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A CONSISTENT TEST FOR EXPONENTIALITY BASED
ON THE EMPIRICAL MOMENT PROCESS

Simos G. Meintanis

1. INTRODUCTION

The exponential is one of the most frequently used distributions in survival a-
nalysis, reliability theory and other life—time phenomena. Due to its importance, a
large number of goodness—of—fit tests have been designed for exponentiality.
Many of these tests are reviewed by Spurrier (1984), Ascher (1990) and Henze
and Meintanis (2005). When testing for goodness—of—fit, the spectrum of possi-
ble deviations from the null hypothesis of exponentiality is often restricted to a
nonparametric class of life distributions. Such classes may be defined via mono-
tonicity properties of the failure rate function, with the class of increasing failure
rate average (IFRA) distributions being one of the most frequently encountered
alternatives to the exponential distribution. It will be seen below that although the
moments of an exponentiated random variable belonging to the IFRA class have
a certain monotonicity property, the IFRA class is too narrow for this property to
be characteristic. This will be the point of departure for considering a new class
of life distributions and for constructing exponentiality tests which is consistent
within this newly defined family of alternatives.

Let X denote a nonnegative random variable with distribution function F
and finite mean

u=E(X)<oo.
It can be shown that if ' belongs to the class of IFRA distributions, then

g(¢) isincreasingin #>0 (1.1
where

2()=[1=E(Y)D/[#E(Y")], and Y =¢ .

Condition (1.1) although necessary it is not sufficient for the IFRA class of distri-
butions. Motivated by this fact, Bartoszewicz and Skolimowska (2007) enlarged
the IFRA class by introducing the LIFRA as exactly that class of distributions for
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which (1.1) holds. The letter ‘L.’ in the transition from the terminology IFRA to

LIFRA stands for Laplace (transform) since Y’ =¢ and hence (1.1) essentially

refers to a monotonicuity property involving the Laplace transform of the origi-
nal random variable X . Bartoszewicz and Skolimowska (2008) showed that
NBU < LIFRA < I ~class, and derived many interesting results for LIFRA distri-
butions such as closure properties, connections with the notion of the total time
on transform, and infinite divisibility.

In the present paper we develop tests for exponentiality which are appropriate
against the class of LIFRA distributions. To do so notice that if F is LIFRA,
(1.1) is equivalent to

D(t)y=m"(t)—m(t)—m'(£) 20, >0, (1.2)
where
m(t)=E(Y"),

and that in addition, the exponential distribution is a limiting member of the
LIFRA class satisfying

D(#)=0, ¢>0. (1.3)

To see (1.3) recall that under unit exponentiality, Y =¢" is uniformly distrib-
uted in (0, 1). Then FE(Y’) is the moment of arbitrary order of the uniform
(0,1)—distribution and therefore m(=(1+7~1. Hence our test statistic may be
viewed as a test based on the moment process E(Yf) of arbitrary order #>0 of
the suitably transformed variate Y =¢ ", in comparison to the corresponding
moment process of the uniform (0,1)—distribution. Since as it will be seen in the
sequel, moments of all orders #>0 will be taken into account, the new test is
based on a continuum of moment conditions, as oppossed to simple moment—
based tests which are based on the first few moments of integer order. The no-
tion of a continuum of moment conditions has been recently exploited in the

economettrics literature; see for instance Catrasco and Florens (2000, 2002).
In view of (1.2) and (1.3), it is reasonable to test

H, : F is exponential,
against
H,: F is LIFRA and not exponential,

by devising an empirical version, say D, (), of D(#), and reject H, in favor of
H, for large values of some distance measure based on D, (7). Since however

the exponential distribution is invariant under scale transformations of the type
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X = ¢X, ¢>0, one has to standardize the original observations Xj, ..., X, by
their sample mean

S 1 n .
X, =n Z‘/:1Xj:1 , /=12, ., n.

With this in mind, the obvious candidate for D, (#) results by replacing the mo-
ment process #(¢) in (1.2) by the empirical moment process

-X,/X,

m (H)y=n" ijl Y// where Y, = ¢
Then D(#) in (1.2) is naturally estimated by

D, (8)=m; ()= m,(t)=tn", (1),
and the null hypothesis is rejected for large values of,

T,,=n[ D5y dr. (1.4)

In other words we suggest the Laplace transform (LT) with its well known u-
niqueness properties as a appropriate distance measure based on Dun(#). This

choice leads to an interesting limiting interpretation. Specifically we consider the

behavior of the LT of \/;Dﬂ (#) as the argument @ > 0 of the LT goes to infinity,

ie. as ¢ “ approaches a Dirac type function. To this end rewrite the test statistic
in (1.4) as

T, = g, (1.5)
where

gty =~lnD,(#).
Using the expansion

=l x k(5 2)Fo(x), x>0, in Y =X/ R,

we have by straightforward algebra

(X +X, Y 3 (X V| 2
g1)=~n ”%Z(/Tk] _EZ[T/J %+0(12),

=1k n 7 j=1 X,

as t — 0. The previous equation along with an Abelian theorem for the LT (see
Zayed, section 5.11), yields after some further algebra
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lim &'T,, =7 X! -81=T,,,
where

Consequently the test statistic when propetly standardized possesses a limit value,
as a — . Interestingly the limit statistic T, , involves the distance between the

sample mean squared and the sample variance, a distance that vanishes under H,

(exponentiality), as n —> o0

2. CONSISTENCY AND LIMIT DISTRIBUTION

By straightforward algebra we have from (1.4) that

T LY,

n,a 1 < 1 1 1 1
a - 4=
\/; ”2 _/',%zl z

> -
Y/+Y,€+a n /:le—i-a n »/:1(Yj+a)

2.1)

The consistency of the test statistic may be proved as follows. By application to
(2.1) of the Law of Large Numbers for statistics with estimated parameters, e.g.
Randles (1982), we have

1)
—>e,(u),as n—> 0,

n,a

Jn

where

1 1 X,

On the other hand Fubini’s Theorem yields that for each g >0,

g,(w)=|, A", (2.3)
where

A() = 1> (1) = p(t) = tpa'(2) with u(t)=E[(e")]

-X
denotes the moment process of ¢ "
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In view of (2.2) and (2.3), &,(u) is zero under exponentiality but positive un-
der H, which implies the consistency of the test which rejects H,, for large val-
ues of T, . Hence we have implicitly proved the following characterization:
Among all non—negative X with finite mean u, the exponentially distributed

random variable is the only one which satisfies &, (¢)=0 for each 2>0.

For the asymptotic null distribution we will write = when two statistics are as-
ymptotically equivalent. Under the null hypothesis H,,, the random variable X
follows an exponential distribution with mean x . Without loss of generality let

#=1.We will consider the symmetrized version S, , of T, where,

5jjﬂ=£fzﬂ“ 2 { 1 }r[ LR 7 } Q2.4

nt SR Y A ka | Y 4a Yy+a| | (Y, +a) (Y, +a)

A typical Taylor expansion yields §, , =57, ,, where

n,a

B ST WU N

o X, 4 X +a | X ta Xi+a (X, +a)’ (X, +a)

(R, =D 3 H2BX, + X, ~[HX )+ AT b (X)) + X (X T

k=1
where

a
——,and

2,
x+ta (x+a)

h(x)=h(x;a)=

2a

bl(x):b1(x53):(x+a)z _(X+d)3 ’

Since /7 (X, —1) is a Op(1) sequence, an application of the Law of Large Num-

bers to the second term in the right—hand side of § *M yields

Z X X _
J‘I,ﬂifz 2 { ! ! }{ e :|+\/;(Xn—1)254

I :
n e X+ X, +a | X +a X, +a X, +a X,+a

(2.5)

where
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6, = E[h(X, + X,) = h(X;) + X (X))]

=E( ! J—E[ ! j+E[—Xl J X
X +X,+a X, +a (X, +a)

SR e G e e
(X, +a) (X, +X, +a) (X, +ay

However by recalling equation (2.2) it follows that the first term of ¢, coincides

. . . 1 . .
with &,(1), while the second term is equal to a(%). Consiquently under unit
a

exponentiality we have &, =0, and substitution in the right-hand side of (2.5)
implies that

S:’dz(”_j{\/; 2 ZW(X],XK;@},

7 n(n—1) ek

where

2 1 1
W(x,,x;5a) = - + + - l = 2 |
x tx,+a | x+a x,+ta (x,+a)  (x,+a)

£

The (common) asymptotic distribution of S, , and T,, follows then by the

n,a

theory of U-statistics, e.g. Severini (2005), §13.4. Specifically, define
g(x)) = J-:W(xl, xy) €7 dy, and let oo =Var[g(X,)]. Then

D
T,, >N(0,402). 2.7)
By straightforward algebra we have

g(x)=2¢""" T(0, a+x)+

- + ae’T(0,a)—1,
(a+x)  (a+x) ©0,4)

where
T(c, x)= wa[_1€_tdf

denotes the incomplete gamma function. Although an analytic expression for o

may be tedious to derive, numerical values of the limit variance may be easily cal-
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culated in the computer as a function of the Laplace parameter a alone. Such val-
ues are shown in Table 1.

TABLE 1

Asymptotic variance for the test statistic S,,, with parameter a

a— 0.5 1.0 1.5 2.0 4.0 5.0
Asympt. vatiance 0.143583 0.0217205 0.00614425 0.00232429 0.000170416 0.0000676787

3. SIMULATIONS

This section presents the results of a Monte Carlo study conducted to assess
the finite—sample behavior of the new test. The asymptotic test has

where Z, =S, /20, and z, de-

notes the (1—a)x100% quantile of the standard normal diststribution. For

(1-a)x100% rejection region Z, , >z

ad

comparison purposes corresponding results are also shown for the classical go-
odness—of—fit tests based on the empirical distribution function (EDF). The
Kolmogorov—Smirnov (KS) statistic is

J - J-1
__U(‘/)}’ D" =max {Um - }

n J n

KS =max{D", D"}, D" =max {
J

the Cramer—von Mises (CM) statistic is

2
1 “ 27—-1
121 4 2n

J=1

and the Anderson—Darling (AD) statistic is

1 n
AD=-n—— Y (2j-1log U,

)+ @M= j)+1) log(1-U, ),
J=1

where Uj:1 —Yj and U(j.) denote the corresponding order = statistics,
Jj=1,2, ., n

In fact we have used the modified statistics

KS” =(KS—%) (\/;+0.26+Ej, CM” =CM(1+ﬂj

n n n
and AD" = AD(1+(0.6/ n))
which were proposed by D’Agostino and Stephens (1986) in order to accommo-

date differencies in sample size. Percentage points for the modified EDF-
statistics may be found in D’Agostino and Stephens (1986), Table 4.11.
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Distributions considered are the Gamma with density

F(@)_1 Xﬁ—le—x ,

the Weibull with distribution function (1— e ), the Linear failure rate with density

2

(1+6x)c 2
the half~Normal distribution with density
@/7)"* exp(=x*/2),
the Lognormal with density
(0x~27) " exp[ —log” x /2671,
and the Inverge Gaussian distribution with density
0/ 27)* x7"% exp[ —O(x —1)* / 2x] .

These distributions are denoted by G, W, LF, HN, LN and IG, respectively.
Table 2 shows results (percentage of rejection rounded to the nearest integer)
obtained from 10,000 samples of size # =50 . For simplicity we write Z, for our
asymptotic test. Comparison of the figures in Table 2 indicate that the moment—
based test is quite efficient in discriminating between the exponential distribution
and some standard alternatives. In addition, and although the power of the new test
varies considerably with the Laplace parameter ¢, it may be seen that a compromise
value, say 2=1.0 or a=1.5, produces a test that outperforms the classical tests
based on the EDF under most sampling situations, and often by a wide margin.

TABLE 2

Percentage of rejection observed at nominal level 1% (left entry), 5% (middle entry) and 10% (right entry),
with sample size n = 50

| Model

Zos Zio Zis Z20 Zao 750 KS* CM* AD*
test —
G(1.0) 1612 1612 1612 1612 1612 1512 1510 1510 1510
G(1.6) 50 80 89 548190 538089 517989 437586 407285 224760 295669 295871
G(1.8) 739397 779498 769398 749397 658996 628895 396779 507786 527988
W(1.3) 36 66 80 447284 467485 467586 427486 397285 184256 265265 245265
W(1.5) 77 94 98 859799 879899 879899 859899 849799 548089 698995 699095
LF(1.0) 1537 52 234963 275569 295872 306277 286378 123246 174054 143751
LF(2.0) 2856 70 427081 497686 527988 548391 538392 265266 366475 316073
LN(1.0) 15 43 60 82539 51728 41422 2814 1712 102436 122943 123350
LN(0.75) 97100 100 9198100 839698 779296 568088 507585 628749 679096 759598
HN 18 42 57 285569 316175 366575 377083 317184 163852 224762 194459
1G(1.0) 719398 497888 366578 285569 143650 123145 225371 225573 307087

1G(1.5) 99100100 9599100 909899 849698 0648793 588391 769598 759598 8498100
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SUMMARY

A consistent test for exponentiality based on the empirical moment process

A test for exponentiality is proposed which is consistent within the newly defined class
of LIFRA life distributions. The test may be viewed as a test for uniformity based on a
continuum of moment conditions. The limit null distribution of the test statistic is de-
rived, and the finite-sample properties of the proposed procedures are investigated via
simulation.





