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FOR TWO MODELS OF DETECTION FUNCTION IN POINT 
TRANSECT SAMPLING 
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1. INTRODUCTION 

Numerous studies of wildlife populations require estimates of population 
abundance. Transect sampling methodology provides an effective approach for 
estimating population size ν or density δ = ν /A, where A is the area of the study 
region. A thorough review of this approach is given by Buckland et al. (2001, 
chap. 1).  

The point transect design (Buckland, 1987) in particular assumes that: 
• k points are randomly chosen within the study area;  
• animals of interest are uniformly distributed with respect to distance in any 

direction from the points;  
• at each of the selected points, an observer measures the distance from him-

self to any animal detected;  
• animals at the observation points are detected with certainty;  
• animals are detected at their initial location, prior to any movement;  
• distances are measured without errors;  
• detections are independent events.  
Since the number of animals observed from each point is quite small in many 

contexts where this sample scheme is adopted (as for instance in ornithology), 
sampled distances are pooled together to increase the sample size.  

Let z1,...,zn be the sample of size n obtained by pooling together the distances 
measured at each of the k observation points. Let f be the probability density 
function (pdf) of the observed distances and let g be the detection function, that 
is to say g(y) is the conditional probability of detecting an animal, given that it is at 
distance y from the observer.  

From the above assumptions it turns out that the relation  
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holds for every distance z and the general form for estimating the population 
density δ is given by 
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where ˆ (0)f ′  is an estimator of the derivative of f at 0 which satisfies the funda-
mental identity 

0

1(0)
( )

f
yg y dy

+∞
′ =

∫
. 

The basic problem for estimating δ, or equivalently ν, is therefore to estimate 
(0)f ′ . 
Assumptions and results regarding point transect sampling are extensively dis-

cussed in Buckland et al. (2001, chap. 2). 
Borgoni et al. (2005) investigated the small-sample behaviour of different δ es-

timators, depending on the shape of the detection function. The authors consid-
ered two popular families of detection functions (Zhang, 2001; Eidous, 2005): 
the half-normal family 

2

2( ) exp
2
yg y
σ

⎛ ⎞
= −⎜ ⎟

⎝ ⎠
   (σ > 0) (2) 

and the negative exponential family 
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The former satisfies the shape criterion 

(0) 0g ′ =  (4) 

whereas the latter does not. This property, also known as the shoulder condition, 
ensures that animal detection is nearly certain at small distances from the ob-
server (Buckland et al., 2001, pp. 42, 68-69; Buckland et al., 2004, p. 344). How-
ever, such a condition fails when detectability decreases sharply around the ob-
servation points because of low or inexistent visibility (e.g. in presence of fog or 
dense vegetation).  

In a point transect framework, Borgoni et al. (2005) demonstrated several 
simulation results suggesting that the usual estimators of δ are extremely sensitive 
to departures from the shape criterion. A similar behaviour was found in the line 
transect context (Eidous, 2005). Therefore, testing the shape criterion is a pre-
liminary step for any attempt to estimate wildlife population density via transect 
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sampling (Zhang, 2003; Eidous, 2005). Although this problem has been previ-
ously addressed by Mack (1998) and Zhang (2001) in line transect sampling, no 
attempt has been made in the context of point transect so far.  

The aim of this paper is to propose a procedure for testing the shoulder condi-
tion (4). As this condition is independent from the choice of the measure unit for 
the distance, the scale invariance seems to be a natural restriction for a statistical 
test. In particular we focus on a scale invariant test for discriminating between the 
two families (2) and (3). Because of (1) this turns out to be equivalent to testing 
that the distance pdf belongs to one of the two families 
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The proposed test is the uniformly most powerful (UMP) in the class of the 
scale invariant tests.  

This is discussed in section 2 where the asymptotic distributions of the test sta-
tistic under (5) and (6) are calculated.  

In section 3 the critical values and the powers of the test are tabulated via 
Monte Carlo simulations for several typical α-levels and small sample sizes n.  

In section 4 the proposed procedure is applied to a dataset coming from a 
large study conducted by the Rocky Mountain Bird Observatory, Colorado, in 
2002.  

Conclusions are provided in section 5.  

2. THE UMP SCALE INVARIANT TEST 

Given n independent observations z1,...,zn from Z with unknown pdf f, we con-
sider the problem of testing  

H0 : f ∈ F0 vs. H1 : f ∈ F1,  (7) 

where F0 is the family of Rayleigh distributions with scale parameter σ, and F1 is 
the family of Gamma distributions with shape parameter 2 and scale parameter σ, 
specified in (5) and (6) respectively. This problem is invariant under the group of 
scale transformations (Lehmann and Romano, 2005, p. 213) 

{ ( ) : 0}G z rz rγ= = > . 

A maximal invariant under G (Lehmann and Romano, 2005, p. 215) is: 
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1 2 1( , , ..., )n n n nz z z z z z− . (8) 

It can be proved (see Appendix 1) that the UMP test among all the invariant 
functions, i.e. the functions of this maximal invariant (Lehmann and Romano, 
2005, p. 214), rejects the null hypothesis for large values of the likelihood ratio  
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Given that random variable corresponding to λ is a monotonically increasing 
function of the statistic 
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the critical region of the UMP scale invariant test for the hypotheses (7) can be 
written as  

,n nQ q α≥ , (11) 

where α denotes the level of significance and qn,α is the corresponding critical 
value so that  

, 0( | )n nP Q q Hα α≥ = .  

Furthermore, the asymptotic normal distribution under H0 
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and under H1  
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nn Q N− ⎯⎯→ , (13) 

are derived from bivariate central limit theorem and delta method (see Appendix 
2). For large n the approximate critical value and the power are given respectively 
by 
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and 

, 1 11 ( | ) 1 (0.22 0.26 )n nP Q q H z nα αβ −Φ− = ≥ ≅ − − , 

where 1z α−  is the (1−α)th quantile and Φ  is the cumulative distribution function 
of the standard normal distribution. Hence, the proposed test is also consistent 
(Lehmann, 2001, p. 158). 

3. CRITICAL VALUES AND POWERS 

As the distribution of the test statistic under (5) or (6) does not depend on the 
scale parameter, Monte Carlo simulations can be performed in order to obtain the 
empirical critical values and powers for small sample sizes. 

The simulation design consists of randomly drawing n distances from the dis-
tribution (5) assuming, without loss of generality, σ = 1. 

The statistic (10) is then applied to each of the simulated samples and the pro-
cedure is repeated 5000 times.  

The critical value qn,α for a considered significance level α is obtained as 
100×(1-α)-th percentile of the Monte Carlo replicates. We obtained the power of 
the test in a similar manner. In this case, each sample is simulated according to 
the alternative distribution (6). 

Monte Carlo approximations of the critical values qn,α and powers are reported 
in Table 1 and in Table 2. 

It can be noted that the power under (6) is reasonably good even in the case of 
a moderate sample and low α. 

TABLE 1 

Critical values qn,α of the UMP scale invariant test 

qn,α n = 30 n = 40 n = 50 n = 60 n = 100 
α = 0.01 1.46 1.43 1.41 1.40 1.37 
α = 0.05 1.39 1.37 1.37 1.36 1.34 
α = 0.10 1.36 1.35 1.34 1.33 1.32 

 
TABLE 2 

Power 1−β of the UMP scale invariant test 

1−β n = 30 n = 40 n = 50 n = 60 n = 100 
α = 0.01 0.47 0.61 0.71 0.78 0.96 
α = 0.05 0.68 0.80 0.87 0.91 0.99 
α = 0.10 0.79 0.87 0.92 0.95 0.99 

 
The test also performs well in terms of the power in the case of the data origi-

nating from a mixture of (5) and (6). 
In particular, the case where the sample is drawn from a pdf 

2 exp( 2) (1 )  exp( )pz z p z z− + − −  
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was considered, p being the average proportion of the observed distances simu-
lated from a population distributed according to the null hypothesis. 

Table 3 shows the power of the test of level α = 0.05 for a range of mixture 
proportions p and some sample sizes. 

It can be observed that the proposed procedure performs well even in the case 
of a sample of moderate size drawn from mixture model with a large p. 
 

TABLE 3 

Power 1−β of the UMP scale invariant test for different mixture proportions 

α = 0.05 n = 40 n = 50 n = 100 
p = 0.25 0.80 0.87 0.99 
p = 0.50 0.75 0.81 0.97 
p = 0.75 0.54 0.60 0.83 

4. A CASE STUDY 

In this section, we apply the test procedure previously described to two data-
sets drawn from a large study conducted in 2002 by the Rocky Mountain Bird 
Observatory, Colorado (Panjabi, 2003, p. 100). 

The first dataset is a point transect sample of 72 chipping sparrows (scientific 
name: Spizella Passerina) observed during the early morning of 28 May 2002. The 
51 observation points were allocated in Pine Juniper shrub land in South Dakota. 
The distances collected range from between 8m to 183m (the first and third quar-
tile were 20.75m and 75.25m, respectively) with an average distance of 53.18m 
and standard deviation equal to 37.59m.  

The distribution of the observed distances is shown in Figure 1. The box plot 
suggests that one potential outlier is present in the data set at hand. This observa-
tion is therefore omitted in the subsequent analysis. 
 

Observed distance

Fr
eq

ue
nc

y

0 50 100 150 200 250 300

0
5

10
15

20
25

50
10

0
15

0

 
Figure 1 − Distribution of the observed distances for the chipping sparrow data in Pine Juniper 
shrub lands. 
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The test statistic for a null hypothesis of an half-normal detection function 
equals 1.45. The null distribution of this statistic is tabulated according to the 
method described in the previous section for a sample size n = 71 and 10000 
simulations obtaining a critical value at the 5% significance level equal to 1.35. 
The null hypothesis should therefore be rejected at the considered level. At this 
significance level, the power is about 95%. In fact, in this case, there seems to be 
a strong evidence of a detection function which is not half-normal as the Monte 
Carlo p-value is extremely small (0.0007). 

The second dataset is a point transect sample of 82 chipping sparrows selected 
during the early morning of 26 May 2002 in a different environment. The 94 ob-
servation points were allocated in a burn area in South Dakota. 

The distances collected ranged from between 10m to 200m (the first and third 
quartile were 42m and 100.2m, respectively) with an average distance of 77.2m 
and standard deviation equal to 44.84m. 

The distribution of the observed distances is reported in Figure 2. The box 
plot suggests that two potential outliers are present in the data set at hand. These 
observations were therefore omitted in the subsequent analysis. The third largest 
observation in the original sample was nearly at the extreme of upper whisker of 
the box plot (183m). This value was identified as a further outlier by a second box 
plot constructed on the sample obtained by dropping the two largest observa-
tions from the original dataset. This value was also dropped from the subsequent 
analysis. 
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Figure 2 − Distribution of the observed distances for the chipping sparrow data in burn areas. 

 
 
The test statistic for a null hypothesis of an half-normal detection function 

equals 1.291. In this case as well, the null distribution of this statistic is tabulated 
according to the method described in the previous section for a sample size  
n = 79 and 10000 simulations obtaining a 5% critical value equal to 1.345. Hence 
the null hypothesis should not be rejected at this considered significance level. 
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The power of the test was 96.2%. at this significance level. In this case, the Monte 
Carlo p-value results as being 0.304. 

Finally, we can observe that, although the size of the two samples are not 
small, the Monte Carlo p-values still differ from the asymptotic approximation 
given by  

ˆ 1.2731
0.388

q nα Φ
−⎛ ⎞= − ⎜ ⎟

⎝ ⎠
, 

where Φ  is the cumulative distribution function of the standard normal distribu-
tion and q the observed value of the test statistic in (10). The asymptotic p-values 
are equal to 0.0001 and 0.3437 for the first and second sample respectively. 

5. CONCLUSIONS 

In transect sampling the problem of testing the shoulder condition of a detection 
function is invariant under the group of scale transformations. Therefore, the scale 
invariance furnishes a natural restriction on the statistical procedure to be utilised.  

The half-normal is perhaps the most widely used detection function family (pos-
sibly in conjunction with adjustment terms; Buckland et al., 2001) which satisfies 
the shoulder condition. In this paper we proposed a procedure for testing the half-
normal family against the negative exponential family which violates the shape cri-
terion. Hence the problem is reduced to testing between the Rayleigh family and a 
subclass of the Gamma family. For this we proposed the UMP scale invariant test 
for which the limiting normal distribution of the test statistic is provided. From this 
follows the consistency of the test. In the case of small samples we suggest a Monte 
Carlo approach for tabulating the critical values and related powers for a range of 
different sample sizes and significance levels. It turned out that the critical values 
and the power approximated via the Monte Carlo and the asymptotic distribution 
provide a very similar result for a sample size of 100 or more. For example, in the 
case of a sample size equal 100 the empirical and asymptotic critical values both 
were 1.34 at the 5% level; examining the power, only a slight difference was regis-
tered between the two approaches (0.99 and 0.97 respectively).  

Finally, the test was applied to a point transect survey. As expected, the shoulder 
condition seems largely supported by data collected in an open space with good 
visibility whereas it is rejected in the case of data gathered in dense vegetation. 
 
Department of Statistics RICCARDO BORGONI 
University of Milano – Bicocca PIERO QUATTO 

 

 



The uniformly most powerful invariant test for two models etc. 11 

APPENDIX 1 

The pdf of the sample 1( , ..., )nz z  can be written as 
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from which the likelihood ratio (9) follows. 
By the Neyman-Pearson Lemma, the most powerful test rejects the null hy-

pothesis when (9) is too large. Given that its critical region does not depend on σ, 
the test is UMP among all invariant tests, as asserted. 
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APPENDIX 2 

By bivariate central limit theorem (Lehmann, 2001, p. 291), 
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Then, by delta method (Lehmann, 2001, p. 296), 
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Therefore, under H0  

4η π= , 2 3 2256/ 80/τ π π= − ,  

whereas under H1  

3 2η = , 2 3 4τ = . 

Hence (12) and (13) follow. 
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SUMMARY 

The uniformly most powerful invariant test for two models of detection function in point transect sampling 

Estimating population abundance is of primary interest in wildlife population studies. 
Point transect sampling is a well established methodology for this purpose. The usual ap-
proach for estimating the density or the size of the population of interest is to assume a 
particular model for the detection function (the conditional probability of detecting an 
animal given that it is at a certain distance from the observer). Two popular models for 
this function are the half-normal model and the negative exponential model. However, it 
appears that the estimates are extremely sensitive to the shape of the detection function, 
particularly to the so-called shoulder condition, which ensures that an animal is nearly cer-
tain to be detected if it is at a small distance from the observer. The half-normal model 
satisfies this condition whereas the negative exponential does not. Testing whether such a 
hypothesis is consistent with the data at hand should be a primary concern. Given that 
the problem of testing the shoulder condition of a detection function is invariant under 
the group of scale transformations, in this paper we propose the uniformly most powerful 
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test in the class of the scale invariant tests for the half-normal against the negative expo-
nential model. The asymptotic distribution of the test statistic is calculated by utilising 
both the two models while the critical values and the power are tabulated via Monte Carlo 
simulations for small samples. Finally, the procedure is applied to two datasets of chip-
ping sparrows collected at the Rocky Mountain Bird Observatory, Colorado. 




