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A BIVARIATE CAR MODEL FOR IMPROVING THE ESTIMATION 
OF RELATIVE RISKS 

F. Greco, C. Trivisano 

1. INTRODUCTION 

Disease mapping has proved to be a useful epidemiological tool for describing 
geographical variations of diseases. The techniques developed in this field have 
seen a considerable improvement once disease data have incorporated geographi-
cal information about the study units. Because of confidentiality restrictions, dis-
ease data are almost always available at small area level and the analyses have to 
be performed at an aggregate level on count data.  

The first step for studying the disease incidence in specific subsets of a study 
region is to assess what disease incidence should be expected in such subset: then 
it is possible to compare the expected with the observed incidence. Expected in-
cidence is the one that would be observed if the disease risk was constant over all 
the study region and the spatial variations in incidence were due uniquely to 
population density and structure. The expected incidence reflects the “null hy-
pothesis spatial distribution” of the cases. The focus of attention is on identifying 
features of the spatial distribution of the disease rate that are not captured by the 
null hypothesis distribution (Lawson, 2001). This identification is performed via 
the comparison between observed and expected incidence by relative risk estima-
tion. When the disease under study is rare, data are heavily affected by random 
variability and the estimates of the relative risk at the small area level are unstable, 
particularly in areas characterised by low population amount. The main aim of 
disease mapping techniques is the depuration of data from random noise, so that 
the true underlying distribution of the risk can be identified. In the most common 
models, depuration from random noise is achieved by exploiting the available 
spatial information: the relative risk estimate in each area is improved by borrow-
ing strength from the neighbouring areas. In this context Bayesian hierarchical 
models have received considerable attention, because of their ability to easily 
produce smooth maps depurated from random noise. The smoothing of relative 
risk spatial distribution is often achieved by including random effects in the 
model that take account of spatial and non-spatial heterogeneity in the data. As a 
result, the relative risk estimates’ standard error is considerably reduced with re-
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spect to the estimates obtained by ignoring spatial information and overdisper-
sion. Maps based on the estimates produced by Bayesian models are more easily 
interpretable. They can generate hypotheses on the disease aetiology and can help 
public authority in planning health policies. 

Disease mapping studies have been widely performed at univariate level, that is 
considering relative risk estimation for one disease. Nonetheless, simultaneous 
modelling of different diseases can be a valuable tool both from the epidemiol-
ogical and from the statistical point of view. From the epidemiological point of 
view, joint modelling of diseases can increase the understanding of diseases dy-
namics and of the relationships between diseases incidence. The merit of joint 
modelling can be high if the considered diseases share risk factors or if the pres-
ence of a disease encourages (or inhibits) the occurrence of a different disease. 
From the statistical point of view, an evident advantage in joint disease mapping 
is that, if the disease risks are correlated, standard errors of the estimates obtained 
via univariate modelling can be sensibly reduced. Moreover, estimates for rare 
diseases can borrow strength from more diffuse diseases. In fact, correlation be-
tween diseases within areas, between areas within diseases and between areas and 
diseases constitute valuable information contained in the data that can be used to 
increase statistical efficiency of the estimates. 

While models for univariate disease modelling are widely diffused both in the 
Bayesian and the classical contexts, multivariate models are far less diffuse and 
have received attention only recently. One of the earlier approaches is based on 
the multilevel modelling theory: models include fixed and random effects. Pa-
rameter estimation is performed using iterative generalised least squares (Lang-
ford et al., 1999; Leyland et al., 2000). From the Bayesian point of view, a shared 
component model has been proposed in Held et al. (2005), useful for modelling 
variation of two or more diseases that share common risk factors. 

The most promising approaches generalise the Conditional Auto-Regressive 
(CAR) distribution (Besag, 1974) in a multivariate framework (Carlin and Baner-
jee, 2003; Gelfand and Vountasou, 2003; Jin et al., 2005; Kim et al., 2001). These 
generalizations face in various ways the problem of obtaining a valid joint distri-
bution for multivariate risks. In this paper we propose a new extension of the 
CAR model in the bivariate setting that we dub Bivariate CAR (BCAR) model. 
Our proposal overcome some of the simplifications on which other proposed 
models are based. 

This work is organized as follows: in Section 2 we briefly review some existing 
approaches to multivariate disease risk modelling. In Section 3 we propose a new 
approach for bivariate areal data, specifying the joint distribution via bivariate full 
conditional distributions. In Section 4 a simulation study is performed, while in 
Section 5 we show results obtained by applying the proposed model to a couple 
of data sets referring to the Emilia Romagna Region (Italy). 
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2. FROM UNIVARIATE TO MULTIVARIATE CAR MODELS 

Consider a study region subdivided in n contiguous areas. Let Yi and ei denote 
respectively the observed and expected counts for a disease in the i-th area. Ex-
pected counts for each area can be obtained by applying a standard table of sex 
and age group-specific rates to the area-specific background population subdi-
vided by age and sex. The likelihood for the observed counts is usually specified 
as: 

| ~ ( )i i i iY Poisson eθ θ  (1) 
log( )i iθ γ φ= +  

where iθ  is the true relative risk for the disease in area i and γ  is an intercept. 
Conditionally on iθ , the counts are modelled as independent Poisson variables. 
Spatial dependence is modelled at the second level of the hierarchy by imposing a 
probabilistic structure on the distribution of the vector 1( , ..., , ..., )i nφ φ φ=φ  that is 
usually assumed to follow a n-dimensional Normal distribution: 

~ (0, )MVN Σφ . (2) 

The covariance matrix Σ  is specified in order to model spatial correlation. 
Model (1)-(2) characterise a Poisson log-Normal mixture. Distribution (2) can be 
more easily specified in terms of conditional distributions: this is the core idea 
underlying univariate CAR models (Besag, 1974). These models can be included 
in the class of Gaussian Markov Random Field (MRF) models (Mardia, 1988). 
The dependence among the elements of φ  is limited to the neighbouring areas, 
that is the conditional distribution of the relative risk in a given area is independ-
ent from the risk in non-neighbouring areas. Thus, to specify a MRF process, a 
neighbouring structure has to be selected. Various neighbouring structures have 
been proposed. In this paper, following the most popular approach, we consider 
areas as neighbours if they share a boundary, and information about the 
neighbouring structure is summarized in the n n×  adjacency matrix W, with en-
tries 1ijw =  if areas i and j share a common boundary, 0ijw =  otherwise. In the 
univariate setting, the full conditional distributions for the spatial random effects 
are specified as follows: 

1
1

~
| , ~ , ~ ,i j ij j

j i i
j i N c

m
τ

φ φ τ δ φ
−

− ⎛ ⎞
⎜ ⎟⎜ ⎟
⎝ ⎠
∑  (3) 

where ~j i  denotes that area i is a neighbour of area j and mi is the number of 
neighbours of the i-th area. δ  is a smoothing parameter controlling the strength 
of spatial dependence and 1τ −  is the variance parameter scaled, for each area, by 
the number of its neighbours so that the conditional variance is inversely propor-
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tional to the spatial information. The joint distribution (2) is uniquely determined 
by the n full conditionals (3) and can be expressed as: 

( ) 1~ (0, [ ] )MVN δτ −−φ D I C  (4) 

where D is a diagonal matrix with diagonal elements denoting the number of 
neighbours of the i-th area and 1−=C D W  is the scaled adjacency matrix with en-
tries /ij ij ic w m= . With this specification of C and D matrices, a sufficient condi-
tion that guarantees the positive definiteness of the joint distribution covariance 
matrix in distribution (4), is 1δ < . Various alternative univariate CAR models 
can be obtained by specifying different structures of D and C matrices. 

For multivariate disease mapping, a natural way for approaching statistical 
modelling, is the generalisation of the CAR distribution to its multivariate ver-
sion. In what follows, a number of models proposed in the bivariate setting are 
illustrated. 

Let ikY  and ike  denote the observed counts in the i-th area, for the k-th dis-
ease. Like in (1), conditional on the relative risks, the counts are usually modelled 
as conditionally independent Poisson variables: 

~ ( )ik ik ik ikY Poisson eθ θ  i=1,...,n; k=1,2 (5) 
log( )  ik k ikθ γ φ= +  

where kγ  is a disease-specific intercept and ikφ  is the spatial random effect at area i 
for disease k. The bivariate analogous of (2) for the spatial random effects is: 

1 1 12

2 12 2
~ ,MVN•

•

⎛ ⎞⎛ ⎞ ⎛ ⎞ ⎛ ⎞
⎜ ⎟⎜ ⎟ ⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠ ⎝ ⎠⎝ ⎠

Σ Σ

Σ Σ

φ 0

φ 0
 (6) 

where k•φ  is the n-dimensional vector of spatial random effects for disease k, and 
the blocks of the covariance matrix describe the covariances characterising each 
disease in the study region ( kΣ , k=1,2) and the relationships between the risks 
for the considered diseases ( 12Σ ). 

As in the univariate setting, specification of distribution (6) starts by specifying 
the full conditional distributions. Following Mardia (1988), under the MRF as-
sumption, the full conditional distributions analogous to (3) can be specified as: 

~
| , ~ , ~ ,i j i ij j i

j i
j i N• • •

⎛ ⎞
⎜ ⎟⎜ ⎟
⎝ ⎠
∑β Γφ φ Γ Α φ  i=1,...,n (7) 

where 1 2( , )i i iφ φ•′ =φ  is the 2-dimensional vector of spatial random effects for 

both diseases in the i-th area, while 1,   and ( )ij i im −=β Γ ΛA  are 2 2×  matrices. 
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Each spatial random effects bivariate vector, conditionally on the neighbouring 
areas, follows a bivariate normal distribution. Its mean is obtained as a weighted 
mean of the neighbouring areas with weights ijβ . Matrix A  contains the spatial 

smoothing parameters and iΓ  is the bivariate conditional covariance matrix ob-
tained for each area as the inverse of a common precision matrix Λ  times the 
number of neighbours im . With F and G  being 2 2n n×  matrices such that 

( )ijBlock= βF A  and G  block-diagonal with diagonal elements 1
i
−Γ , the joint dis-

tribution becomes: 

( ) 1
1 2( , , ..., )~ ( ,[ ] )n N −
• • •′ ′ ′ −φ φ φ 0 G I F  (8) 

Different multivariate CAR models can be obtained according to the specifica-
tion of ,   and ij iβ ΓA  matrices. The most general approach for specifying condi-
tional distributions (7) includes in the A  matrix four different smoothing pa-
rameters: the diagonal entries describe the spatial correlation characterising the 
spatial structure of each disease, while the off diagonal element describes the rela-
tionship between the considered diseases in the neighbouring areas. 

It can be shown (Jin et al., 2005) that, with matrices C and D previously speci-
fied in (4): 

( )
( )

1
1 1 11 3 12

2 3 12 2 22

( )
~ ,

( )
MVN

δ δ

δ δ

−
•

•

Λ Λ

Λ Λ

⎛ ⎞− −⎛ ⎞⎛ ⎞ ⎛ ⎞⎜ ⎟⎜ ⎟⎜ ⎟ ⎜ ⎟⎜ ⎟− −⎝ ⎠ ⎝ ⎠ ⎝ ⎠⎝ ⎠

φ 0 D W D W

φ 0 D W D W
 (9) 

where smoothing parameters 1δ , 2δ  and 3δ  are functions of model parameters 
(and in particular of the A and Λ  matrices) in a way that depend on model speci-
fication. One difficulty concerning this specification is that conditions on the 
smoothing parameters for positive definiteness of the joint distribution precision 
matrix depend on the unknown matrix Λ . This causes some difficulties both in 
determining these conditions and in implementing MCMC algorithms for model 
estimation. To avoid these difficulties different strategies have been adopted. A 
naive generalisation of the CAR distribution for the multivariate setting can be 
obtained through the assumption of equality of the spatial smoothing parameters, 
obtaining the specification that is dubbed ( , )MCAR δ Λ  in Gelfand and 
Vounatsou (2003). According to this specification, the condition for positive 
definiteness of the covariance matrix reduces to 1δ <  as in the univariate set-
ting. 

In Carlin and Banerjee (2003), the ( , )MCAR δ Λ  model is extended in order to 
allow two smoothing parameters obtaining the 1 2( , , )MCAR δ δ Λ  model via the 
Cholesky decomposition of the matrices kδ−D W  in (9). Under this specification 
conditions for positive definiteness are 1 1δ <  and 2 1δ < . A similar result is ob-
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tained in Gelfand and Vounatsou (2003) via the spectral decomposition of the 
kδ−D W  matrices. 

In Kim et al. (2001) a bivariate CAR model is built by specifying the univariate 
full conditional distributions ( , )ik il ip φ φ − •φ , where i− •φ  denotes the set of the 
two-dimensional vectors in all areas but the i-th, deriving the following joint dis-
tribution: 

1 21 1 1
1 1 1 1 2 0 3

1 2 1 1 1
2 1 2 0 3 2 2

((2 1) ) ( ) ( )
~ ,

( ) ( ) ((2 1) )
MVN

τ δ τ τ δ δ

τ τ δ δ τ δ

−− − −
•

− − − −
•

⎛ ⎞⎛ ⎞+ − − +⎛ ⎞ ⎛ ⎞
⎜ ⎟⎜ ⎟⎜ ⎟ ⎜ ⎟ ⎜ ⎟⎜ ⎟− + + −⎝ ⎠ ⎝ ⎠ ⎝ ⎠⎝ ⎠

φ 0 D W I W

φ 0 I W D W
 

The conditions on the 0 1 2 3,  ,  ,  and δ δ δ δ  for positive definiteness of the joint 
covariance matrix ( 1, 0,..., 3l lδ < = ) found in Kim et al. (2001) are sufficient 
but not necessary and extension to p-variate framework seems difficult. 

The approach proposed in Jin et al. (2005) is based on the direct specification 
of the joint distribution for the multivariate spatial process through the specifica-
tion of marginal and conditional distributions. In the bivariate setting, the joint 
distribution for the 2n-dimensional vector φ  is: 

1
1 2 2

2
( ) ( )p p p•

• • •
•

⎛ ⎞
=⎜ ⎟

⎝ ⎠

φ
φ φ φ

φ
 (10) 

where the marginal distribution 2( )p •φ  is specified as a univariate CAR distribu-

tion: 1
2 2 2~ (0,[( ) ] )N δ τ −
• −φ D W . Conditionally on 2φ , the distribution of 1φ  is 

again CAR 1
1 2 0 1 2 1 1~ (( ) ,[( ) ] )N η η δ τ −
• • + −φ φ I W φ D W . We indicate with 

1 2 0 1 1 2( , , , , , )GMCAR δ δ η η τ τ  the joint distribution of φ . The relationships be-
tween risks for the two diseases is modelled in the mean vector, where parameter 

0η  models the relationship between risks for diseases 1 and 2 in the same areas, 
while parameter 1η  captures the relationship between the risk for disease 1 and 
risks for disease 2 in the neighbouring areas. In Jin et al. (2005) a simulation study 
shows that the GMCAR model outperforms the other models briefly described in 
this section. The main drawback of the GMCAR model is that the conditioning 
order has effect on the results even if the choice of the conditioning order can be 
performed by means of some model selection criteria. We believe that, in this 
context, a “symmetric” modelling approach is more natural. 

3. A BIVARIATE CAR (BCAR) MODEL 

As an extension of the univariate CAR model (2), we start by specifying the 
bivariate full conditional distributions as: 
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, , ~ ( , )i i i iN• − • Λ Γφ φ A µ  i=1,...,n (11) 

The conditional covariance matrix is 1( )i im −=Γ Λ  where 

1
1 12 1 12

12 2 12 2

τ τ σ σ

τ τ σ σ

−
⎛ ⎞ ⎛ ⎞

= =⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

Λ . (12) 

The i-th conditional covariance matrix is scaled by the number of neighbours, 
thus the conditional variability is inversely proportional to the number of 
neighbouring areas. Each conditional mean is modelled as: 

~ ~

1
2ik k jk kl jl

j i j iim
µ α φ α φ

⎛ ⎞
= +⎜ ⎟⎜ ⎟

⎝ ⎠
∑ ∑  j,i=1,...,n j i≠ ;  l,k=1,2  l k≠  

i.e. the mean vector is modelled as a weighted mean of the risks for both diseases 
in the neighbouring areas with kα  and klα  parameters controlling the strength of 
the association. 

Now let 1 12

21 2 2 2
ij ij

ij
i i

w w
m m

α α

α α
⎛ ⎞

= =⎜ ⎟
⎝ ⎠

A A . For sake of convenience we set 

2 2ii ×= −A I . Parameters 1α  and 2α  capture the disease specific spatial depend-
ence: in what follows we set them as positive in order to avoid negative spatial 
correlation. Parameters lkα  are bridging parameters controlling the dependence 
between disease l in a given area and disease k in the neighbouring areas. Follow-
ing Mardia (1988), given the n conditional distributions, the joint distribution of 

1 2( , , ..., )n• • •′ ′ ′φ φ φ  is multivariate normal with mean 1 2( , , ..., )n• • •′ ′ ′ ′=µ µ µ µ  and co-

variance matrix 1 1[ ( )]i ijBlock − −= −Σ Γ A , provided that conditions for symmetry 
and positive definiteness are satisfied. 

The condition for symmetry of the joint covariance matrix is ij j i ji′=Γ ΓA A . It 
can be easily shown that these matrices have the same diagonal entries. Equality 
of off-diagonal entries can obtained by imposing 12 21 0( ) ( )ij j i ji α′= =Γ ΓA A  

where 12( )X  denotes the first row and second column entry of a generic matrix 
X. It turns out that off-diagonal elements of the A matrix can be set to 

0 12 1
12

2

α σ α
α

σ
−

=  0 12 2
21

1

α σ α
α

σ
−

= . (13) 

The following theorem states the conditions for positive definiteness of the 
joint covariance matrix Σ . 
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Theorem: Given the n full conditionals distributions (11), and the bridging pa-
rameters defined in (13), the joint distribution of φ  is a valid multi-normal distri-
bution provided: 

i) 
12

20 l
k

l

σ
α

σ σ
< <

+
 l,k=1,2 l k≠ ; ii) 

0 00I Sα αα< <  

where 

0 1 12 2 2 2 12 1 1max{ ( ) 2 , ( ) 2 }Iα α σ σ σ α σ σ σ= + − + −  

0 1 12 2 2 2 12 1 1min{ ( ) 2 , ( ) 2 }Sα α σ σ σ α σ σ σ= − + − +  
 
Proof: in the Appendix. 
 
While existing generalisations of the CAR distribution are shown to be valid 

using a diagonal dominance argument for the joint precision matrix 
1( )i ijBlock −−Γ A , we switch the problem to row-diagonal dominance of the non-

symmetric matrix ( )ijBlock −A . We believe that this approach is useful since the 
latter matrix has generally a simpler structure with respect to the precision matrix. 
This conditional specification leads to the following joint distribution: 

1
1 1 1 3 12

2 3 12 2 2

( ) ( )
, ~ ,

( ) ( )
N

δ τ δ τ

δ τ δ τ

−
•

•

⎛ ⎞− −⎛ ⎞ ⎛ ⎞ ⎛ ⎞
⎜ ⎟⎜ ⎟ ⎜ ⎟ ⎜ ⎟⎜ ⎟− −⎝ ⎠ ⎝ ⎠⎝ ⎠ ⎝ ⎠

Λ
φ 0 D W D W

A
φ 0 D W D W

 (14) 

where: 

2 2
0 12 ( 1)k k lδ α α τ ρ ρ α= − − +  k,l = 1,2   k l≠  

2

3 1 2 0 12 2
1ρ

δ α α α τ
ρ

⎛ ⎞−
= + − ⎜ ⎟

⎝ ⎠
 

Here 2 2
12 1 2/ρ τ τ τ=  denotes the conditional correlation coefficient between 

the risks in a given area. Thus the disease specific smoothing parameters kδ , 
k=1,2, generated by the bivariate model are obtained as the univariate smoothing 
parameters kα , k=1,2, modified by the further smoothing parameters in the A  
matrix. The effect of such modification increases if the between diseases correla-
tion increases. If Λ  is diagonal, the prior distribution for kα  does not depend on 
Λ  and the usual condition for positive definiteness in the univariate setting is re-
covered. The upper bound is 2 instead of 1 because the scaling factor in the con-
ditional mean is 1/2 im  instead of 1/ im . Otherwise, the upper bound is lower 
than 2. 
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3.1. Bivariate disease mapping using the BCAR prior 

In what follows we describe how the BCAR distribution can be used in the 
context of bivariate disease modelling. Conditionally on the model parameters, 
counts are modelled as independent Poisson variables: 

~ ( )ik ik il ikY Poisson eθ θ  i=1,...,n  k=1,2 

where ikθ  denotes the relative risk in the i-th area for the disease k which is mod-
elled as follows: 

log( )ik k ikθ γ φ= +  

where kγ  is a disease specific intercept and ikφ  denotes the spatial random effect. 
For 2-dimensional column vector vectors i•φ  the BCAR prior distribution (11) is 
employed. Model hierarchy is completed via prior specification. 

The set of hyperparameters for which a prior distribution has to be specified is 
constituted by the conditional precision matrix Λ  and by the smoothing parame-
ters in the A  matrix. Since the latter depends on the elements of the Λ  matrix, 
we first specify a prior distribution for this matrix as 

~ ( , )Wishart dΛ R . 

Prior distributions for the disease specific smoothing parameters are specified 
conditionally on Λ  as uniform distributions with a stochastic extreme. 

12

2~ 0,   , 1, 2l
k

l

U l kσ
α

σ σ

⎛ ⎞
=⎜ ⎟⎜ ⎟+⎝ ⎠

Λ  (15) 

Conditionally on Λ , 1α  and 2α , the prior distribution for 0α  is specified as a 
uniform distribution with stochastic extremes determined in the theorem above. 

0 00 1 2, , ~ ( , )U I Sα αα α αΛ  (16) 

Since posterior distribution are not obtainable analytically, MCMC methods 
have to be implemented for model estimation. We implemented our model in the 
OpenBugs software. Distributions available in OpenBugs for spatial smoothing 
(car.normal and car.proper) can not be used to implement the BCAR model since 
we specify conditional distributions for the spatial effects associated with both 
diseases. Moreover, we point out that the variance of the conditional normal dis-
tribution (11) is a function of Λ  and not Λ  itself. For this reason, since the 
Wishart distribution available in OpenBugs can only be used as a prior for a nor-
mal distribution covariance matrix, it was necessary to build the Wishart prior by 
using a “trick” for specifying a new prior distribution within the OpenBugs soft-
ware (the code is available on request from the authors). We tested this “trick” in 
a controlled setting (not reported) to assess its right functioning. 
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4. A SIMULATION STUDY 

For evaluating the performances of the BCAR distribution, we perform a 
simulation study and compare results obtained with the BCAR model with results 
obtained by estimating the GMCAR model that has been shown to perform bet-
ter than other proposed models for multivariate areal data. 

The simulation study is based on a spatial grid of n=95 areas constituted by a 
subset of the Emilia Romagna Region municipalities. The simulation experiment 
follows closely the design proposed in Jin et al. (2005). Model performances are 
evaluated by simulating data from a Normal-Normal model instead of from a 
Poisson log-Normal model in order to speed up computation. We assume that 
data ikY  arise from a Gaussian model: 

2 2, ~ ( , )ik ik ikY Nθ υ θ υ  i=1,...,n, k=1,2 (17) 

ik k ikθ γ φ= +  i=1,...,n, k=1,2 (18) 

where kγ  are fixed constants indicating the mean for the vector k•θ  in the study 
region and ikφ  is a zero-mean spatial random effect in the i-th area. 

We perform two different simulation studies. In Study 1 we generate spatial 
random effects from the GMCAR model described in section 2, i.e. 

1 2 1 2 0 1 1 2( , )~ ( , , , , , )GMCAR δ δ η η τ τ• •φ φ . True parameter values are shown in 
Table 1. 

TABLE 1 

Study 1, φ  simulated from the GMCAR model 

 1γ  2γ  1τ  2τ  0η  1η  2υ  1δ  2δ  
Setting 1 -2 -5 10 10 0.9 0.5 0.01 0.2 0.9 

 

This setting corresponds to true parameter values set in Jin et al. (2005).  
In Study 2 we generate spatial random effects 1 2( , , ..., )n• • •′ ′ ′φ φ φ  from the BCAR 

model (14) with true parameters values reported in Table 2. We stress that the in-
terpretation of the true smoothing parameter values is different in the two stud-
ies, due to their range and to the way they enter the joint posterior distribution. 

TABLE 2 

Study 2, φ  simulated from the BCAR model 

 1γ  2γ  1τ  2τ  12τ  2υ  1α  2α  0α  

Setting 1 -2 -5 10 10 -6 0.01 1.2 1.2 0.2 
Setting 2 -2 -5 30 10 -10 0.01 1.2 1.2 0.09 
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Study 2 is conceived in order to maintain the conditional linear correlation be-
tween 1•φ  and 2•φ  equal to .6 for both settings. In setting 1 the values of (13) are 

12 21 .56α α= =  while in setting 2 12 .2α =  and 21 .6α = . Thus in setting 1 the re-
lationship between 1•φ  and 2•φ  is symmetric, while in setting 2 the relationship is 
not symmetric. Moreover, even if the conditional linear correlation between 1•φ  
and 2•φ  is the same in the two settings, in setting 2 1•φ  is more variable than in 
setting 2: this help us in evaluating the effect of unbalanced dispersions on the 
results. It is worth noting that this happens in Study 1, where unconditional vari-
ances are unbalanced even if 1 2τ τ=  because of the different role of these pa-
rameters: one is conditional while the other is unconditional. 

We simulated T=500 data sets for each setting. For each simulated data sets we 
estimated the GMCAR model and the BCAR model. At data level both models 
are specified as in (17) and (18). As prior distributions for parameters υ  and kγ , 

(1,0.1)IG  and (0,10)N  are respectively assumed. Specification for the compared 
models differs only for the prior distribution on the spatial random effects. Thus 
for the GMCAR model the prior 1 2 1 2 0 1 1 2( , )~ ( , , , , , )GMCAR δ δ η η τ τ• •φ φ  is 
used. Normal (0,10)N  priors are specified for parameters 0η  and 1η . Vague 
Gamma priors, specifically (1,0.1)G , are assigned to precision parameters 1τ  and 

2τ , while uniform (0,1)U  priors are assigned to smoothing parameters 1δ  and 

2δ . GMCAR model is estimated using the OpenBugs code made available at the 
website www.biostat.umn.edu/~brad/software.html.  

As regards prior specification for the BCAR model, we specify full condition-
als distributions for spatial random effects as 1, , ~ ( , )i i i iN −

• − • Λ Γφ φ A µ  as dis-
cussed in section 3.1. A Wishart distribution is used for the Λ  matrix, i.e. 

~ ( , 2)WishartΛ I , where I is the 2 2×  identity matrix and 2 are the smallest pos-
sible number of degrees of freedom in order to express vague prior beliefs; prior 
distributions for the smoothing parameters are specified conditionally on the Λ  
matrix as in (15) and (16). 

For each simulated data set and for each model, inference is based on 10.000 
samples from the MCMC algorithm, after a burn-in of 15.000 iterations. 

Model performances are compared via Deviance Information Criterion (DIC) 
(Spiegelhalter et al., 2002) and Average Mean Squared Error (AMSE). DIC is a 
model selection criterion according to which the model performance is evaluated 
as the sum of a measure of fit, the posterior mean of the deviance 

[ 2 log( ( ))]D E f y parameters= − , and a measure of complexity, the effective 
number of parameters Dp , obtained as the difference between the deviance pos-
terior mean and the deviance evaluated at the parameters posterior mean. Thus 

DDIC D p= + : a model is preferred if it shows a lower DIC value. 
For each simulation setting, the AMSE is obtained as the mean of squares of 
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differences between true ( t
ikθ ) and estimated values for each simulated data set 

( ˆt
ikθ ), t=1,...,T: 

2
2

1 1 1

ˆ1 ( )
2

T n
t t
ik ik

t k i
AMSE

Tn
θ θ

= = =

= −∑∑∑  

We estimated the GMCAR model in both conditioning orders and we selected 
the best performing GMCAR conditioning order in terms of DIC. Tables 3 and 4 
show model comparison in terms of DIC for the two simulation studies. In these 
tables, we report the percentiles of the DIC values for the true model (bold) over 
the simulated data sets. For the antagonist model, the percentiles of DIC differ-
ences with respect to the true model are reported. DIC statistics are reported 
separately for each vector k•θ  and for the 2n dimensional vector θ . 

As regards study 1, DIC values for the BCAR model appear satisfactory when 
compared with those of the true model, since the distributions of the estimated 
DIC differences include 0 between the 2.5th and the 97.5th percentiles. 

TABLE 3 

Percentiles of DIC for the GMCAR (true) model, reported in bold. 
Percentiles of DIC differences between GMCAR model and the BCAR model (Study 1) 

   k=1   k=2   Total  
Data Model 2.5% 50% 97.5% 2.5% 50% 97.5% 2.5% 50% 97.5% 
S1 GMCAR -62.18 -45.83 -29.05 -94.63 -77.39 -61.34 -159.44 -122.55 -93.67 
S1 BCAR -8.98 7.60 26.30 -6.26 8.96 24.45 -15.16 17.29 50.46 

 
This is confirmed from model comparison by means of AMSE. Table 5.1 

shows AMSE values for simulation study 1 obtained by the GMCAR model and 
percentage variation in AMSE obtained by the BCAR model. As can be noticed, 
performances of the BCAR model in study 1 are worst in terms of AMSE, mainly 
because of a considerable increase in AMSE for k=1, the one characterised by 
higher marginal variability. 

TABLE 4 

Percentiles of DIC for the BCAR (true) model, reported in bold. 
Percentiles of DIC differences between BCAR model and the GMCAR model (Study 2) 

   k=1   k=2   Total  
Data Model 2.5% 50% 97.5% 2.5% 50% 97.5% 2.5% 50% 97.5% 
S1 BCAR -88.37 -73.66 -53.67 -89.52 -74.32 -56.78 -149.43 -119.26 -89.76 
S1 GMCAR 9.22 21.12 39.04 9.82 22.01 41.58 19.18 42.89 80.47 
S2 BCAR -122.30 -111.30 -94.15 -96.02 -86.25 -72.65 -220.19 -198.22 -170.87 
S2 GMCAR 2.03 8.03 20.97 7.58 15.42 29.75 10.59 23.73 50.76 

 
As regards study 2, in both settings the BCAR model shows better perform-

ances in terms of DIC (Table 4) and AMSE (Table 5.2). Differences between the 
BCAR and GMCAR model reduce in setting 2 where vectors 1•θ  and 2•θ  are 
characterised by different conditional variances. 
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TABLE 5 

Percentage changes in Average mean squared error of: BCAR model relative to GMCAR (true) model (Panel A) 
Percentage changes in Average mean squared error of: GMCAR model relative to BMCAR (true) model (Panel B) 

Panel A  Panel B 
Data Model K=1 k=2 Total  Data Model K=1 k=2 Total 
S1 GMCAR 0.00946 0.00674 0.00810  S1 BCAR 0.00746 0.00760 0.00753 
S1 BCAR 17.31% 1.47% 10.72%  S1 GMCAR 19.10% 36.84% 28.05% 
      S2 BCAR 0.00490 0.00762 0.00626 

      S2 GMCAR 4.17% 12.95% 9.52% 

 

We stress that in Study 1 and in Setting 2 of Study 2, marginal variances of spa-
tial random effects 1•φ  and 2•φ  are unbalanced. Under this circumstances, the 
GMCAR model performances are better for the vector with lower marginal vari-
ance ( 2•θ  in Study 1 and 1•θ  in Setting 2 of Study 2). 

When vectors 1•φ  and 2•φ  are characterised by the same marginal variance 
and by the same spatial structure (Study 2 Setting 1), GMCAR model shows sen-
sibly worse performances with respect to the BCAR model both in terms of DIC 
and AMSE. Moreover, the BCAR model performances are comparable for vec-
tors 1•θ  and 2•θ , for which we obtain broadly the same values of DIC and 
AMSE, in agreement with the true parameters values that specify the same struc-
ture for the populations generating 1•θ  and 2•θ . This is not true when GMCAR 
model is estimated: different performances are obtained for vectors 1•θ  and 2•θ  
due to the conditional nature of the model specification. 

5. APPLICATION 

In this section two real case studies are examined. Data refer to death counts 
observed from 1998 to 2001 in the 341 municipalities of the Emilia Romagna Re-
gion. We consider bivariate spatial modelling for diseases reported in the follow-
ing table. 

The case studies differ in the SMR relative variability and between-diseases 
correlation. As shown in Table 6, in both case studies, Standardised Mortality Ra-
tios (SMR) show positive correlation. Moreover, while in Case Study 1 SMRs ex-
hibit broadly the same relative variability (broadly similar Coefficients of Varia-
tion (CV)), in Case Study 2, SMR’s exhibit different Coefficients of Variation and 
a lower correlation with respect to Case Study 1. 

TABLE 6 

Analysed case studies: summary statistics 

 Case Study 1 Case Study 2 
Disease Cirrhosis  

(1) 
Liver cancer  

(2) 
Respiratory System 

(1) 
Genitourinary 

System (2) 
SMR’s Coefficient of variation 0.63 0.58 0.30 0.58 
Correlation between SMRs 0.39 0.20 
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For each disease, expected counts ike , i=1,..,341, k=1,2, are obtained via inter-
nal standardisation by applying the overall Emilia Romagna sex-age specific dis-
ease rates to the municipalities population. The considered diseases are rare rela-
tive to the population in each municipalities, then spatial smoothing of relative 
risk is needed. As outlined in section 3.1, we assume that: 

~ ( )ik ik ik ikY Poisson eθ θ  i=1,...,341 k=1,2 
log( )ik k ikθ γ φ= +  

where ikθ  denotes the relative risk in area i for disease k, kγ  is a disease-specific 
intercept and ikφ  is the spatial random effect. We use tree different distributions 
for modelling the zero mean spatial random effects 1 2( , )• •=φ φ φ : 

– the BCAR distribution; 
– the GMCAR distribution; 
– the GMCAR with 0 1 0η η= =  which give rise to univariate CAR models. 
We chose priors for BCAR and GMCAR distributions strictly following the 

specification described in section 4. Inference is based on 10.000 samples from 
the MCMC algorithm, after 15.000 burn-in iterations for all the estimated models. 
Convergence has been checked via the graphical examination of the trace plots of 
sample values versus iteration and of the autocorrelation plot in each chain. A 
major drawback of the BCAR distribution is that computation times are about 6 
time higher with respect to computation time when using the GMCAR distribu-
tion. 

As shown in Figure 1, convergence of the elements of the smoothing parame-
ters matrix A is satisfactory, as well as convergence of the parameter 0α  in both 
case studies. 

In Table 7, summary statistics of the parameters posterior distributions are re-
ported. We observe that bridging parameters 12α  and 21α  are significantly greater 
than zero, indicating that the model captures a significant correlation between the 
spatial processes characterising the considered diseases: this supports the use of 
joint modelling for the considered diseases. The main difference between the two 
case studies lies in the fact that, in Case Study 2, one disease (Genitourinary Sys-
tem diseases) shows a weaker spatial structure: this is captured by the small value 
of parameter 2α  posterior mean. For this disease, a considerable spatial borrow-
ing strength mechanism from the Respiratory System diseases distribution is re-
flected by the high value of parameter 21α  posterior mean. 
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Figure 1 – Chains trace plot of the A matrix and 0α  parameters for Case Studiy 1 (left column) and 
Case Study 2 (right column). 
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TABLE 7 

Posterior summaries of the BCAR model parameters 

 Case Study 1 Case Study 2 
 Posterior Mean 95% Posterior C.I. Posterior Mean 95% Posterior C.I. 

1α  1.054 0.244 – 1.546 1.374 0.753 – 1.748 

12α  0.801 0.339 – 1.559 0.458 0.053 – 1.091 

2α  1.231 0.518 – 1.618 0.639 0.024 – 1.431 

21α  0.656 0.279 – 1.334 0.965 0.249 – 1.723 

0α  0.372 0.197 – 0.579 0.137 0.049 – 0.225 

1γ  -0.050 -0.149 – 0.055 -0.029 -0.088 – 0.021 

2γ  0.016 -0.089 – 0.122 -0.007 -0.071 – 0.051 

1σ  0.340 0.234 – 0.463 0.113 0.076 – 0.159 

12σ  0.129 0.054 – 0.227 0.048 0.013 – 0.089 

2σ  0.309 0.191 – 0.452 0.172 0.099 – 0.281 

 

In what follows we focus on comparison of results obtained by univariate, 
BCAR and GMCAR models. Model performances are compared in terms of 
DIC. Moreover, in order to asses the plausibility of the estimated models, we 
make use of a posterior predictive Bayesian p-value (Gelman et al., 1996) based 
on the following measure of fit proposed in Brooks et al. (2000) suitable for rare 
occurrences: 

( )
341 2

1
k ik ik ik

i
D Y e θ

=

= −∑  k=1,2 (19) 

Let rep
ikY  denote counts in area i for disease k sampled from the posterior predic-

tive distribution; Bayesian p-values are calculated as ( )rep
k k kp P D D= ≥ Y  where 

kD  and ( )341 2

1

rep rep
k ik ik ik

i
D Y e θ

=

= −∑  are computed at each iteration of the MCMC 

algorithm and pk is computed as the frequency of iterations where rep
k kD D> . Ex-

treme values of pk suggest inconsistencies between the model and actual data. 
Results concerning DIC and p-values for both case studies are reported in Ta-

ble 8, separately for each disease. In fact our aim is to underscore different model 
performances on the couples of diseases considered in the case studies. 

Furthermore, in the last row of Table 8, we report the posterior correlations 
between the relative risks posterior means of diseases 1 and 2 to see the effect of 
joint modelling on the estimated spatial distribution. In fact, differences between 
these correlations obtained respectively via univariate and bivariate modelling can 
help to evaluate the similarity inducted by joint modelling on the relative risks 
spatial distribution. As regards GMCAR model, we estimated the model in both 
conditioning orders and we selected the best performing GMCAR conditioning 
order in terms of DIC: in Case Study 1 disease 2 is modelled conditionally on dis-
ease 1 while in Case Study 2 disease 1 is modelled conditionally on disease 2. 



A bivariate CAR model for improving the estimation of relative risks 343 

TABLE 8 

Some measures of model performances 

  Case Study 1 Case Study 2 
  BCAR GMCAR Univariate BCAR GMCAR Univariate 
 Deviance 1597 1612 1607 2063 2069 2071 
 pD 120.0 103.1 114.5 134.6 127.9 130.6 
Disease 1 DIC 1717.0 1715.1 1721.5 2197.6 2196.9 2201.6 
 p-value 0.19 0.09 0.15 0.38 0.41 0.44 
 Deviance 1543 1537 1546 1474.82 1489 1494 
 pD 99.7 107.3 105.3 58.3 41.8 53.0 
Disease 2 DIC 1642.7 1644.3 1651.3 1533.1 1530.8 1547.0 
 p-value 0.59 0.66 0.58 0.80 0.94 0.95 
 COR++ 0.91 0.92 0.78 0.86 0.95 0.46 
++ Correlation between relative risks posterior means 

 
In both case studies, bivariate models show comparable performances in terms 

of DIC while univariate models show slightly higher DIC values. This is in 
agreement with the fact posterior credibility intervals for the bridging parameters 
shown in Table 7 do not include zero. 

We observe that the total effective number of parameters (pD) is in both case 
studies higher for the BCAR model with respect to the GMCAR model even if 
the two prior distributions have the same number of parameters. The reason be-
hind this is still unclear to us and will be object of future researches. 

For each model, DIC referring to the considered diseases are not comparable, 
in fact DIC is a measure of fit suitable to compare model performances on the 
same data. Different behaviours of the considered models on each disease can be 
checked by comparing Bayesian p-values. As regard BCAR model, Bayesian p-
values show satisfactory values for both diseases in both case studies. Bayesian p-
values obtained by the GMCAR model show quite extreme values for the condi-
tioning disease. This reveal a more “symmetric” borrowing strength mechanism 
when the BCAR distribution is used. 

In the reported applications, posterior correlations obtained with the BCAR 
model assumes values lying between the posterior correlation obtained with uni-
variate model (lowest) and GMCAR model (highest). More specifically, in Case 
Study 2 correlation obtained with the GMCAR model is close to 1: this could be 
due to a strong attraction of the unconditionally modelled disease on the condi-
tionally modelled disease. We note that, as reported in Table 6, correlation be-
tween SMRs is higher in Case Study 1 than in Case Study 2. This ordering is re-
produced by BCAR and univariate models while for the GMCAR model the cor-
relation between relative risks posterior means is higher in Case Study 2 than in 
Case Study 1. 

6. CONCLUDING REMARKS 

In this paper we propose a bivariate CAR model for areal data. The model is 
built by specifying full conditionals bivariate distributions. Model development 
strictly follows the theory of multivariate MRF as stated in Mardia (1988). In this 
context, difficulties arise because conditions for symmetry and positive definite-
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ness of the joint distribution covariance matrix depend both on the conditional 
covariance matrix Λ  and on the matrix of smoothing parameters A , whose val-
ues depend on the Λ  matrix as well. In Gelfand and Vounatsou (2003) it is 
claimed that this make model fitting practically intractable. We approach these 
problems by specifying prior distributions for the elements of the A  matrix con-
ditionally on the matrix Λ . Our approach is non-standard in that we obtain suffi-
cient conditions for positive definiteness by working on the non-symmetric ma-
trix ( )ijBlock −A  by using a theorem stated in Carlson (1965). On one hand this 
makes the problem tractable and on the other hand this allows obtaining a joint 
covariance matrix that is positive definite even if it is not necessary diagonally 
dominant. By means of a simulation experiment and a couple of data examples 
we show the effectiveness of the BCAR model when compared with the 
GMCAR model that has been shown to perform better than other proposed 
models for multivariate areal data. 

The work can be extended in two main directions. First of all the conditions 
we found are shown to be sufficient but it is not clear how far they are from nec-
essary conditions. This may be important in applied contexts because conditions 
could not allow to properly capture all the spatial information characterising the 
data generating process. Moreover the extension of the proposed model to the 
case 2p >  is non trivial and well be object of future research. 
 
Department of Statistics “P. Fortunati” FEDELE GRECO 
University of Bologna CARLO TRIVISANO 

APPENDIX 

Proof: Following Mardia (1988), a sufficient condition for matrix Σ  to be posi-
tive definite is that the non-symmetric matrix ( )ijBlock −A  is positive definite, 
where: 

2 2 12 1 1

21 2 2 2 2

1 2 2 2

( )

j n

j n
ij

n n nj

Block

×

×

×

− − −⎡ ⎤
⎢ ⎥− − −⎢ ⎥− =
⎢ ⎥
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We derive conditions for row diagonal dominance of matrix ( )ijBlock −A . 
Note that, for a generic odd row, diagonal dominance requires that 

1 12 121

1 1

1
2 2 2 2

n n
ij ij

j i j ii i
j j

w w
m m

α α αα

≠ ≠
= =

> + = +∑ ∑ . (A.1) 
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Diagonal dominance for a generic even row requires that 

2 21 212

1 1

1
2 2 2 2

n n
ij ij

j i j ii i
j j

w w
m m

α α αα

≠ ≠
= =

> + = +∑ ∑ . (A.2) 

In both equations (A.1) and (A.2), absolute values for parameters 1α  and 2α  
are dropped since those parameters are restricted to be positive.  

Conditions for row diagonal dominance are derived for parameters 1α  and 

2α , by posing 0 0α =  (in order to obtain conditions independent by 0α ). 

122 l
l lk l

k

α σ
α α α

σ
> + = +  l,k=1,2   l k≠ ; 

which, solved with respect to lα  gives the following conditions on 1α  and 2α  
which do not depend by 0α : 

12

20 k
l

k

σ
α

σ σ
< <

+
. 

Condition on 0α  is derived as a function of 1α  and 2α  in order to preserve 
row diagonal dominance, i.e. by imposing that 2 l lkα α> +  l,k=1,2 l k≠ .We 
obtain that parameter 0α  must satisfy at the same time: 

0 1 12 2 2 1 12 2 2[ ( ) 2 ; ( ) 2 ]α α σ σ σ α σ σ σ∈ + − − +  

0 2 12 1 1 2 12 1 1[ ( ) 2 ; ( ) 2 ]α α σ σ σ α σ σ σ∈ + − − +  

It turns out that 0α  must satisfy condition 
0 00I Sα αα< < . 

Gershgorin’s disc theorem (Horn and Johnson, 1990) allows determining a re-
gion where eigenvalues of a complex square n n×  matrix lie. More precisely, for 
non symmetric matrices, the eigenvalues lie in the intersection of two regions. 
The first region is determined by the union of the n discs centered at each (posi-
tive) diagonal elements and with radius given by the sum of the absolute values of 
the off-diagonal elements of the row. The second region is determined by the un-
ion of the n discs centered at each (positive) diagonal elements and with radius 
given by the sum of the absolute values of the off-diagonal elements of the  
column. Thus, because of row diagonal dominance of matrix ( )ijBlock −A , 
Gershgorin’s disc theorem implies that its eigenvalues lie in the half right plane, 
that is they have positive real part even if they could be complex since 

( )ijBlock −A  in non-symmetric. There is to show that eigenvalues are real. Note 
that 
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1
1 2[  diag( , , ..., )][ ( )] [ ( )]n ij ijBlock Block Block− = − = −Σ Γ Γ Γ A G A  

This means that an hermitian positive definite matrix G  exists such that prod-
uct 1−Σ  is hermitian. Moreover, ( ) 2rank n=G . As stated in Carlson (1965), this 

implies that matrices 1−Σ  and ( )ijBlock −A  have the same number of positive ei-

genvalues, then 1−Σ  is hermitian with positive eigenvalues and is positive definite. 
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SUMMARY 

A bivariate CAR model for improving the estimation of relative risks 

Disease mapping studies have been widely performed at univariate level, that is consid-
ering only one disease in the estimated models. Nonetheless, simultaneous modeling of 
different diseases can be a valuable tool both from the epidemiological and from the sta-
tistical point of view. In this paper we propose a model for bivariate disease mapping that 
generalises the univariate CAR distribution. The proposed model is proven to be an effec-
tive alternative to existing bivariate models, mainly because it overcome some restrictive 
hypotheses underlying models previously proposed in this context. Model performances 
are checked via a simulation study and via application to some real case studies. 

 
 
 




