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IN SMALL RUMINANTS CASE STUDY 
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1. INTRODUCTION AND PRESENTATION OF THE PROBLEM 

In sanitation, zoology, and biology fields, wide use is made of diagnostic tests 
(or screening tests), which are used to determine whether or not a patient suffers 
from a specific illness. Typically, a diagnostic test is based on a quantitative meas-
urement Y, and whenever an observation’s measurement exceeds a pre-specified 
benchmark y0, the related observation is classified as “sick”, otherwise it is classi-
fied as “healthy”. 

As in the statistical hypotheses testing theory, there are two kinds of errors 
which may arise: declaring a subject sick when it is healthy, and classifying a sub-
ject as healthy when it is sick. The performances of a diagnostic test are usually 
evaluated in terms of percentage of good diagnosis: the Specificity (Sp) of a test is 
the percentage of healthy subject correctly classified, and the Sensitivity (Se) is the 
percentage of sick subject correctly classified. Obviously, the benchmark y0 and 
the knowledge of the true state of the illness in the population play a major role 
in determining the performances of a diagnostic test. 

In order to calibrate (i.e. specify y0) and evaluate a diagnostic test, some infor-
mation is required about the true state of the subject. This information can be ob-
tained from a pre-existing test, known to be the “best” one, or by invasive analy-
sis (e.g., autopsy). The “best” source of information is usually indicated as the 
“gold standard” test, meaning that its diagnosis is the most reliable one available 
about the prevalence of the illness in the population (i.e. the true proportion of 
sick subjects). 

If a gold standard is available, then a diagnostic test can be calibrated by com-
puting sensitivity and specificity as a function of several different benchmarks, 
and then by choosing y0 as the measurement which maximizes sensitivity and 
specificity of the test. This method of calibration is usually known as the ROC 
(receiver operator characteristic) curve. Once the test has been calibrated, its per-
formances are summarized by the two indexes Sp and Se. 
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When several tests are available to identify the same illness, and a gold stan-
dard is also available, the comparison among them can be done by looking at 
their sensitivities and specificities which can be estimated from the data. Obvi-
ously, the best test is the one with higher Sp and Se. 

There are other situations where the gold standard is not available because 
there is no previous information on the incidence of an illness or because the 
only way to determine the state of a subject is invasive or may determine the 
death of the subject. In this situation, if several diagnostic tests is available and if 
there are no information about their sensitivities and specificities, it is rather hard 
to determine which one is the best-performing diagnostic test. In the literature 
there are some proposals to answer the specific problem. Johnson et al. (2001) 
extend the method first proposed by Hui and Walter (1980), by giving a solution 
in the case where two tests are applied to two distinct populations, and no gold 
standard is available. Their solution is based on the assumption of conditional in-
dependence among the tests, and the six parameters of interest (the specificities 
and sensitivity of the two tests, and the prevalence of the two populations) are 
estimated by looking at the joint distribution of the test outcomes. The estimate 
of the parameters is obtained through the maximum likelihood method. Other 
authors proposed a Bayesian approach by applying some a priori distribution to 
the unknown parameters (Joseph et al., 1995; Neath and Samaniego 1997). 

The goal of this work is to evaluate, with application to a real case study of Q 
fever, the performances of three diagnostic tests applied to the same population, 
when no gold standard is available. Moreover, as in the case study, we considered 
the situations where there is no information about the prevalence of the illness in 
the population under study. In the next section, the real case study is introduced. 
In Section 3 we specify the theoretical assumptions and propose a possible way to 
estimate the parameters of interest. In Section 4 we evaluate the proposed meth-
odolgy with a simulation study, and finally we apply it to the observed data. 

2. A REAL CASE STUDY 

The case study concerns the Q fever which is a disease caused by infection 
with Coxiella burnetii a bacterium that affects both humans and animals (Marrie, 
1990). This organism is uncommon but may be found in cattle, sheep, goats and 
other domestic mammals, including cats and dogs. The infection results from in-
halation of contaminated particles in the air, and from contact with the vaginal 
mucus, milk, feces, urine or semen of infected animals. The incubation period is 
9-40 days. It is considered possibly the most infectious disease in the world, as a 
human being can be infected by a single bacterium (Beare et al., 2006). Ruminants 
are considered to be the main source of infection of humans, with the main route 
of infection being through inhalation of the organism of fine-particle aerosols. 
Abortion is the main clinical sign in ruminants. 

From a veterinary point of view, as reported by Guatteo et al. (2007), the char-
acteristics of Coxiella shedding are still widely unknown, especially in dairy cattle. 
However, this information is crucial to assess the natural course of Coxiella burnetii 
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infection within a herd and then to elaborate strategies to limit the risks of trans-
mission between animals and to humans. 

Three diagnostic tests were applied to a sample of 1307 sera from sheep and 
goat collected during a monitoring activity of the disease in the Veneto region 
(northeast Italy). Each sample was tested with one complement fixation test 
(called FdC) and two indirect Elisa tests, one from IDEXX laboratories (called 
IDEXX) and the other from Pourquier Institute (called POURQUIER). For 
IDEXX and Pourquier some continuous measurements were available, whereas 
only the outcomes (positive/negative) of FdC were available. A synthesis of col-
lected data is listed in Table 1. 

TABLE 1 

Marginal distribution of IDEXX, Pourquier and FdC 

 IDEXX Pourquier FdC 
− 1132 1197 1287 
+ 175 110 20 

Total 1307 1307 1307 

 

The estimated prevalence is 13.38% for IDEXX, 8.41% for Pourquier, and 
1.53% for FdC. These results do not seem to agree with each other. As a further 
investigation, we considered Cohen’s Kappa index of agreement between all pos-
sible pairs of tests. Since the observed frequencies of the joint distributions were 
sparse, we computed the exact test using a permutation approach (Mehta and 
Patel, 1998). The number of considered Monte Carlo permutations is 10,000. 

As far as the IDEXX-Pourquier comparison is concerned, the bivariate joint 
distribution is displayed in Table 2. The resulting Kappa index is equal to 0.409, 
resulting in a high, significant (or highig significant **) p-value (exact p < 0.0001) 
against the null hypothesis that the observed agreement between tests is only due 
by chance. 

The comparisons involving the FdC test gave significant results too, indicating 
that, at least, the concordance among the three tests is not due to chance. The joint 
distributions of [IDEXX, FdC] and [Pourquier, FdC] are listed in Tables 3 and 4. 

TABLE 2 

Joint distributions of IDEXX and Pourquier 
  Pourquier Total 
  − +  

IDEXX − 1089 43 1132 
 + 108 67 175 
 Total 1197 110 1307 

 
TABLE 3 

Joint distributions of IDEXX and FdC 
  FdC Total 
  − +  

IDEXX − 1119 13 1132 
 + 168 7 175 
 Total 1287 20 1307 
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TABLE 4 

Joint distribution of Pourquier and FdC 

  FdC Total 
  − +  

Pourquier − 1182 15 1197 
 + 105 5 110 
 Total 1287 20 1307 

 

The Cohen index involving FdC and IDEXX is equal to 0.046, (exact  
p = 0.0099), and the Cohen index involving FdC and Pourquier is equal to 
0.0524, (exact p = 0.0231). The asymptotic p-values of the comparisons involving 
FdC gave non significant results because of bad approximations due to sparse 
frequencies (they were equal to 0.2486 and 0.2675 respectively). 

Finally, the joint distribution of the three tests is displayed in Table 5. This data 
will be the information required to apply our methodological proposal, which will 
be detail in the next section. 

TABLE 5 

Joint distributions of IDEXX, Pourquier, and FdC 

Fdc = −  Pourquier  Fdc = + Pourquier 
  − + Total   − + Total 

− 1078 41 1119  − 11 2 13 IDEXX 
+ 104 64 168  + 4 3 7 

 Total 1182 105 1287  Total 15 5 20 

3. PROPOSED METHODOLOGY 

In this section, we are going to illustrate the parametric model we have chosen 
to describe the underlying results of the three diagnostic tests. We recall, from 
Section 2, that here no gold standard is supposed to be available. However, we 
will assume that an unknown gold standard exists, in order to model the “true” 
state of an observation. To this end, let G denote the gold standard and let π be 
the true, unknown incidence of the illness in the population. The possible out-
comes of G on an observation can be “+” (Diseased) and “−” (Healthy). Then, 
by definition of gold standard, π = Pr[G = +], and 1 − π = Pr[G = +]. 

From a statistical point of view, there are many similarities between diagnostic 
and statistical tests: they are functions of data into a response set {Θ0, Θ1} and 
two kind of errors may arise. We will thus model the diagnostic test by the usual 
statistical notation. Let H0 be the null hypothesis to be assessed on the ith obser-
vation, i = 1,..., n, where n is the sample size. Then we let H0 be the event “the ith 
observation is healthy” versus the alternative hypothesis H1: “the ith observation 
is sick”. Let Tj be the jth diagnostic test. The possible outcomes of Tj are positive 
(i.e., the ith observation is sick, symbol “+”) or negative (i.e. the ith observation is 
healthy, symbol “−”). Obviously, there are two kinds of errors that may arise and 
we will denote them using with the usual statistical notation: 
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αj = Pr{Tj = + | G = −}, and βj = Pr{Tj = − | G = +}. 

That is, αj and βj are probabilities of a 1st and a 2nd type error to occuring on 
the jth diagnostic test, respectively. In sanitation field, the jth diagnostic test is 
usually evaluated in terms of its sensitivity (Sej) and specificity (Spj). The relationships 
among statistical and sanitation definitions are: 

Spj = 1 − αj , and Sej = 1 − βj. 

Clearly, a good diagnostic test shows high Specificity and Sensitivity. We have 
implicitly assumed that the gold standard G satisfies SpG = SeG = 1 (i.e. the prob-
ability of misclassification of one observation is zero). 

The joint distribution of the couple {Tj , G} can be obtained by applying the 
Bayes relation Pr{Tj, G} = Pr{Tj | G} Pr{G}, and it is illustrated in Table 6. 

TABLE 6 

Representation of the joint distribution of {Tj, G} 

Gold Standard (G) 
  + − Pr{Tj } 

+ π(1-βj) (1−π)αj (1−π)αj + π (1-βj) Tj 
− πβj (1−π)(1−αj) (1−π)(1−αj) +πβj 

  Pr{G } π 1−π 1 

 
Note that the marginal distribution of G is unknown, whereas the only infor-

mation available from Tj is given by its marginal distribution Pr{Tj}. Therefore, 
the marginal distribution of Tj is a function of three unknown parameters: π 
(common parameter), αj, and βj, j = 1, 2, 3. 

The three diagnostic tests are applied to the same observations, and therefore 
their outcomes are dependent. However, we believe that the observed depend-
ence is induced by the state of the ith observation, since the three tests are ap-
plied independently. Thus, in order to model the joint distribution of diagnostic 
tests, we assume conditional independence among tests; for instance, the joint 
distribution of {Tj , Tk } is given by 

Pr{Tj = tj, Tk = tk | G = g} = Pr{Tj = tj | G = g} Pr{Tk = tk | G = g}, 

with tj, tk, g = “+”, “−”. Similarly, we assume the joint distribution of the three 
test is modelled by  

Pr{T1, T2, T3|G} = Pr{T1|G} Pr{T2|G} Pr{T3|G}, 

where the symbol Pr{Tj|G} means Pr{Tj = tj|G = g}.  
In order to model the joint distribution of the three tests, we need to integrate 

the joint ditribution of {T1, T2, T3, G} with respect to G. Therefore, by applying 
the Bayes theorem, we have: 

Pr{T1, T2, T3} = Pr{T1, T2, T3|G}Pr{G = +} + Pr{T1, T2, T3|G}Pr{G = −}. 
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Let Fj(tj) denote the probability function of Tj, and let F123(t1, t2, t3) denote the 
joint probability function of the three tests; then the joint distribution of {T1, T2, 
T3} is given by the following equations: 

F123(+, +, +) = (1−π)α1α2α3 + π(1−β1)(1−β2)(1−β3) (1) 

F123(+, +, −) = (1−π)α1α2(1−α3) + π(1−β1)(1−β2) β3 (2) 

F123(+, −, +) = (1−π)α1(1−α2)α3 + π(1−β1) β2(1−β3) (3) 

F123(+, −, −) = (1−π)α1(1−α2)(1−α3) + π (1−β1) β2β3 (4) 

F123(−, +, +) = (1−π)(1−α1) α2α3 + πβ1(1−β2)(1−β3) (5) 

F123(−, +, −) = (1−π)(1−α1) α2(1−α3) + πβ1(1−β2)β3 (6) 

F123(−, −, +) = (1−π)(1−α1)(1−α2) α3 + πβ1β2(1−β3) (7) 

F123(−, −, −) = (1−π)(1−α1)(1−α2)(1−α3)+ πβ1β2β3 (8) 

where the elements on the side of equation (1)→(8) can be estimated from the 
observed data. 

Unfortunately, the above system of equations is unsuitable for obtaining proper es-
timates of the unknown parameters; indeed, they are linearly dependent since, for in-
stance, we can obtain the probability of the event {T1 = +, T 2 = +} by adding (1) and 
(2). A further proof of this fact can be given by observing that the contingency table 
representing the joint distribution of {T 1, T 2, T 3} has a single degree of freedom. 

Thus, there are an infinite number of solutions to the system of equations 
(1)→(8). Moreover, the equations above are nonlinear in the parameters, al-
though they can be linearized. 

Therefore, no proper solution can be found for the given problem, and we 
have decided to apply nonlinear equation solving techniques to give a descriptive, 
rather than inferential, solution to the problem by setting the population parame-
ter π, free and by expressing the remaining parameters as functions of π ∈ [0, 1]. 
This choice is motivated by the following reasons: (i) the sensitivity and specific-
ity of the diagnostic tests should not depend on the true state of the illness inci-
dence π; and (ii) no a priori information on π was given. 

Thus, we let π ∼ U[0,1] and evaluate the performances of the three tests on the 
estimates of specificities and sensitivities from equations (1)→(8). The best per-
forming test should be the one with higher power (1−β) and smaller type I error 
rate (α). As a further (reasonable) assumption, we shall add the condition 1−βj ≥ 
αj ∀ j; that is, the power of one test should not be smaller than its type I error. 
This assumption is equivalent to the unbiasedness property of a statistical test, 
which states that the probability of rejecting the null hypothesis when it is true  
(G = −) should not exceed the probability of rejecting the null hypothesis when 
the alternative is true (G = +). 
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4. SIMULATIONS AND DISCUSSION OF THE RESULTS 

We have run the computation and simulations by applying the R function 
“optim” (R Development Core Team, 2008). This function is usually applied to 
minimization problems, and returns a vector x that is the solution of the equation 
g(x)= c, where pIR IR:g →  is a nonlinear function and c = min(g(x)) is a real value 
determining a (local) minimum of the function. The optim function requires a 
vector of initial values x0, then applies an optimization algorithm until the con-
vergence criterion is satisfied (typically when 2( )g c ε− <x , where 2⋅ is the L2 
norm and ε > 0 is the desired degree of precision. 

We can apply the optim function as follows: from equation (1), we let 

x = [π, α1, α2, α3, β1, β2, β3]T, 

and f = [f1,..., f 8], where, for instance, 

f1 = f1(x) = (1−π)α1α2α3+π(1−β1)(1−β2)(1−β3)− 123F̂ (+, +, +), (9) 

where 123F̂ (+,+,+) is the estimation of F123(+, +, +) obtained from the observed 
data. Clearly, f1 = 0 implies that (9) is satisfied. In the same way, the remaining 
elements of f are equal to zero when the corresponding equations (2)→(8) are 
satisfied, provided that the probability functions are replaced by their estimates. 

Finally, by setting g(x) = fTf and c = 0 as the optim entries, we have that the 
minimum of function g(x) is zero and the solution x*: g(x*) = 0 jointly satisfies 
the equations fk(x) = 0, j = 1,...,8, because 

g(x) = fTf = 
8

2

1
k

k
f

=
∑ = 0, 

implies fk(x) = 0, k = 1,..., 8. 
As regards the initial vector of values x0, since we have no a priori information 

on αj and βj (j = 1, 2, 3), we set them equal to 0.5, and let π vary in [0, 1] in steps 
of 1/100. Finally, there are several minimization algorithms in the optim set-
tings, and we have chosen the “L-BFGS-B” method (Byrd et. al., 1995) since it is 
the only one which allows for constrained solutions (all the parameters take val-
ues in the [0,1] interval). 

We begin with a simulation to evaluate the estimating method. To this end, we 
generated 100 independent data sets modelling either the true state of a sample of 
n = 1000 observations or the related outcomes of three diagnostic tests. As we 
mentioned before, the dependence among the outcomes is given by the fact that 
the three tests are applied to the same subjects.  

The simulation settings are described in Table 7: here we have set T1 as the 
best performing test and T3 as the worst. The incidence of the illness is set equal 
to 0.1. 
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TABLE 7 

Simulations estimates setting for illness incidence and specificity and sensitivity of three tests 

  T1 T 2 T 3 
Parameter π α 1−β α 1−β α 1−β 
True value 0.1 0.05 0.9 0.1 0.85 0.2 0.8 

 
As regards the simulation settings, we firstly generate the “true” state of illness 

on the ith observation by obtaining a random realization from the random vari-
able Gi ∼ Bi(1, π), i = 1,..., n; then, conditionally on the outcome of Gi, we inde-
pendently generated the one-to-one outcomes Xij of each test on the ith observa-
tion with the conditional probabilities obtained from Table 1, namely: 

{Xij|Gi = +} ∼ Bi(1, 1 − βj), i = 1,..., n; 

{Xij|Gi = −} ∼ Bi(1, αj), j = 1, 2, 3. 

Then, for each data generation, we considered a lattice of 100 points represent-
ing the a priori distribution of π, from 0.01 to 1 in steps of 0.01. For each value of 
π, we ran the optim function with the vector of initial parameters given by x0 = 
[π, .5, .5, .5, .5, .5, .5,], and stored away the optim results. The graphical represen-
tation related to one generation of data is given in Figure 1: this figure represents 
the type I error rates (dotted lines) and the observed powers (solid lines) of each 
test as functions of π, with the settings given in Table 7. 
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Figure 1 – Results of the optim function with L-BFGS-B minimization algorithm for one data gen-
eration. Dotted lines are type I° errors and solid lines represent the powers of each diagnostic test. 
T1 = black lines; T2 = red lines, and T3 = blue lines. True illness incidence equal to 0.1. 
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The performances of T1 are represented in black, those of T2 in red and those 
of T3 in blue. Note how the curves of powers and type I errors interchange after 
the point π = 0.5. This behaviour is due to the symmetry in formulas (1)→(8); i.e. 
when π is replaced by 1−π and powers are replaced by error rates. Assuming the 
condition 1 − βj ≥ αj, our attention focuses on the first half of the [0, 1] interval. 
In this data generation, T1 has a pretty constant power close to 80%, which is the 
highest, and a type I error close to 5%. The performances of the simulated tests 
are in accordance with the simulation settings, in the sense that here T1 is the best 
performing test. Also note that the estimated power and type I error variability 
changes very little for π ∈ [0, 0.5], indicating that the optim solution is a global 
minimum, rather than a local one. 

Of course, if we set the true illness incidence above 0.5, the corresponding 
lines are interchanged, and the assumption 1 − βj ≥ αj suggests considering only 
the [0.5, 1] interval. Figure 2 shows the results of a generation with the same set-
tings of Table 7, but here the true illness incidence was set equal at 0.75. 
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Figure 2 – Results of the optim function with L-BFGS-B minimization algorithm for one data gen-
eration. Dotted lines are type I errors and solid lines represent the powers of each diagnostic test.  
T1 = black lines; T2 = red lines, and T3 = blue lines. True illness incidence equals to 0.75. 

 
The simulation results relating to the Table 7 settings are summarized in Table 

8: these results were obtained by storing the average estimated parameter given by 
the optim function corresponding to values of π smaller than 0.5. 

Note how the estimates of the parameters are on average very close to the true 
values, and this is true also for the illness incidence. 

The simulation shows that, at least on average, the proposed method gives un-
biased estimates of the parameters. With this in mind, we have ran the estimating 
procedure on the observed data, and found the results represented in Figure 3. 
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TABLE 8 

Simulation Results for illness incidence and specificity and sensitivity of three tests 

  T1 T 2 T3 
Parameter π α 1−β α 1−β α 1−β 

True value 0.1 0.05 0.9 0.1 0.85 0.2 0.8 
Min. 0.0699 0.0234 0.7346 0.0670 0.6728 0.1597 0.6659 

1st Qu. 0.0903 0.0430 0.8601 0.0908 0.8204 0.1907 0.7650 
Median 0.0998 0.0491 0.9140 0.0991 0.8591 0.2031 0.8071 
Mean 0.1001 0.0495 0.9092 0.0994 0.8562 0.2032 0.7993 

3rd Qu. 0.1077 0.0562 0.9785 0.1080 0.8942 0.2125 0.8353 
Max. 0.1505 0.0753 1.0000 0.1388 0.9951 0.2376 0.9461 
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Figure 3 – Results of the optim function with L-BFGS-B minimization algorithm on the observed 
data. Dotted lines are type I errors and solid lines represent the powers of each diagnostic test. 
IDEXX = black lines; Pourquier = red lines, and FdC = blue lines. 
 

Figure 3 indicates that the illness incidence is lower than 0.5, therefore we will 
take as the estimates of the parameters the average of the optim results corre-
sponding to values of π smaller than 0.5. These results are shown in Table 9. 

TABLE 9 

Simulation estimates settings for illness incidence and specificity and sensitivity of three tests 
  IDEXX Pourquier FdC 

Parameter π α 1−β α 1−β α 1−β 
Av. estimate 0.1601 0.0376 0.6398 0.0045 0.5256 0.0088 0.0503 

 
From these results, the illness incidence is equal to 16%, and the FdC test is 

clearly the worst, since its power estimate is only 5% (remember that, according 
to FdC, only 20 cattle out of 1307 were affected by the illness). As regards the 
comparison between IDEXX and Pourquier, no clear indication is given from the 
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observed data: IDEXX is more sensitive than Pourquier, but less specific. In or-
der to give a final answer to the problem, it really depends on what consequences 
the Q - fever has on the cattle: if the illness affecting the cattle is not dangerous 
to humans, then probably Pourquier is to be preferred, since it shows a small 
chances of commiting a type I error. On the other hand, if the illness is danger-
ous for humans, then IDEXX is to be preferred, since it is more powerful in de-
tecting the illness and can better prevent potential dangers in human alimentation. 

5. CONCLUSION 

At the very end of this study, we finally obtained some information from ex-
perts on the possible range of illness incidence in the population and on sensitivi-
ties and specificities of the three tests. The experts stated that a possible range for 
π is [0.14, 0.40], and SpIDEXX = 0.95, SeIDEXX = 0.92; SpPourquier = 1, SeIDEXX = 
0.982; SpdCF = 1, SeFdC = 0.48 (the information on sensitivities and specificities 
was taken from official declarations made by pharmaceutical companies that pro-
duced the tests). The results we have obtained substantially confirm the feelings 
of experts on π and the specificities of the tests declared by the pharmaceutical 
companies. On the contrary, the sensitivities declared by the pharmaceutical 
companies differ considerably from our results. 

The expected number of positive outcomes if the true illness incidence was  
π = 0.16 and sensitivities and specificities were as expected by the pharmaceutical 
companies, would be 247, 205, and 100 for IDEXX, Pourquier, and FdC respec-
tively. However, the estimates of π obtained from data and the declared specifici-
ties and sensitivities would be equal to 0.0964, 0.0857 and 0.0318 for IDEXX, 
Pourquier, and FdC respectively. A 95% confidence interval for π obtained from 
the optim results is [0.1276, 0.2199]. 

The application of this approach to other kind of real situations and in differ-
ent fields needs further investigation in order to explore the possible flexibility of 
the proposed solution. 
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SUMMARY 

Evaluating sensitivity and specificity of three diagnostic tests when the “gold standard” is unavailable, 
with application to the cattle Q fever in small ruminants case study 

In the context diagnostic tests may be assessed through indicators of diagnosis reliabil-
ity called specificity and sensitivity. In practice, these indicators can be estimated only if a 
“gold standard” test is available, meaning that its diagnosis is the most reliable one avail-
able as to the prevalence of an illness in a population. 

Starting from a real case study related to cattle Q fever disease in small ruminants, the 
aim of this work is to determine which of the three examined diagnostic tests is the best, 
taking into account the fact that there is neither any a priori information on the sensitivity 
and specificity of the three tests, nor a reference “gold standard” diagnostic test. More-
over, the incidence of the disease in the reference population is unknown. 

Our approach, which is mainly descriptive in nature, derived estimates of sensitivity 
and specificity of the diagnostic tests from incidence of the disease. The estimates are ob-
tained by minimizing the least squares and a performed simulation study shows that on 
average the method provides unbiased estimates of unknown parameters. The application 
of the method to a real case study make it possible to establish a hierarchy among the 
three diagnostic tests in question. 




