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DISTRIBUTION OF THE LR CRITERION U AS A MARGINAL

pimsn

DISTRIBUTION OF A GENERALIZED DIRICHLET MODEL

S. Thomas, A. Thannippara

1. INTRODUCTION

It is well known that most of the testing hypotheses procedures based on ran-
dom samples from multivatiate normal distributions are in terms of Wilks' likeli-
hood ratio statistic. The testing of hypotheses in multivariate regression analysis,
multivariate analysis of variance, multivariate analysis of covariance, canonical
correlations etc. are based on the null distribution of the likelihood ratio statistic.
In addition to these areas we use likelihood ratio criterion for testing the inde-
pendence of sets of variates and also for testing the significance of a subvector in

the T?-test of Ho: pi= p2. The construction of confidence region or simultane-
ous confidence intervals also make use of the distribution of the likelihood ratio
criterion. Following (Anderson, 2003) we shall denote the above mentioned like-

lihood ratio criterion as U where p is the dimension, » is the degrees of

P
freedom for hypothesis and # is the degrees of freedom for error. The details of
the wide range of applications of U can be seen in standard textbooks on

p.mn
multivariate analysis, see for example, (Anderson, 2003) and (Rencher, 1998). The
exact distribution of U has been investigated by several authors such as

D
(Schatzoff, 1966), (Pillai and Gupta, 1969), (Mathai, 1971) and (Coelho, 1998). All
the results have been obtained under the form of series expansions or in terms of

complicated expressions so that computation of p-values of U, , , from its ex-

act density is a tedious task. Hence one has to rely on simulation procedures for
the computation of p-values. The main purpose of this paper is to show the

connection of a generalized Dirichlet model to the distribution of U and rep-

yRN

resent the density of U in a tractable form which enables the computation of

SN

p-values of U directly from its exact density. A similar study in the case of

pmsn
the distribution of the likelihood ratio criterion for sphericity test can be seen
from (Thomas and Thannippara, 2008). We shall first consider a few preliminary
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results. In Section 3, we express the exact density of U as a marginal distribu-

0

tion of the generalized Dirichlet model. Section 4 provides closed form of the
density of U and U, , . Finally, computation of p-values of U, is illus-

2,m,m N

trated.

2. PRELIMINARY RESULTS

Lemma 2.1
The likelihood ratio criterion U based on observations from a p -variate

pomsn

normal distribution has the distribution of

|G|

=7 1
pmn |G+H| ()

where G and H are independent and each distributed according to Wishart with
n and m degrees of freedom respectively.

Theorem 2.1 (Anderson, 2003, Theoren 8.4.3)

1
The 7 -th moment of U, for #> —E(n+1—p) is

, r{l(n+1—j)+¢}r[;(n+m+1—j)}
EUH=]] [1

| 1 : )
Air 2(ﬂ+1—j)i|F|:2(ﬂ+m+l—j)+z‘i|

We can write (2) as
»

EW)=[TEV))
J=1

where 17, has the type-1 beta distribution with the parameters

1 1
{E(”+1_j)’5m)} .

Hence it follows that the distribution of U is that of the product Hj,:lf/j

RN

where V1,...,V}7 are independent and V/. has the type-1 beta distribution with

1 1
the parameters [E(” +1- j),Em)} .
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Now consider the real variables 0<x, <1, /=1,..., p, O<x1+---+xp <1
such that

x, O R

sy S, =Xt x (3
X+, ’ ><1+~~'+x]7 ’ ’

1=

are independently distributed. If we further assume that g 's in (3) are type-1
beta  random  variables = with 2, having ~ the  parameters
(g +ta,+B++p,,a,,) for j=2,...,p and z; has the parameters
(a1,@,), then (Thomas and George, 2004) have shown that (xy,...,x,) has the

density function of the following structure:

_ =1 a,—1 a yi/
S(xpenx,) = et Txy? ...xlf (5, +2,) 2 ... "
s ay =1
x(x1+~-+xp)P(l—xl—m—xp) 7
where the normalizing constant ¢, is such that
A Dla)l(ay) - T(a,y) T(ay+a,+pB,)
’ I'e, +a,) oy +a, +a,+ B,) )

e, +eta, +,82+---+ﬁp)

Do+ ta,  +f,++5,)

for a; >0, j=1,...,p+1, o +ota, + 5, +---+,Bj. >0, j=2,...,p. The
model (4) was introduced by (Thomas and George, 2004) as a generalization of
type-1 Dirichlet model. Note that the f,'s can take negative values also in this

model. Similar extensions of type-1 Dirichlet model can be seen in the literature,
see for example, (Connor and Mosimann, 1969) and (Lochner, 1975).

Definition 2.1
A general G-function is defined as the following Mellin-Barnes integral:

ij{zbf,’::.‘,’bﬂ
oyt [ LT A ORI Tl —a, — )}
=(27i) i{m_ T(1—b, =)/, T(a, ﬂ)}z

J=m+l j=n+l1

-5

where 7 =+/—1 and L is a suitable contour.
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The existence of different types of contours, general existence conditions,
properties and applications are available in (Mathai, 1993).

Theorem 2.2
x, is structurally a product of p independent real type-1 beta random vari-
ables and its density can be written in terms of a Meijer's G-function of the type

GO0
Proof: From (3) by taking the product we see that

X1 =R R

?
) = [IE)
©)

il Tl +va, + o+t B+ 1)
”pH ‘

J=1

T(a, +ta, +f,++f,+1)

where

, »
p :H

J=1

D(a +ta,  + B, ++ )

F(a1+---+aj.+,82+---+/3/.)

Treating (60) as a Mellin transform of the density of »x; the density is available by
taking the inverse Mellin transform. Denoting the density of x; by g(x;) we

have,

o) = K x_lL I'le, +1) I'lo, +a, + B, +1) N
! P 2w T (@, + o, + 1) T(a, +ay +ay + B, +1)

D(a, +-+a,+f,++f,+1)
X

x;dt (7)
Doy ++a,  +f++f,+1)

" 1 p0 a+ay,..,op e ta, L+t
cpx Gyl oy
Aoty ot + o+t

for 0 <x; <1 and zero elsewhere.

3. DENSITY OF U AS A GENERALIZED DIRICHLET MARGINAL

P

Now let us consider (6) and put
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n m m+1
alzg, a2:a3:...:ap+123’ ﬂZZﬂ_’):.”:ﬂp:_( > j (8)

On simplification we have
1 . 1 )
, D+ 1= )+ |V —(n+m+1= )
N 2 2
Ee) =TT ;

e . 1 el i
~ Fz(n+l /)ilf[z(n+ +1 ])-i—til

which is the same as (2).
From the above considerations and since arbitrary moments in this case will
determine the density uniquely we can write the following theorem.

Theorem 3.1
When (xi,...,x,) has a real generalized type-1 Dirichlet density of (4) with

the parameters as given in (8), then the distribution of U in (1) and the mar-

RN
ginal distribution of x; are identical. The exact density of U, , , is given by
e
1-x; pl=x;—x, I=xy == gfl %*1 %*1 _(”12 )
g(x) = €PJ‘O Jo "'.[o xi oy ex g X (X x0) o
_[”H—l) ”_y
2 2_
X (o et x,) (=) == )2 dx,...dx,

for O<xz.<l,z'zl,...,p,0<x1+---+xp<l,ﬂ2p and zero otherwise;

where

H{;_lr[;(n +m+1- /‘)}
c‘p — . » ) .
ol

Remark 3.1
On performing the integrations in (9) we can express g(x;) in terms of the

following multiple series:
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P ).5)
5! 24 3 2 " 2 " (1_951)rl

g(xy) = fpﬁxf (1=2x)2 rl;() (2777) l
2 2 ),

x Z 2
r,=0 (3/”) !
ntr,

. ()
Z 2

rp_lzo b ) rpfll
2 -
rteetr b1

where (a); is defined in (A1).
The way in which the above representation of g(x;) comes can be seen from

((P—l)fﬂ

2 jrl—i-- : --I—i”p_l (1- X1)rﬁ—1

>

the intermediate steps in the derivation of the density of U, , given in Section
4.

Remark 3.2
On replacing the o ;s and ;s in (7) by (8) we can also obtain the exact distri-

butionof U, , , in terms of Meijer’s G-function as follows:

g(”) — [u %71G}7,0 B dl)-.-,ﬂp (10)
PP b,
where
b= Lol ) for =1 = +2Z for j=1 d
J - E(”—'— _/) or j= :---,P, d‘/'_ /+E or 7 — ,...,p an
\ 2 T(a )
— J
= H by
AT

The derivation of the density of U by using Meijet's G-function is illustrated

4,m,n
in Section 4.
The likelihood ratio test procedure rejects the null hypothesis H,, if the com-

puted value of U is less than #, , (&), the a significant point for U

p.min p.min St
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Py

The values of #,, (a) are tabulated for certain values of p,m,n and a . When

pmn
p or m is small, there are good approximations in terms of the I -distribution
(Anderson, 2003, Section 8.5.4). In other situations there are other methods using

asymptotic distribution of U or using the distribution of some functions of

porn

U or Monte Carlo simulation are also available in the literature.

P

Renmark 3.3

Theorem 3.1 enables us to express the distribution of U in a simple man-

pomn

ageable form and we can directly obtain the exact p-value corresponding to a

computed value # of U Hence there is no need to rely on simulation or

psman

tabulated critical points or asymptotic distribution of some functions of U, , .

The exact p-value for a computed value # of U can be obtained very easily

RN

by evaluating the following with the help of Mathematica or Maple:

PU,,, <n)= [ g, (11)

where g(x,) is given in (9).

4. SOME SPECIAL CASES

We have seen the multiple integral representation of the density of U, , , in
theorem 3.1. In this section we shall obtain the explicit form of the density of
UZ,m,n and U4,m,ﬂ :

Density of U, , ,

From (9) it follows that the marginal density of x; is

" ”_4 _( ”7+1] ”_4
LA 7
=, 52 2 2 )1 s — a2 .
g(5)) = ¢,x7 L X3 (5 +25) (1=, —x,)? dx,; 0<x; <1, and
=

zero otherwise; whete
F(ﬂ+wjr(;¢+w—1)
_ 2 2
= - - .
GRS
2 2 2

2
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By applying (A3) we can write ¢, as

T(n+m—1)

T

On writing

Cy =

m+1

ZJZU 1- Xl_xz)]( )

(m+1j
2 r
A

() + ;) (

and using (A2) we have

M

(X1+X2)_(T]: (1=x; —x,)"

I
=]

r

Now

loxy - - '”H) 24
IV ”_
I xi (% +2) (I=x;=x,)% dbx,

x,=0
(m-i—l

;/

1 Xy E Z +r—1
Lz xy (I=x—x,) dx,

m+1 +1
°° ) 2y 1 w24 x, P
—(1=x)? x2 |1- dx,
r= (J 7{ %2=0 1_X1
(w+l)
= 2 m+r=1 % -
=) [ -
r=0 J
+1
L) G
:Z 2 m-Hl 2 2
r=0 7{ r(;ﬂ+7‘)
) )
=y~ =7 y y oo ~ by using (A1).
r=0 m)\7),

Thus
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),
_ T+m-1) ’a =\ 2.0 2 ), (1-x)

Xl — —Xl 1_X1 7l
£1) 2" T(n—1)T(m) (=) Z(:j (m), A

for 0 <x; <1. Now by using (Ab) it can be written as
1 -1 m m+1
x) = ———————x2 (1-x,)"" F(—,—;m;l—xj 12
&(xy) 2" Bli—1,m) i ( 1) 2 5, 1] (12

for 0<x; <1,722 and zero elsewhere.

As an immediate consequence we can write the following remarks.

Remark 4.1
For 0<x,; <1, /=1,2, 0<x, +x, <1,

m 7(m+l)
J‘quz_l(x +a,) N P (M= =) 2 dx, =
=072 171 17X 2
"G)rE) .
— LA (1) 2E(z’w_§m§1_xl)-
() 27 2

Remark 4.2
Since I; g(x))dx; =1, then from (12) it follows that

1 - - +1
X7 (1=x)"" R, (%,’”T;mﬂ—xjdx = 2" B(n—1,m).

Alternatively, we can obtain the density (12) from (10) in terms of Meijet's
G-function as follows.
a,,d,
by, b,

1 1 1 1
a,=—n+m), a,=—m+m—=1), by =—n, b, =—(n—1
! 2( ), @5 2( ) b e 2( )

=G

where

and
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1 1
T, 2"T(n—1)
{ELER

rnto—1,y,+0,—-1 )
with
71 _1:7’2 -1

) —

aq,dy

] is of the form Gzzg (Zt

2,0
Now G5, (Zt

1572
1 1 1
—1==(n-1), —1==n, 6,=6,=—m.
' 5 ( ) 7> 5 1Ty
Hence we can use the result given in (A4) and write the density function as

n

_ E _ m—=1
C(n+m n”4”(1 ) 21(m+1f1mﬂ—ﬂ);0<ﬂ<1

>

&)

2"T(n—-1) L'(m) 2 (13)

1 71 , +1
= — 4’ (1—%)'”_1 . (z,m—;m;l—uj; 0<u<l,
2" B(n—1,m) 22
and zero elsewhere; which is the same as (12).
1
a+p-l,a+p—— 1
If we use the form G§§ u with a= E(ﬂ +1) and

a—1,a0a——
2

nto, -y, +d,-1
n-Ly, -1

the density function as given below.

1
L= Em instead of GZZ,’S [ﬂ J we obtain a different form of

1
a+p-la+pf——
gy = e G2 2

1

a—1,aa——

_T(n+m=1)

1 1 \
where a =—=(n+1), f=—m and ¢, .
2 2 2"T(n—1)

Now apply (A6) and obtain g(#) as

n+m—1
n—1 ’

Again, by using (A7) we can write g(#) as

1
g(u)= c;ﬂ_l 2'”_1Gll”1O (ﬂz
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1 1
Sy (#2) (A= 2)"

W= cou ; O<u<l1.
gn)=e, ()
That is,
1 1 1
g(n)=——(u?Y A =u?)""; 0<u<1, (14)

2B(n—1,m)
and zero elsewhere. As the density function is unique, (13) and (14) must be

equal. Therefore we obtain the following relation which we shall write as a re-
mark.

Remark 4.3
m om+1 - 1T
ZE(E’T;W;l—ﬂj:2M1ﬂ {1+ﬂ2} ; 0<w<l.

Density of Uy, ,

We can write the required density function using (10) as

ay,dy,d3,d,
bl’bZ’b3’b4

g =Gy (

Note that

24,0
64’ B [%

where

ay,dy,d3,d,

byyby,b5,0,

j = Qi) | gy ds

F[l( +1 j)+}
4 1T +5 4 " h |
¢(;):|_|{ (/+)}:|| 2

1| (e, +9) ~/_1F‘:;(ﬂ+w+l—j)+x}

Now on combining the two consecutive gammas in the numerator and denomi-
nator of ¢(s) by using (A3) we obtain

I(n=1+25)(n—3+2s)

#(s)=2" :
C(n+m—1+25(n+m—3+2s)
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On putting 25 = s" the above Mellin-Barnes type integral becomes

a >ﬂ >ﬂ 3ﬂ
Gj,’g {% 1>%25493 4]
bl’b23b3;b4
= 2l (27”.)_1.[ T(n—1+s"\T(n=3+s")

LF(ﬂ+m—l+s')F(ﬂ+m—3+§')

1
_ 20 ”Eﬂ+m—l,ﬂ+w—3
2 n—1,n—-3

1
(u?Y™" ds'

On using (A4) with y, =#—2, y, =n, 6, =6, =m and simplifying ¢, using (A3)
we obtain the final form of the density function as

T(n+m—DT(n+m—3) ~ 2
g(”) — (” ” ) (” 7 )<”2)n—3(1_”2)2w—1
1
X Fy(m+2,m;2m;1—u?); O<u<l, n=24

and zero elsewhere.
Since (15) is a density we obtain the following relation.

Remark 4.4

1 1 1
[ @2y =2 JF (4 2,201 =y _ 20 =D (n=3)T )
C(n+m—VC(n+m—3)

Remark 4.5

In some cases the deduction of density function using (10) may be quite tedi-
ous. For example, the case when p =3 requires evaluation of residues at poles of
orders one and two. Hence in such cases we may end up with a density involving
psi and gamma functions. When p >3 it can involve zeta functions also. But for
practical purposes we need only to compute the values of cumulative distribution
function of U and this can be done very easily by using (11) for any p.

P

5. COMPUTATIONS

When p=2 we have seen that the density function of U is of the form

2,mn

N | =

(14) and hence we can replace g(x,) in (11) by (14). Then putting #

=7 we can
write (11) as
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1 u
J

 B(n—1,m)%

P(U,,,, <) I A=) . (16)

Therefore, the computation of the above probability is the same as the evaluation
of cumulative distribution function of a type-1 beta random variable with the pa-
rameters (7 —1,7) and it can be done very easily using MS Excel. When p2>3,

the computation of p -value for an observed value # of U can be performed

R
with widely used software packages such as Mathematica and Maple. For exam-
ple, let us compute (11) for an observed value #=0.121 of U,,,, using Mathe-
matica. The Mathematica input:

p: = 4
m: = 6
n: = 17

a = H(Ga}%ﬁm[(ﬂ +m+1=0)/2))/(Gammal m/ 2|Gammal(n +1-1)/2))
i=1

n a4 m 1 m

. . . (w+1j
0.121 pl=w pl=w—x pl-w—x—-y —-1 —= - BOre
b= .[0 J(] J‘O J‘() whox? J/Z zz (ﬂ/+X) ’

m+1 m+1 m
B A 2= Z
(w+x+y) ( 2 j(u/-i-x+)/+z;) ( 2 j(l—w—x—y—z)z dzdydxcdw

c = a*b

gives the output value 0.0503688. Note that 0.121 is an entry in the table of
lower critical values of likelihood ratio criterion corresponding to
a=0.05 p=4,m=6 and #=17 (Rencher, 1998, Table B4). We can also evalu-

ate (11) for the above mentioned case by using (15) instead of (9).

Remark 5.1.

Since the distributions of U, ,, and U, , ,,,,, are same (Bilodeau and Bren-

ner, 1999, Corollary 11.1) we can use this fact in computations of the p-value
especially when 7 < p.

For illustrative purposes the lower critical values corresponding to a = 0.05
and p=2 are computed from the representation (16) by using MS Excel is given
for ¢ =0.05 and p=1(1)8 are

available in the literature and the table values obtained using the density (9) coin-
cides with that of Table B4 of (Rencher, 1998), we are not reproducing the entire
table values here.

in table 1. Since the significance points of U

D
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TABLE 1
Lower Critical Valnes of U for a=0.05 and p=2

s

m
1 2 3 4 5 6 7 8 9

0.0225000  0.0364113  0.0328739  0.0516234  0.0310417  0.072462  0.0453303  0.0440847  0.0332297
0.05000 0.01832 0.0295280  0.0258431  0.0239501  0.0228489  0.0221520  0.0216829  0.0213521
0.13572 0.06180 0.03582 0.02346 0.01658 0.01235 0.0295544* 0.0276151  0.0262126
0.22361 0.11737 0.07362 0.05077 0.03721 0.02848 0.02251 0.01825 0.01509
0.30171 0.17489 0.11646 0.08366 0.06319 0.04948 0.03983 0.03277 0.02744
0.36840 0.22973 0.16025 0.11898 0.09213 0.07358 0.06017 0.05016 0.04247
0.42489*  0.28018 0.20282 0.15474 0.12237 0.09937 0.08240 0.06948 0.05940

9 0.47287 0.32589 0.24315 0.18977 0.15277 0.12588 0.10564 0.08999 0.07762
10 0.51390 0.36704 0.28081 0.22342 0.18265 0.15242 0.12929 0.11114 0.09662
11 0.54928 0.40404 0.31573 0.25538 0.21159 0.17855 0.15289 0.13250 0.11601
12 0.58003 0.43734 0.34798 0.28552 0.23936*  0.20399 0.17615 0.15379 0.13551
13 0.60696 0.46739 0.37775 0.31384 0.26585 0.22856 0.19888 0.17478 0.15491
14 0.63073 0.49458 0.40521 0.34039 0.29101 0.25218 0.22093 0.19533 0.17405
15 0.65184 0.51927 0.43057 0.36525 0.31485 0.27479 0.24224 0.21536 0.19284
16 0.67070 0.54176 0.45402 0.38853 0.33742 0.29639 0.26277 0.23478 0.21118
17 0.68766 0.56231 0.47574 0.41034 0.35877 0.31700 0.28250*  0.25358 0.22904
18 0.70297 0.58116 0.49589 0.43078 0.37895 0.33663 0.30143 0.27172 0.24637
19 0.71687 0.59850 0.51464 0.44996 0.39805 0.35534 0.31957 0.28922 0.26317
20 0.72954 0.61449 0.53209 0.46798 0.41611 0.37315 0.33696 0.30607 0.27943
21 0.74113 0.62929 0.54839 0.48492 0.43322 0.39012 0.35360 0.32228 0.29514
22 0.75178 0.64301 0.56363 0.50088 0.44942 0.40629 0.36954 0.33788 0.31032
23 0.76160 0.65577 0.57790 0.51592 0.46479 0.42169 0.38481 0.35288 0.32498
24 0.77067 0.66766 0.59130 0.53013 0.47938 0.43639 0.39943 0.36730 0.33912
25 0.77908 0.67878 0.60389 0.54355 0.49324 0.45041 0.41344 0.38117 0.35277
26 0.78690 0.68918 0.61575 0.55626 0.50641 0.46380 0.42686 0.39451 0.36594
27 0.79418 0.69894 0.62694 0.56831 0.51895 0.47659 0.43974 0.40734 0.37865
28 0.80099 0.70811 0.63751 0.57973 0.53090 0.48882 0.45209 0.41969 0.39091
29 0.80736 0.71675 0.64750 0.59059 0.54229 0.50052 0.46394 0.43158 0.40275
30 0.81334 0.72489 0.65697 0.60091 0.55316 0.51173 0.47532 0.44303 0.41418
40 0.85759 0.78644 0.72982 0.68163 0.63943*  0.60186 0.56807 0.53743 0.50948
60 0.90344 0.85259 0.81066 0.77381 0.74058 0.71019 0.68215 0.65610 0.63180
80 0.92696 0.88750 0.85435 0.82474 0.79764 0.77249 0.74897 0.72684 0.70593
100 0.94128 0.90905 0.88168 0.85699 0.83418 0.81284 0.79270 0.77360 0.75541

e o el k=]

* the corresponding value given in Table B4 of (Rencher, 1998) differs slightly from the exact value shown in this table
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APPENDIX

The basic notations and properties of elementary functions that we used in the
study are given here. The derivations and proofs of these results can be seen from

(Mathai, 1993).

T(a)l(B)

@) Bla,p)= Tatp)

(if) For a non-negative integer 7,

[(a+r)
I'(2)

(a), =(a+r—=1)(a+r—=2)...(a)= 5 (a),=1,a#0,

when I'(2) is defined.
(i) For |z |<1,
N O
(-3 =25
r=0 7{

@) TN +5) =72 271()

(v) For | 7| <1,

20 yi+o,—Ly,+0,-1
Gz,’z g
n-Ly, -1
( >1+5 -1
= Y +0, —7,,0;0, +0,;1—2),
G, +5,) 1(72 2~ 71501501 2 )
where
F (a o=yl 2
15> a * 9
! “ s ro(b) (b)), "
(vi)
+p-1l,a+p !
a -1, «x —— 1
GZ,O 2 Zzﬁ 1G E 2a+2ﬂ—2
22| X 11| X .
1 200—2

a—-1l,a——
2

(AD)

(A2)

(A3)

(A4)

(A5)

(A6)
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(vii) For |z|<1,8>-1,

wof et B o |BH) (-7
Gyl R =36 % - . (A7)
a 0 rp+1)
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SUMMARY

Distribution of the LR criterion U, , . as a marginal distribution of a generalized Dirichlet model

N

The density of the likelihood ratio criterion U is expressed in terms of a marginal

pomn
density of a generalized Dirichlet model having a specific set of parameters. The exact dis-
tribution of the likelihood ratio criterion so obtained has a very simple and general format
for every p. It provides an easy and direct method of computation of the exact p -value

of U, , . Vatious types of properties and relations involving hypetgeometric seties are

also established.





