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LEAST ORTHOGONAL DISTANCE ESTIMATOR OF STRUCTURAL 
PARAMETERS IN SIMULTANEOUS EQUATION MODELS 

L. Pieraccini, A. Naccarato 

1. INTRODUCTION 

The starting idea whose development has given rise to Least Orthogonal Dis-
tance Estimator (LODE) can be traced back to the work of the senior coauthor 
(Pieraccini, 1969), in which 2SLS were obtained as generalized least squares esti-
mator applied to the system of the so called identifying restrictions; the result was 
afterwards extended to 3SLS (Pieraccini, 1978). With this in mind and making ref-
erence to the work of K. Pearson (1901), the LODE method of estimation has 
been derived under the consideration that the over-identifying restrictions are 
nothing else but linear relations between variables affected by error. 

In its first formalization, LODE structural parameters’ estimation of endoge-
nous and exogenous variables were not treated symmetrically: parameters of en-
dogenous variables were derived minimizing a quadratic form obtained by the 
over identifying restrictions while those of exogenous ones were obtained in the 
same way as in LIML (Pieraccini, 1983, 1988, 1992). Taking into account the re-
sults of many simulation experiments (Cau, 1990; Sbrana, 2001; Zurlo, 2006) a 
modified version of Limited Information LODE is here presented in which struc-
tural parameters’ estimates both for endogenous and exogenous variables are di-
rectly derived from the whole system of identifying restrctions.  

Furthermore, two recent contributions have increased the interest about the 
method: its extension to the case of Full Information (Naccarato, 2007), which 
has shown the versatility of the method to cope with simultaneous estimation of 
the whole system’s structural parameters, and a very extensive simulation experi-
ment (Naccarato and Zurlo, 2007) which has confirmed the Limited Information 
(LI) method’s good performances and shown a quite substiantial improvement 
for its Full Information (FI) version. 

In this paper we give a complete illustration of the new version of LODE 
method, the principles upon which the method is based and the formal derivation 
of its properties. 

The structure of this paper is as follows: after briefly reviewing the simultane-
ous equation models to establish notation (section 2), conditions for identifica-
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tion are presented in the new context (section 3) and Limited Information LODE 
is derived (section 4). The next three paragraphs are devoted to FI LODE deriva-
tion (section 5), to the estimation of the matrix of variances and covariances for 
error components (section 6) and to the consistency of FI LODE (section 7). Fi-
nally (section 8), few words of conclusion, with a short summary of the more im-
portant results of the recent simulation experiment, close the contribution. 

2. SIMULTANEOUS EQUATIONS MODELS 

Making use of standard notations, the structural form of a simultaneous equa-
tions system can be written as follows: 

, , , , , ,
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n m m m n k k m n m n m
Y X UΓ Β+ + = , (1) 

where 
,n m
Y  and 

,n k
X  are the matrices of the observation on the m  endogenous 

variables y  and the k  exogenous variables x ; 
,n m
U  is the matrix of disturbances. 

Γ  and Β  are the m m×  and k m×  matrices of structural parameters of endoge-
nous variables and exogenous variables. 

For the matrix U  standard hypotheses are supposed to hold: 
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Ω  is the constant over observations variance-covariance matrix. Fur-
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are generally made. 
Under non singularity condition for Γ , the reduced form of system (1) is de-

rived as 
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in which 
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where in the second equation it is 
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Post-multiplying by Γ  the first of equations (5) we obtain 

, , ,k m m n k m
Π Γ Β= − , (7) 

that represent the link between reduced and structural form parameters. 
Since (7) is a system of equations with m k+  unknowns and k  equations, 

usual exclusion constrains have to be introduced to find solutions with respect to 
Γ  and Β  in terms of Π . 

If endogenous and exogenous variables are not all included in i-th equation, it 
is possibile to consider the following partition of the overall matrix of endoge-
nous variables with respect to the included and excluded variables: 
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where the first 1im  colums refer – as usual – to endogenous variables included in 
the i-th equation while the last 2im  colums refer to endogenous variables not in-
cluded in it. In the same way the vector of Γ ’s in i-th equation can be reordered 
as 
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where the first 1im  elements of iΓ  are the coefficients of endogenous variables 
included in i-th equation while the remaining 2im  elements equal to 0 are related 
to the excluded ones. Notice that when defining the vector iΓ  no normalization 
rule has yet been introduced. 

Similarly the following partition of the exogenous variables’ matrix is consid-
ered 
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where 
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i
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X  are the sub-matrices corresponding to the exogenous vari-

ables included and excluded from the i-th equation respectively. Accordingly the 
vector of parameters is defined as 
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where the first 1ik  parameters are related to the exogenous variables included in 
the i-th equation while the last 2ik  are zeros and they are related to the excluded 
ones. 

With these partitions the i-th structural equation is written in the following 
form 

1 1 1 1 0i i i i iY X UΓ Β+ + = . 

The reordering of endogenous and exogenous variables in the structural form 
induces a new ordering in the reduced form as follows 
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so that the Π  matrix comes out to be partitioned in four blocks related to en-
dogenous and exogenous variables both included and excluded from the equa-
tion. 

In the same way, multiplying both sides of the second equation of (5) by the 
matrix Γ  it is 

V UΓ = − , 

and for i-th equation 
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i iV UΓ = −  

i.e. 

1 1i i iV UΓ = − , 

which will represent the relationship between RF and SF disturbances. 

3. CONDITION FOR IDENTIFICATION 

Usually, rank conditions for the identification of a simultaneous equation sys-
tem, as well as order conditions, are obtained after applying the normalization 
rule: in our case, this will not happen so that identifiability conditions have to be 
redefined. With respect to the i-th structural equation the system of relation (7) 
can be written as 
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it can be shown that the rank condition for solving the system (8) with respect to 
γ ’s and β ’s takes the following form 

 
Condition 1 – System (8) admits a unique solution – up to a proportionality constant – if 

and only if 

* 1 1( ) 1i
i ir m kΠ = + − . (9) 

Condition 2 – The rank of matrix *
iΠ  is equal to 1 1 1i im k+ −  if and only if  

2 1( ) 1i ir mΠ = − . (10) 

Where equation (10) is the usual form for rank condition. 
When the parameters Π  of reduced form are substituted with their OLS esti-

mates Π̂ , the system (8) becomes 
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so that in both equations an error component occurs. In this situation the rank 
conditions cannot be verified and it is no more possibile to use the rank of 2iΠ  as 
identification criterion. The so-called “order conditions” have then to be defined. 

 
Condition 3 – If rank condition (9) is satisfied, the matrix *

ˆ ìΠ  has to be of order 

1 1( 1)i ik k m× + −  where it has to be 

1 1 1i ik k m≥ + − , 

i.e. 

2 1 1i ik m≥ − , (12) 

where equation (12) is the formulation generally used for order condition. 
The generalized least squares estimators of γ ’s and β ’s parameters of the 

second the system of equations (11) – after having applied the normalization rule 
– give rise to Two Stage Least Squares Estimators (Pieraccini, 1969). 

4. LIMITED INFORMATION LODE 

Defining 
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system (12) can be written as 

*
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Since it is 
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1 1
1 1
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the variance-covariance matrix of iε  comes out to be 
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i i i i iE X X X E U U X X X X Xε ε σ− − −= = , 

which is the variance-covariance matrix of ˆ
iΠ . 

Let us now set 

1 1( )T TX X T TΛ− −= , 

the matrix Λ  being the diagonal matrix of characterstic roots of TX X  and the 
matrix T  the one of characteristic vectors. Defining 

1
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so that it is 
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Applying to the error component the following transformation 
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so that the sample estimate of 2
iσ  will be 
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The LODE method is based on the minimization of (16) i.e. on finding the vector 
δ  which minimizes the sample residual variance for the i-th structural equation. 

Since it can be easily shown that 
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then, disreguarding the constant 1 k , the quadratic form to be minimized be-
comes 

T
i ii iAδ δ , (18) 

where the reasons for using the symbol iiA  will become clear when treating the 
full information version of LODE method. 

LODE estimator has then to be proportional to the vector, say P , such that 

,T
iiP A P min=  (19) 

where, to make the solution univocally determined, the condition 

1,TP P =  (20) 

has to be added. 
As it is well known, to find the minimum of (19) under condition (20) one has 

to minimize the function 

( 1)T T
iiG P A P P Pλ= − − , 

with respect to ip  1 1( 1, , )i ii m k= +…  and to the Lagrange multiplier λ . 
The system obtained equating to zero the partial derivatives with respect to P  

and λ  will then be 
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whose solutions will be obtained solving the system 

( ) 0iiA I Pλ− = , (22) 

under condition given by the second of (21). 
Let us remember that to obtain a solution for (22), λ  has to be the solution of 

the determinantal equation 

 0iiA Iλ− = , (23) 

which, being a polynomial of degree 1 1 1i is m k≤ + −  in λ , gives raise to s  roots 
such that 

1 2 0sλ λ λ≥ ≥ ≥ ≥… , 
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The vector sP  associated to the smallest root sλ  of equation (23) is then the solu-
tion of the problem. 

As a consequence the equation 

*
ˆ 0i

sX PΠ = , (24) 

is the expression of the ( 1)s −  dimensional subspace spanned by the first ( 1)s −  
principal axis, i. e. the one which minimizes the sum of squares of the orthogonal 
distances between the observed points and the subspace itself. In other words 
(24) will be the last principal component. 

Introducing at this point the normalization rule for i-th structural equation, 
least orthogonal distance estimator of iδ  are defined as 
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where oip  is the element of the characteristic vector associated with the right 
hand side endogenous wariable in the i-th structural equation.  

The estimate of i-th structural equation variance of disturbances will be as a 
consequence 

2
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σ λ= , (26) 

Notice that when the i-th equation is exactly identified equation (23) will have 
1 1( 1)i im k+ −  roots the last one being 1 1 1 0m i k iλ + − =  so that equation (18) will 

have a unique solution that coincides with ILS estimator. 
On the contrary when i-th equation is under identified 2 1( 1)i ik m< −  the carat-

teristic root equal to zero will have multiplicity equal to 1 21i ir m k= − −  and the 
system (22) will have infinite to the r solutions. 

5. FULL INFORMATION LODE 

Relation (13) between reduced and structural form parameters for the whole 
system of equation can be written as 
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or in a more compact form, using a self evident notation 
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where it is 

1 1
1
( )

m

i i
i

s m k
=

= +∑ , 

and 

1 1

,1 , ,1 , ,1
( ) ( ) ( ) ( )T T T T

m mkm k n nm k n nm
I X X X vec V I X X X vec Uε Γ− −⊗ ⊗
⎡ ⎤ ⎡ ⎤

= =⎢ ⎥ ⎢ ⎥
⎣ ⎦ ⎣ ⎦

, 

Because of (14) applied to the vector ε  defined in (28) the variance-covariance 
matrix of the error component can be written in the following way 
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where jjd  are the diagonal elements of 1( )TX X − , to obtain full information 
LODE it is necessary to minimize the quadratic form 
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i.e. to consider the characteristic vector associated with the smallest characteristic 
root of the matrix 
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with ijσ  being the element of the matrix 1Ω− . 
While the block diagonal elements of A  are of the form (17) – now it is clear 

the reason for using the proposed notation – the extra diagonal block elements 
are 
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that come out to be 
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The characteristic vector associated with the smallest characteristic root of ma-
trix 

,S S
A  minimizes the quadratic form (31).  

Let a  be the smallest characteristic root of 
,S S

A  and aP  be the associated char-

acteristic vector. The characteristic vector aP  multiplied by m  suitable constants 
gives FI LODE. 

Defining C  as the block diagonal matrix 
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in which ic  are defined as follows 

0

1
i

i
c

p
= − , (36) 

with 0ip  being the characteristic vector’s element corresponding to the endoge-
nous variable oiy  chosen to be at left hand side in i-th structural equation. 

The FI estimator is then 

ˆ
aC Pδ = , (37) 
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6. ESTIMATION OF THE VARIANCE-COVARIANCE MATRIX 

Equation (31) which defines explicitly the quadratic form to be minimized is a 
function of disturbances variance-covariance matrix Ω  which is unknown. It is 
then necessary to estimate it. 

As usual, it is possible to go through a two steps procedure: in the first step 
estimates of the SF parameters are obtained using LI LODE which are then used 
to calculate the matrix Û  of SF disturbances 

ˆˆ ˆU V Γ= − , 

V̂  been the matrix of RF equations’ OLS residuals. 
The matrix Ω̂  is then computed in the following way 
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with 

1 1i i ig n m k= − − , 

It has to be notice that consistency of limited information SF parameters esti-
mators implies the consistency of the variance covariance matrix estimators. 

The second stage structural parameters estimates are then obtained introducing 
Ω̂  in equation (31). Full Information LODE is then proportional to the character-
istic vector associated to the smallest characteristic root of 

1
* *

ˆˆ ˆˆ ( ( ))T TA X XΠ Ω Π− ⊗= . 

from which δ̂  follows according to (37). 

7. CONSISTENCY OF FULL INFORMATION LODE 

Generalizing a result already obtained for LI LODE (Perna, 1988) it is possible 
to prove consistency of FI LODE. 
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Let us assume that conditions (2) and (3) are true and – in addition – that the 
exogenous variables matrix 

,n k
X  is of full rank 

,
( )

n k
r X k= , 

and that its elements are non random. Under these conditions the following 
Lemma is true. 

Lemma: The characteristic vector associated to the smallest characteristic root 
of the matrix 1( ( ))T TX XΠ Ω Π−

∗ ∗⊗  is proportional to the parameters vector δ  
according to m  constants of proportionality. 

Proof: Considering equation (8) for the whole system, the following expression 
can be written 

1( ( )) 0T TX XΠ Ω Π δ−
∗ ∗⊗ = , 

or 

0Hδ = , 

where H  is the matrix 1( ( ))T TX XΠ Ω Π−
∗ ∗⊗ . 

Let α  be the smallest characteristic root of matrix H  and αΨ  the characteris-
tic vector associated to it, then it is possible to write 

1( ( )) 0T T TX Xα αΨ Π Ω ΠΨ−
∗ ∗⊗ = . (38) 

Since the matrix Ω  is assumed to be positive definite and matrix X  of full 
rank, condition (38) is true if and only if 

0αΠΨ∗ = , (39) 

It follows that αΨ  has to be proportional to δ  - since δ  is the vector of pa-
rameters for which (39) is true. 

Let iαΨ  be the sub-vector of αΨ  corresponding to i-th equation and iξ  be the 
corresponding constant of proportionality, the δ  vector can be written as follows 
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1 1
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where 

0

1
i

i
ξ

ψ
= , 

and 0iψ  is the element corresponding to the endogenous variable at left hand 
side of the i-th structural equation, with respect to which the normalization rule 
has been made. 

 
Theorem: Full Information LODE consistently estimates structural form parame-

ters. 
Proof: Taking into account OLS estimator consistency of RF parameters, it is 

1 1ˆ ˆlim ( ) ( )T T T T

n
p X X X XΠ Ω Π Π Ω Π− −

∗ ∗ ∗ ∗
→∞

⊗ ⊗= . (40) 

Since the characteristic roots of a matrix are differentiable functions of its  
elements (Kato, 1982), if a  is the smallest characteristic root of 

1ˆ ˆ( )T TX XΠ Ω Π−
∗ ∗⊗ , it follows that 

lim
n

p a α
→∞

= , 

and consequently 

lim a
n

p P αΨ
→∞

= . (41) 

According to the preceeding Lemma the vector of SF parameters δ  is propor-
tional to the characteristic vector αΨ . It is then 

ˆlim
n

p δ δ
→∞

= . (42) 

8. CONCLUSIONS 

The extension of Least Orthogonal Distance Estimators to a Full Information 
context, is the occasion for the authors to give a complete illustration of a new 
version of LODE method, the principles upon which the method is based, the 
formal derivation of its properties and to illustrate some very impressive resultus 
obtained in the simulation experiment. 

With regard to this last point one has always to take in mind that the number 
of equations in the system, the different degree of parameters’ over-identification 
and the characteristics of the simulation experiment influence the results, that 
hence have to be taken with caution. Yet the simulation experiment that has been 
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recently produced (Naccarato and Zurlo, 2007) has highlighted some very good 
features of the method – both in terms of bias and MSE – that we think it is 
worthwhile to mention. 

The simulation experiment has been made using the same three equation 
model proposed by Cragg in 1967. The simulation, starting from a so called basic 
experiment (characterized by a variance of the error component between 20-25% 
of the variance of the endogenous variable to which it refers), considers increas-
ing levels of variance of the error components in each equation and of the corre-
lation between them. Increasing sample sizes are also considered. 

With regard to the basic experiment it has to be stressed that, apart from one ex-
ception, both Limited Information and Full Information LODE feature a lower 
bias than other estimators reaching up to more than 90% bias reduction with re-
spect to 2SLS. The exception is given by the third equation’s coefficients (for 
samples of size less than 50) for which the greater proportion of cases with lower 
bias is taken by 2SLS.  

At increasing values of the variance of error components and of the correla-
tion, LODE method – both LI and FI – always shows lower bias than other meth-
ods in at least the 60% of the parameters reaching sometimes 80-90% of the 
cases. 

With respect to MSE in the basic experiment LI LODE is better than 2SLS for sam-
ple size greater than 30. On the contrary FI LODE presents a positive or negative 
variation with respect to 3SLS of about 30% for sample size of 20. Things get bet-
ter by increasing sample size when there are gains up to the order of 70% in the 
case of size equal to 100.  

At increasing values of variances and covariances, LI LODE is more efficient 
than 2SLS only for samples size greater or equal to 50 as in the basic experiment 
while FI LODE is frequently more efficient than 3SLS obtaining gains up to 30%. 
In particular, it performs better (in more than 60% of the cases) when the vari-
ance of the error component is lower than fifty percent of the endogenous vari-
able’s one. 

Finally it has to be noticed that FI LODE could have strong computational ad-
vantages with respect to FIML. 
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SUMMARY 

Least orthogonal distance estimator of structural parameters in simultaneous equation models 

The aim of this paper is to present a consistent estimator of parameters in simultane-
ous equation model, based on characteristic roots and vectors of a matrix derived from 
the so called over-identifying restrictions. The Least Orthogonal Distance Estimator pre-
sented here is a more recent development of its original limited information version. The 
occasion, for reviewing it, has been given by its extension to a full information context 
which is here completely formalized and by the very encouraging results of recent simula-
tion experiments. 




