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DUALS TO MOHANTY AND SAHOO’S ESTIMATORS

H.P. Singh, R. Tailor, R. Tailor

1. INTRODUCTION

The use of an auxiliary variable x in the estimation of the finite population mean

Y of the study variate y is a common occurrence in practice. A good illustration of
this is the ratio method of estimation. It is known that ratio estimator attains mini-
mum variance when the regression of y on x passes through the origin. Mohanty
and Das (1971) was first to introduce the use of transformation of the auxiliary
variate x in sample surveys to reduce the bias and mean squared error (MSE). Later,
Reddy (1974), Reddy and Rao (1977), Srivenkataramana (1978), Chaudhuri and
Adhikari (1979) and others have carried out a great deal of work in this direction. It
is to be noted that most of these methods use the knowledge of unknown parame-

ters R=(Y/X) and f (population regression coefficient of y on x) in the proc-
ess of suggested transformation and hence have limited applicability.

This led Mohanty and Sahoo (1995) to suggest two linear transformations us-
ing known minimum and maximum values of the auxiliary variable x.

Consider a finite population U =(U,,U,,Us,..,Uy ) of size N. The variate of
interest y and the auxiliary variate x positively correlated to y, assume real non-
negative values (y,,x,) on the unit U, (7 =1,2,....,N). Let (Y, X) be the popu-
lation means of y and x respectively. Assume that a simple random sample of size
n is drawn without replacement (SRSWOR) from the population U. Then the
traditional ratio estimator for the population mean Y is defined by

Ik :(7/97)}?» M

where j = Z v,/ nx = in /n ate the sample means of y and x respectively,
i=1 i=1
and X is the known population mean of the auxiliary variate x.
Employing the transformation x, =(1+¢) X —gx,,i=12,..,N; with
g=n/(N —n); Srivenkataramana (1980) and Bandyopadhyay (1980) suggested a

dual to ratio estimator for Y as
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J,=7& /X) )

where X ={(1+ g) X —g&} such that (X )=X.
Assuming that x,, (the minimum) and x,, (the maximum) of the auxiliary va-

riate x are known, Mohanty and Sahoo (1995) suggested the linear transforma-
tions

Z=—", ©)
Xy tx,
and
X, +Xx
”,‘ — i M , (4)
Xy tx,

i=1,2,....N and consequently, suggested two ratio-type estimators for Y as

i = (2]2 ©)
g
jﬁ (6)

where 7 = Z% /n and u = Z”i /n such that E(¥)=Z and E(@)=U.
i=1 i=1
Employing Taylot’s expansion under usual assumptions, the biases and mean
squared errors (MSEs) of Ji,7, .4 and 7,z to terms of order O(#~1!) are ob-

tained as follows.

B(Jx)=(0/ X)(RS: = pS, 5,) ™
B(7,)=-(0/X) ¢S, 5. ®)
B(1g) ={0/(XC}(R ST = pS, S,) ©)
B(ty) = {0/ (X C,)} (RS = pS, 5..) (10)
MSE(Fy)=6(S3 +R*S; —2RpS  S.) (11)

MSE(3,)=0(S5 + g’R*S. —2gRpS | S,) (12)
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MSE(#z)=0(S5 +RIS. —=2R,pS | S.) (13)

MSE(ty,)=0(55 +R382 —2R,p S ) (14
and the variance of j under SRSWOR is given by

Var(35)=05 (15)

where

S N _ N _
p= S =20 =) /N =), ST =2 = X) /(N =),
X2y i=1 i=1
_ N _ _
R=Y/X, S =Y (x-X)(x,-X)/(N-1), R =R/C,,
i=1
R, =R/C,,C A oA Pl 18 9_(l_ij
2 25~ }? I }? 5 B N .

In this paper motivated by Srivenkataramana (1980) and Bandyopadhyaya (1980)
we have suggested duals to Mohanty and Sahoo’s (1995) estimators tir and tor

and discussed their properties. Numerical illustration is given in the support of
the present study.

2. THE SUGGESTED ESTIMATORS

We consider the following estimators for Y as

h, =3 |Z) (16)
and
t,, =3 [O) (17)

7 7

where 7 = Zul* /n and T = Z@.* /n are unbiased estimators of U and Z
i=1 =1

respectively,

u, =0+ ) U—gu,,and 3, =(1+ )7 — g%, , (=1,2,....N).

To the first degree of approximation, the biases and mean squared errors of #,
and 4, are respectively given by
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B(t,)=—{6/(XC))} gpS S,
B(1,,)=—{0/(XC,)} gp S, S.,
MSE(#,)=0(S + £°R[ ST ~2gR,p S 5.)

MSE(t,,)=0(S% + g°R552 —24R,p S S.)

(18)
(19)
(20)

(21)

We note that the exact formulae for the mean squared errors (MSEs) of the es-

timators 7, and 7#,, can be derived which is not the case for Mohanty and Sa-

hoo’s (1995) estimators #; and #,; . As pointed out by Srivenkataramana (1980;

p- 200) that terms terms involving 1/n2 and 1/ n? in the mean square errors can
be neglected, provided N is large enough and n at least moderately large.

3. COMPARISON OF BIAS AND EFFICIENCY

3.1. Comparison of Bias
From (7), (8), (9), (10), (18) and (19), it follows that

@) [B(z,)

<|B(3p)| if

Cﬁl <(Z\]T_”>|R_ﬁ|

if

(i) [B(z,)| <|B(3,)
B

£l<ia

which is always true.

(iii) [B(,,)| <[B(rig)] if

(N

IR, -

7

1] <

(iv) [B(r,,)| <|B(#r)| if

gC2|,B| <C1|R2 _ﬂ|

(22)

(23)

(24)

(25)
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W) |B#,,)| <[BGiw)| if
2Bl<C, R~ 4] (26)
i) |B(1,,)| <|B(3,) if
B
Pl 27
c 8] @7)
which is always true.
(vif) |B(z,, )| <|B(ty )| if
o |ﬁ| <C, |R1 - ﬂ| (28)
(viif) [B(z,,)| <|B(tye)| if
N —n
A<=, ~ A @)
(xi) [B(1,,)] <[B(#,,)| if
x, <Xy (30)
which is always true.
3.2. Comparison of Efficiency
From (11), (12), (13), (14), (15), (20) and (21) it follows that
() MSE(2,,)<V(7) if
g
K>—2- 31
2, @31
(i) MSE(z,)< MSE(Jy) if
K<il1+2|c > (32)
2l ¢ ) &
(i) MSE(#,)< MSE(7,) if
K <402C) (33)

2¢,
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(iv) MSE(z,,) < MSE(t,y) if

ity 1
2C, 2

K<

(v) MSE(#,,) < MSE(t,,) if

either K< (€1 +£C5) /< ¢
20,C, C, +C,
or K>(C1+gC2) f> ¢,

2C,C, C,+C,

(vi) MSE(2,,)<V7 () if

K> g
2C,

(vil) MSE(z,,) < MSE(y) if

|
K<—| 1425 |C,> ¢
2\ ¢,

(viil) MSE(z,,) < MSE(7,) if

215G
2C,

(ix) MSE(t,,)< MSE(t,y) if

1( 1
dither K <—| —+-2- , C,>0C,
2 C

1 2
g
or K>—{—+—j, C, < gC,
C
(x) MSE(t,,) < MSE(t,y) if

K<M, f<l
2C, 2

(34)

(35)

(36)

(37)

(38)

(39)

(40)
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(i) MSE(z,,) < MSE(#,,) if

> 41
2C,C, @D
where
B
K=(pC,[C)=%

Combining (31), (32), (33), (34), and (35) it is observed that

@) #,, is preferred over y and 7y, , when

g 1 g
= <K<=|1+=>1 C, > 42
5 2( Cj 1~ 4 (42)

1 1

(ii) #,, is preferred over j and 7, , when

& g 8+C)

43
2¢C, 2¢C, &)
(i) #,, is preferred over y and 7z, when
1+
2 gt (44)
2¢C, 2C,
(iv) #,, is preferred over y and 7,3, when
C,+4C C
ither 2 <k <&t oG (45)
2¢C, 2C.C, C +C,
11 1
P S BEEE S (46)
2\ C, (| C,+C,

Further combining (42), (43) and (44) it is seen that 7, is preferred over yj, i,

7, and 7, when

1+C
either A<K<M, gC <1
2C, 2C,
1+ @7
or A<K<Q, gC >1

2C, 2C,
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Again combining (45) and (47) we find that the estimator 7, is better than 7,

JRs Ja» hir and Zyp if

C,+gC

cither —5 <K<(1 g 2),gC1>1
2C, 2C,C,
1+C

or g <K<‘g( 1), 2C, <1

2C, 2C,

Now combining (36), (37), (38), (39), (40), and (41) we find that

(@) ¢,, is preferred over 7y and 7y, when

1
i<K<—[l+iJ

2 2

(i) #,, is preferred over j and 7y, , when

8 g 80+G)
2C, 26,

(i) ¢#,, is preferred over y and %z, when

1( 1
dithr —2— <K <—| —+-2 , C,>0C,
2C, 2\ C, G,

111
or K>—| —+-=2 , C,<gC,
2\ ¢, G,

(v) 2,, is preferred over y and 4, , when

g g tg
2, 26,

(v) t,, is preferred over y and 7, , when

8 pllitChe
2C, 2C,C,

(48)

(49)

(50)

(1)

(52)

(53)

(54)

Further combining (49), (50), (53) and (54) it is observed that 7#,, is better than

D5 Jr> Ja» tog and 4, when
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1
2C, 2C,

Again, combining (51) and (55) we find that estimator 7,, is more efficient than

D JIr> Ja» tig»> tog and 7, if

1+C
either £ x8EC) ooy (56)
2C, 2C,
1 1
or S <K<( +‘g>, —<g<& (57)
2C, 2¢, G, C

4. UNBIASED ESTIMATION

It is obsetrved that the estimators #,, and #,, are biased. In some applications
biasedness is disadvantageous. This led us to investigate unbiased estimators of

Y.

If there is no correlation between the study variate y and the auxiliary vatiate x,
then B(7,)=0, j=1,2; and hence the estimators 7, and 7,, are unbiased. But
this situation is not good since there will be an unacceptable increase in variance
relative to the usual unbiased estimator y . Owing to this we consider the follow-

ing alternatives.

4.1. Unbiased Product Estimators For Interpenetrating Subsample Design

Consider the case of interpenetrating sub sample discussed by Murthy (1964).
Let y, and x; be unbiased estimates of the population totals Y and X respec-

tively based on the i independent interpenetrating subsample, i =1,2,......,n. Con-
sider now the following estimators

o =(lﬁy,~][li5 j /Z &8
7 =1 7 =1
=% /7
#2 = Zﬂ‘,mf /(nZ) (59)

215015 ) fo o
i=1 i=1
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=57 [0
12 =" yu; /(nU) (61)
i=1

as estimators for the population mean Y . Following Murthy (1964), we can show
that

B(#7)=nB(1})) (62)
and
B(#52)y=nB(£,) (63)

and hence that

ty, = (nt}) —12) /(n—1) (64)
and
ty, = (nts) —£2)/(n—1) (65)

are unbiased estimators of the population mean Y.

The conditions for #, and 7,, to be more efficient than £ and £ respectively

are similar to those given in Murthy and Nanjamma (1959) in the case of obtain-
ing an almost unbiased ratio estimator.

Motivated by the approach illustrated in Rao (1981), we consider more gener-
ally, the estimator

T,p =54 +{1-E(f(o)}1? (66)

where § is random and f(9) is a function of ¢.

Then Tip is unbiased for Y if

E(L,) =7
i if B[54) ~ B(f(8)42]= EG~#2) (©7)
for which
_ 55"
s=2 and f(8)=2%
2 7

is a solution.
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We turther write (67) as
E[s#) —E(f(6)1) 1= Eh—#) +ah) —at])] (68)
where « is a scalar,
From the relation
Wy — L po2)
B(#,))==B(#,")
n
= H#y,) -Y]= B<f<2>>
Wy _ 74 Lpo@
= E(tla ) - Y +_B(l‘lﬂ )
n
=1 o o
=Y +—E[# Y]
n
1= 1
=(1-=)Y +=E(#)
n n
1
= (” jY+ E(#?)
n
ie.
E(#"y=CY +(1-C)E(?) (69)

where C = (n-1)/n.
Putting (69) in (67) we have

5;(1)

E(f()1,

=E

=E

which gives a solution

Z
o=a+(l-aC)—

E[7-12 +atl) —a{CH+(1-C)}]

(1- aC)y+ay7—{l+a(l C)}t@)}
{ Z} {1+a(1—C)}z‘1<j)}
i %




422 H.P. Singh, R. Tailor, R. Tailor

for which

E(f (o) ={a+(1-aC)} ={1+(1-C)a}

Z
%*

general class of estimators of population mean Y as

Thus putting 5={0{+(1—a) } and E(f(0)) ={1+(1-C)a} in (66) we get a

T, =“a+<1—a6>f }ri? —a<l—C>zf§5>}
g

or

Tp=[(1-aC)F+an, - (1-Clar}] (70)

la

Remark 4.1. For a =0, 1), reduces to the usual unbiased estimator y while

a=C"" gives the estimator 7, in (64) whena =(1—C)™". We get another esti-
mator

Ty =@=mF+us) ~17 (71)

Many other unbiased estimators can be generated from T}, at (70) just by putting

suitable value of « .

Remark 4.2. Proceeding in a similar way we obtain another class of estimators of
Y as

Tp =[(1=e O)F + e 5] = (1= Chay £5]] (72)
where ¢, is a suitable chosen scalar, for a; =0, T,, boils down to the estimator

7 while for @, =C™" it reduces to the estimator

1 4 (1-0)
Ty =—#) —?fgﬂ)

C

_1,, 73)

when a, =(1-C)™" we get another unbiased estimator of Y as
Ly =[2=m3+nty) =1,]] (74)

many other unbiased estimators can be generated from (72) just by putting suit-
able value of ¢ .
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4.2. Optimum Estimator in the Class T},
From (70) we have

Var(T,p)=(1—aCY’Var(3) + & Var(£))+ 1= CY &’ Var(+2)

+2a(1-aC)Cor(7,10) = 2a(1-C)(1— aC)Cor(5,17) = 20> (1 = C)Con (1), #2))
=Var(3)+ o’ [CVar(F) + Var(£))+ (1= CY Var(#?)

—2C Con(7,£0)+2C (1— C)Con(7,12) = 2(1—=C) Cow (1), £21)]

—2a[CVar(F)—Cor(7,£0)+2(1— C)Con(F, £2)]

=Var(3)+a’B—2a A (75)

where
A=[CVar(F)—Con(F,50)+2(1—-C)Cor( 7, £2)]

=[C°Var(3) + Var(£))+ 1= CYVar(#2) = 2C Con(7,)
+2C (1= C)Con( 5,12 21 =C)Cov (17, £)]

The variance of T, at (75) is minimized for

A
opr B
Cov(7y,t
ov(J,4) 76)
Var(t)
where
t=(Cy=1), ¢t =[V-1-C)?7.
Thus the resulting minimum variance of T;, is given by
min.Var(T,,)=Var(3)(1-p ) (77)

Cov(7y, ¢
ST is the correlation between 7y and t.
Var(y)Var(t)

It follows from (77) that min.Var(l},) <Var(y).
Further from (20) and (77) that min.Var(T,,) < Var(2))

where p =
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1f

Var(3)(1- p )< Var(3) + g’ RVar(X) - 2R, PO 5,05
. ’ (78)
(gR0x) = o5 +Var(F)(p? = p*)>0

Thus a sufficient condition for the estimator Tp,,, (i.e. Optimum estimator in

the class T;,) to be more efficient than £ is that p > > p”. It may be noted

here that the sufficient conditions can be examined in practice for their estima-
tors which are obtained based on the subsamples [see Rao(1983)].

Remark 4.3. Similar studies can be carried out for the class of unbiased estimators
T,, in (72).
The variance of T,, is given by

Var(T,p)=Var(3)+ ;B —2a,A° (79)
where

A =Cow(3,4), B =Var(1), t=(CH—1)
and

=[5 -(1-C)521.

a

The variance of T,, at (79) is minimized for

Con(y,1,) A
= -——_= ¥ :ao 80
Var(t) B Topt (say) (80)

Thus the resulting minimum variance of T, is given by
min.Var(T,,) =Var(3)(1- p,°) (81)

« Cov(7y, ¢t ) . . —
= . 4) is the correlation coefficient between 7y and 7.

Var(3)Var(z,)

The ‘Optimum’ estimator T,

p(pr) 1S more efficient than A if

(8R,05) = po5)) +Var(F)(p” = p*)>0 (82)

which is always true if p,” > p°.



Duals to Mohanty and Sahoo’s estimators 425

It follows from (81) that the ‘Optimum’ estimator T, is better than usual un-

opt
biased estimator 7y .

4.3. Unbiased Product Estimators for SRSWOR Design

For the case of simple random sampling without replacement (SRSWOR), let
y; and x; denote respectively the y and x values of the it sample unit,

i=1,2,....,n. Then we consider the following estimators of Y as
I A o
la > la ﬂZ p i
* /= 1 4 *
félﬂ) =i /U» fé? :_—ZJ/[”;‘
nU 3
and
B(#2y=(1-C)"'B(A)), j=12 (83)

where C = N(n—1)/{n(N - 1)}
Following the procedure as outlined in section 4.2, we get the following class of

unbiased estimators of Y as
Ty =[A=Cy )T +7, 2 —(1=C )y #7] (84)

where y (7 =1,2) is the suitable chosen scalar.

Remark 4.4. Notice that y ;=0 j=12; gives the conventional unbiased estima-
tor 7 and y,;=(C )7 yields the estimator
o Lo _(1-C) e

* *

Ja Y C i J=12; (85)

For j=1, we have

I A Y



426 H.P. Singh, R. Tailor, R. Tailor

and for j=2, we have

o _nN=-D_7  (N-n(1 i
TN T No-1 n%:]
7 (1 1),
=J="1 TS F 87
T (n Nj U S
where

= 26 T )

2 (”

and

T 1) Z( 7= 7)

Many other unbiased estimators of Y can be obtained from (84) just by putting
suitable values of scalars y (7 =1,2).

As in the case of interpenetrating subsample, it is easy to obtain the optimum
value of 7, (7 =1,2).

4.4. Quenouille’s Jackknife Method

In this method we take a sample n = 2m and split it at random into two sub

samples of m units each. Let 7,,%,, (i =1,2) be unbiased estimators of Y and

X based on the subsamples and 7,% those based on the entire sample. Take
% =0+9Z-g%, 7 =(1+ U~ g7;
T =(+9Z-g3 7 =+ 9U-g7;

_ X tx, X Xy, .
7= i m U= i M ; (Z=1,2)

7

Xy tx, Xy X,

Consider the product—type estimators
N =37 17, 1= |7

l‘<l /U t2a:jﬁ*/U
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Then it can be easily shown that

:(ZN—n)i (N n)

5a N la (i + i§3> ) (88)

and

:(ZN—ﬂ)t _(N—ﬂ)

N 2N( +£57) (89)

Further it can be shown to the first degree of approximation that
MSE(¢;,)= MSE(2,,) (90)
MSE(t,,) = MSE(t,,) oD

Since #,(#,,) is unbiased while #,,(#,,) is not the former #, (#,) is to be pre-
ferred to the latter #,,(7,,) .

Now we define a class of product—type estimators for Y as
1) =0+, t, ot (j=1,2) (92)

where @, 's (/=1,2,3; j=1,2) are suitable chosen constants such that

ot +o,, =1, =12 (93)
and
Zf(/) %94
we have
(N-n)[ &
B(z, Y=-— — S S
(1ﬂ> ﬂN Cv1 p )X
(N=-n)| g
B(z, Yy=— — S S5
(Za) ﬂN C2 p Jox
95)
* 2N-n)| g
B(t, Y=— — S S
(1ﬂ) ﬂN Cv1 p )X
* Q2N =-n)[ ¢
B(t, Y=— — ANRYN
( Za) ﬂN C2 p J
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It follows from (95) that

B(#,,) (N-n)
B(f;ﬂ) (ZN n)

=1,2; (96)

>

The class of estimators z‘g ) is unbiased if

@, B(t,)+ w5, B(1,)=0 (97)

Jja

Thus from (96) and (97) we get

Be,)
T B
Ja

=—w, J ((21; ”)) (98)

With @,, =" (a constant) and from (92), (93) and (98) we have
1) =[(1-CoNF+o 1, -0 (1-C),] (j=12) (99)
Thus for j=1, we get

1) =[(1-Co)F+ 0" 1, —0(1-C)1,,]

*

_ {(1 —Co™)F+ a)mj%

a class of unbiased product—type estimators of Y .
For j=2, we get another class of unbiased product—type estimators for Y as

1 =11-Ca™)T+0” 1, -0 (1-C)13,]

= [(1 —Co'?)y+ w(2>j%— o (1 —C){%Zzl H

Remark 4.5. For @) =0, #) reduce to the usual unbiased estimator J while

for @) =C" it boils down to the estimator #,(;=1) and 7,,(j =2).
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4.5. Optimum Estimator in the Class 1’

From (99) we have

Var(t9) = [Var(3) + 07 {C* Var(5) + Var(t,)+(1=C)’Var(t,)
—2C Con(7,2,)+2C(1=C)Con(5,2,,) = 2C (1= C)Con (2 ,,,1,,)} (100)
—20Y{CVar(5)~Con(5,1,,) + (1= C)Con(F, 1, )}]

j=12.

To the first degree of approximation, it is easy to see that

*

Var(t,)=Var(t,)=Con(t ,,t,,)= 0155 + £’R5 5. =24R, pS S, ]

Ja>” ja Y
Con(7,2,,)=Con(F3,2,)=0(5% - gR,pS,S.) (101)
Var(3)=05,

/=12 R,=R/C,
Putting (101) in (100) we get the variance of #/; j =1,2; to terms of order 7'

as
() _ 2 2 2,212 2
Var(t{)) =018 + o’ ' C*R2 §2 —20C gR, p S 5, ] (102)

which is minimized for

o) = (&J £ = w;ﬁ) (103)
Cz ) R
J=12.
Thus the resulting minimum variance of Z‘EU/ ) is given by
min.Var(t)) = 053 (1- p?) (104)

which is equal to the approximate variance of the usual biased regression estimator
D=+ BX -5 (105)
where f3 is the sample regression coefficient of y on x.

Substituting the value of a)(%) for @ in (99) we get the asymptotically opti-

mum unbiased product-type estimator in the class (4.42) as
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_ C, .
£ =1 41-| = 5 I+ S ﬁ;/ﬂ— S ﬁ(l—C)t.g ,j=12.  (106)
g )R gC )R - 2C JR /

with the variance as given in (104).

5. EMPIRICAL STUDY

To illustrate the performance of the suggested estimators 7, and #,, over
Js Ir> J.otir> and 7, , we have considered four populations whose descriptions

are given in the Table 1.

TABLE 1
Description of populations

Population Source N n Y X p C. C,

Panse and Sukhatme Parental plot Parental plant 0.53 0.07 0.03

1 (1967) p.118 25 10 mean value (1.83) (2.15) (0.26)
(mm) (mm) 10.98} {24.95} {2437}

Panse and Sukhatme Parental plot Parental plant 0.56 0.07 0.04

I (1967) p.118 (1-20) 20 8 mean value (1.83) (2.15) (0.29)
(mm) (mm) {0.97} {25.09} {24.37}

Panse and Sukhatme Porgeny mean Parental plant 0.44 0.07 0.05

111 (1967) p.118 (1-10) 10 4 (mm) value (1.92) (2.13) (0.31)
(mm) 10.92} 125.48} 123.50}

Sampford (1962) Acreage under  Acreage of 0.07 0.10 0.29

Y p.61 (1-9) 9 3 oats crops and (1.86) 2.12) 0.19)
in 1957 gtass in 1947 {0.25} {58} {14.78}

Where p is the correlation coefficient between x and y, and C, =5_/X and

c,=5,/ Y are the coefficients of variation of x and y respectively.

(Figures in (.) indicate values of Ci, Cz and K respectively and in {.} show the

values of R, X and Y respectively. (See. Mohanty and Sahoo (1995))).

We have computed the absolute biases of the estimators g, 7,, £z ,%r 541,
and 7#,, and presented in Table-5.2. Percent relative efficiency (%) of these esti-

mators ( ¥, J,, Hir>tor?, and 7,,) have also been computed and compiled in

Table-5.3. Formulae for absolute biases and percent relative efficiencies are given
below.

BGo| =| 0/ )(RS? = 5, 5.) (107)

1B(7,) (108)

=|0/%) gp5, 5.
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B = [{0/(X COHRS2 = pS, 5) (109)
B )| =[ {0/ (R COIR,S2 = p5, 5) (110)
|B(,)| =[{0/(XC} gp5, 5. (111)
|B(1,,)| =[{0/(XC)} gpS, S, (12)
SZ
PRE(5x,))=—5——5 5 x100 (113)
(52 +R%S2-2RpS ,S,)
52
PRE(J,,5)=— 5 ——x100 (114)
(57 + g'R*S2-24RpS | S,
S~2
PRE(tx,7) = — x100 115
Ui D= 7 R R ps, 5 ) ()
SZ
PRE(typ,7) = 2 x 100 116
Yon, 7) ($2+R3S2-2R,pS, 5,) (1o
2
PRE(t,,7)=— — ‘ %100 (117)
(83 + &'RiST—2gR,p S S.)
S~2
PRE(t,,,7)= - x 100 (118)
($5+2°RySI—24R,p 8 8,)
TABLE 2
Absolute biases of yg, V,, Ligstagty, and 1,
Estimator Absolute Biases
Population 1 Population IT Population IIT Population TV
Tr 0.0054 0.0072 0.0122 0.0282
J, 0.0013 0.0020 0.0036 0.0034
Hr 0.0011 0.0014 0.0020 0.0065
thr 0.0007 0.0008 0.0014 0.0046
4, 0.0007 0.0011 0.0019 0.0018

t, 0.0006 0.0008 0.0017 0.0016
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TABLE 3

Percent relative efficiencies (PRE’s) of 3, Jr, 7,5 tigstog>t, and ty,

Percent Relative Efficiencies

Fstimator Population [ Population 11 Population 111 Population IV
7 100.00 100.00 100.00 100.00
Fx 33.62 39.27 55.15 92,90
3, 71.34 82.77 92.67 99.29
- 94.69 107.82 110.63 98.99
e 112.01 125.30 11591 99.49
e 130.62 141.79 123.44 100.39
4, 136.69 145.62 124.00 100.44

It is observed from Table-2 that the estimator #,, has least bias followed by
t,, and #,; for population I while in population II it is at par with #,; and has
less bias than 7y, 7, ¢, and 7, . However in population 111, the estimator #,,
has less bias than 7, 7,, #;x and #, but has marginally more bias than 7, .
Table 3 exhibits that the estimator #,, has largest efficiency for all the population

data sets I-IV followed by 7, . Thus the proposed estimators #, and #,, are to
be preferred in practice.
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SUMMARY

Duals to Mohanty and Saboo’s estimators

This paper proposes duals to Mohanty and Sahoo’s (1995) estimators and analyzes
their properties. Unbiased estimators have also been obtained for interpenetrating sub-
sample design and by using Jackknife technique given by Quenouille (1956). An empitical
study is carried out to demonstrate the performances of the suggested estimators over
other estimators.





