > 0µ , 

0
( ) ( ) at

a t e dtε µ
∞ −∆= ∫ , (2.3) 

where 

2 /( ) ( ) ( ) '( ) ( ) : [( ) ]X tt t t t t with t E e µµ µ µ µ −∆ = − − =  

denotes the moment process of /Xe µ− . 
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In view of (2.2) and (2.3), ( )aε µ  is zero under exponentiality but positive un-
der 1H  which implies the consistency of the test which rejects 0H  for large val-
ues of ,n aT . Hence we have implicitly proved the following characterization: 
Among all non–negative X  with finite mean µ , the exponentially distributed 
random variable is the only one which satisfies ( ) 0aε µ =  for each 0a > . 

For the asymptotic null distribution we will write ≈ when two statistics are as-
ymptotically equivalent. Under the null hypothesis 0H , the random variable X  
follows an exponential distribution with mean µ . Without loss of generality let 

1µ = . We will consider the symmetrized version ,n aS  of ,n aT , where, 

*
, 2 2 2

, 1

2 1 1  + +
( ) ( )

n
j k

n a
j k j k j k j k

Y YnS
Y Y a Y a Y an Y a Y a=

⎡ ⎤⎡ ⎤
= − + ⎢ ⎥⎢ ⎥

+ + + + + +⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦
∑  (2.4) 

A typical Taylor expansion yields , ,n a n aS S∗≈ , where 

, 2 2 2
, 1

1 12
, 1

2 1 1  + +
    ( ) ( )

1( 1) {2 ( ) [ ( ) ( )] [ ( ) ( )]}

n
j k

n a
j k j k j k j k

n

n j k j k j j k k
j k

X XnS
X X a X a X an X a X a

n X h X X h X h X X h X X h X
n

=

=

⎡ ⎤⎡ ⎤
= − + ⎢ ⎥⎢ ⎥

+ + + + + +⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦

+ − + − + + +

∑

∑
 

where 

2
1( ) ( ;a)

 ( )
ah x h x

x a x a
= = −

+ +
, and 

1 1 2 3
1 2( ) ( ;a)

( ) ( )
ah x h x

x a x a
= = −

+ +
. 

Since ( 1)   (1)nn X is a Op−  sequence, an application of the Law of Large Num-

bers to the second term in the right–hand side of ,n aS∗  yields 

, 2
, 1

2 1 1 ( 1)2
n

j j
n a n a

j k j k j k j k

X XnS n X
X X a X a X a X a X an

δ∗

=

⎡ ⎤ ⎡ ⎤
≈ − + + + + −⎢ ⎥ ⎢ ⎥

+ + + + + +⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦
∑

(2.5) 

where 
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1 2 1 1 1 1

1
2

1 2 1 1

1
2 2 3

1 1 2 1

[ ( ) ( ) ( )]

1 1
( )

1 1 2
( ) ( ) ( )

a E h X X h X X h X

XE E E
X X a X a X a

XE E E
X a X X a X a

δ

α

= + − +

⎛ ⎞⎛ ⎞ ⎛ ⎞
= − + ⎜ ⎟⎜ ⎟ ⎜ ⎟+ + + +⎝ ⎠ ⎝ ⎠ ⎝ ⎠

⎡ ⎤⎛ ⎞ ⎛ ⎞ ⎛ ⎞
+ − −⎢ ⎥⎜ ⎟ ⎜ ⎟ ⎜ ⎟+ + + +⎢ ⎥⎝ ⎠ ⎝ ⎠ ⎝ ⎠⎣ ⎦

 (2.6) 

However by recalling equation (2.2) it follows that the first term of aδ  coincides 

with (1)aε , while the second term is equal to a (1)a

a
δε
δ

⎛ ⎞
⎜ ⎟
⎝ ⎠

. Consiquently under unit 

exponentiality we have 0aδ = , and substitution in the right–hand side of (2.5) 
implies that 

,
1 2 ( , ; )

( 1)n a J K
j k

nS n W X X a
n n n

∗

<

⎡ ⎤−⎛ ⎞≈ ⎢ ⎥⎜ ⎟ −⎝ ⎠ ⎢ ⎥⎣ ⎦
∑ , 

where 

1 2
1 2 2 2

1 2 1 2 1 2

2 1 1( , ; )
( ) ( )

x xW x x a
x x a x a x a x a x a

⎡ ⎤ ⎡ ⎤
= − + + +⎢ ⎥ ⎢ ⎥+ + + + + +⎣ ⎦ ⎣ ⎦

. 

The (common) asymptotic distribution of ,n aS∗  and ,n aT  follows then by the  
theory of U–statistics, e.g. Severini (2005), §13.4. Specifically, define 

2 2
1 1 2 2 10

( ) : ( ,  )  ,    : [ ( )]x
ag x W x x e dx and let Var g Xσ

∞ −= =∫ . Then 

2
n,aT  (0,4 )

D

aN σ→ . (2.7) 

By straightforward algebra we have 

2
1( ) 2 (0,  ) (0, ) 1

( )( )
a x axg x e a x ae a

a xa x
+ Γ Γ= + + − + −

++
, 

where 

1( ,  ) c t
x

c x t e dt
∞ − −Γ = ∫  

denotes the incomplete gamma function. Although an analytic expression for 2
aσ  

may be tedious to derive, numerical values of the limit variance may be easily cal-
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culated in the computer as a function of the Laplace parameter a alone. Such val-
ues are shown in Table 1. 

TABLE 1 

Asymptotic variance for the test statistic Sn,a with parameter a 

a → 0.5 1.0 1.5 2.0 4.0 5.0 
Asympt. variance 0.143583 0.0217205 0.00614425 0.00232429 0.000170416 0.0000676787 

3. SIMULATIONS 

This section presents the results of a Monte Carlo study conducted to assess 
the finite–sample behavior of the new test. The asymptotic test has 
(1 )×100%α−  rejection region , > zn aZ α , where , ,= S /2n a n a aZ σ  and zα  de-
notes the (1 )×100%α−  quantile of the standard normal diststribution. For 
comparison purposes corresponding results are also shown for the classical go-
odness–of–fit tests based on the empirical distribution function (EDF). The 
Kolmogorov–Smirnov (KS) statistic is 

( ) ( )
- 1 max{ ,  },  max  ,  max  j jj j

j jKS D D D U D U
n n

+ − + −⎧ ⎫ ⎧ ⎫= = − = −⎨ ⎬ ⎨ ⎬
⎩ ⎭ ⎩ ⎭

 

the Crámer–von Mises (CM) statistic is 

2

( )
1

2 11
12 2

n

j
j

jCM U
n n=

−⎛ ⎞= + −⎜ ⎟
⎝ ⎠

∑ , 

and the Anderson–Darling (AD) statistic is 

( ) ( )
1

1  (2 1)log  (2( ) 1) log(1 )
n

j j
j

AD n j U n j U
n =

= − − − + − + −∑ , 

where ( )j jU =1 Y jand U−  denote the corresponding order statistics, 
 1,  2,  ...,  .j n=  
In fact we have used the modified statistics 

0.2 0,5 0.16 0.26 ,   1  

 (1 (0.6/ ))

KS KS n CM CM
n nn

and AD AD n

∗ ∗

∗

⎛ ⎞⎛ ⎞ ⎛ ⎞= − + + = +⎜ ⎟ ⎜ ⎟⎜ ⎟⎝ ⎠ ⎝ ⎠⎝ ⎠
= +

, 

which were proposed by D’Agostino and Stephens (1986) in order to accommo-
date differencies in sample size. Percentage points for the modified EDF–
statistics may be found in D’Agostino and Stephens (1986), Table 4.11. 
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Distributions considered are the Gamma with density 

1 1( ) xx eθθ − − −Γ , 

the Weibull with distribution function (1 )xe
θ−− , the Linear failure rate with density 

21x
2(1+ x)e

xθ
θ

− −
, 

the half–Normal distribution with density 

1/2 2(2/ )  exp( x /2)π − , 

the Lognormal with density 

1 2 2( 2 ) exp[ log /2 ]x xθ π θ− − , 

and the Inverge Gaussian distribution with density 

1/2 3/2 2( )( /2 ) exp[ 1 /2 ]x x xθ π θ− − − . 

These distributions are denoted by G, W, LF, HN, LN and IG, respectively. 
Table 2 shows results (percentage of rejection rounded to the nearest integer) 

obtained from 10,000 samples of size 50n = . For simplicity we write aZ  for our 
asymptotic test. Comparison of the figures in Table 2 indicate that the moment–
based test is quite efficient in discriminating between the exponential distribution 
and some standard alternatives. In addition, and although the power of the new test 
varies considerably with the Laplace parameter α, it may be seen that a compromise 
value, say 1.0  1.5a or a= = , produces a test that outperforms the classical tests 
based on the EDF under most sampling situations, and often by a wide margin. 

TABLE 2 

Percentage of rejection observed at nominal level 1% (left entry), 5% (middle entry) and 10% (right entry), 
with sample size n = 50 

↓ Model 
test → Z0.5 Z1.0 Z1.5 Z2.0 Z4.0 Z5.0 KS* CM* AD* 

G(1.0) 1 6 12 1 6 12 1 6 12 1 6 12 1 6 12 1 5 12 1 5 10 1 5 10 1 5 10 
G(1.6) 50 80 89 54 81 90 53 80 89 51 79 89 43 75 86 40 72 85 22 47 60 29 56 69 29 58 71 
G(1.8) 73 93 97 77 94 98 76 93 98 74 93 97 65 89 96 62 88 95 39 67 79 50 77 86 52 79 88 
W(1.3) 36 66 80 44 72 84 46 74 85 46 75 86 42 74 86 39 72 85 18 42 56 26 52 65 24 52 65 
W(1.5) 77 94 98 85 97 99 87 98 99 87 98 99 85 98 99 84 97 99 54 80 89 69 89 95 69 90 95 
LF(1.0) 15 37 52 23 49 63 27 55 69 29 58 72 30 62 77 28 63 78 12 32 46 17 40 54 14 37 51 
LF(2.0) 28 56 70 42 70 81 49 76 86 52 79 88 54 83 91 53 83 92 26 52 66 36 64 75 31 60 73 
LN(1.0) 15 43 60 8 25 39 5 17 28 4 14 22 2 8 14 1 7 12 10 24 36 12 29 43 12 33 50 
LN(0.75) 97 100 100 91 98 100 83 96 98 77 92 96 56 80 88 50 75 85 62 87 49 67 90 96 75 95 98 
HN 18 42 57 28 55 69 31 61 75 36 65 75 37 70 83 31 71 84 16 38 52 22 47 62 19 44 59 
IG(1.0) 71 93 98 49 78 88 36 65 78 28 55 69 14 36 50 12 31 45 22 53 71 22 55 73 30 70 87 
IG(1.5) 99 100 100 95 99 100 90 98 99 84 96 98 64 87 93 58 83 91 76 95 98 75 95 98 84 98 100 
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SUMMARY 

A consistent test for exponentiality based on the empirical moment process 

A test for exponentiality is proposed which is consistent within the newly defined class 
of LIFRA life distributions. The test may be viewed as a test for uniformity based on a 
continuum of moment conditions. The limit null distribution of the test statistic is de-
rived, and the finite-sample properties of the proposed procedures are investigated via 
simulation. 

 




