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EDGEWORTH AND CORNISH FISHER EXPANSIONS 
AND CONFIDENCE INTERVALS FOR THE DISTRIBUTION, 
DENSITY AND QUANTILES OF KERNEL DENSITY ESTIMATES 

C.S. Withers, S. Nadarajah 

1. INTRODUCTION 

Our aim here is to present nonparametric confidence intervals (CIs) for densi-
ties on ℜ based on kernel estimates. Suppose we have a random sample 

1 , ..., nX X  of size n on ℜ with empirical distribution ˆ ,( )F x  from a distribution 
X∼F(x) with density 0( )f x  and derivatives 0( ), 1, 2,...rf x r⋅ =  finite at some 
point 0x . Let K(z) be a function on ℜ with the finite values 

( ) ( )r i
ri riB B K z K z dz= = ∫  for r=0,1,..., i=1,2,... and 01 1B = . The kernel estimate 

for 0( )f x  of kernel K and bandwidth (or smoothing) parameter h is 

1
0 0 1

1

ˆ ˆ( ) ( ) ( ) ,
n

h i
i

f x K x y dF y n U−

=

= − = ∑∫  (1) 

where 1( ) ( / )hK x h K x h−=  and 1 0( )i h iU K x X= − . The bandwidth ( )h h n=  is 
assumed to satisfy 0h →  as n → ∞ . This estimate has mean 

0 0 0 1
0

( , ) ( ) ( ) ( ) ( ) ( )( ) / !.r
h h r r

r
T F K K x y dF y K z f x hz dz f x h B r

∞

⋅
=

= − = − = −∑∫ ∫  

(2) 

Note that the existence of the full Taylor series in (2) is not needed for the results 
in this paper. The boundedness of the required number of derivatives of f is suf-
ficient to validate the results presented. 

Now suppose that the kernel K is of order p≥1, that is, 1 0rB =  for 1≤r<p and 

0rpB ≠ . So, 0 0
ˆ( ) ( ) ( )pEf x f x O h= + . Also 0 0 02

ˆ{ ( )} { ( ) ( )}/( )var f x f x B O h nh= +  
so its minimum asymptotic mean square error (AMSE) is 

2
0 0

ˆ| ( ) ( )| ( )E f x f x O n γ−− =  for 2 /(2 1)y p p= +  and is obtained by choosing 



 C.S. Withers, S. Nadarajah 282 

h cn α−=  (3) 

for 0c >  and 1/(2 1)pα = + . This rate y  holds of course for any 0c > , not just 
the AMSE-optimal 0( , )c c f x=  say. Compare Parzen (1962). (Allowing c to de-

pend on 0x  means that 0
ˆ( )f x  no longer integrates to one.) In fact, this choice 

of α achieves minimum asymptotic integrated MSE (AIMSE) 

2ˆ| ( ) ( )| ( )E f x f x dx O n γ−− =∫  (4) 

under suitable regularity conditions for 2 /(2 1)y p p= +  and 0c > , not just the 
AIMSE-optimal ( )c c f=  say. See Theorem 2.1.7 of Prakasa Rao (1983), and (3.4) 
of Terrell and Scott (1992). Using either AMSE or AIMSE, optimal c can be es-
timated using an initial estimate for f. See, for example, Scott et al. (1977). How-
ever, the use of such an estimate may destroy its optimality property. 

Kernel estimates were introduced by Rosenblatt (1956). Since then there has 
been a huge literature on the subject. We mention only a few here. Silverman 
(1986) and Terrell and Scott (1992) show that the gain in optimizing c is generally 
not great compared with fixed c estimators. For example, the latter have asymp-
totic efficiency about 0.9 or 0.8 for f normal or Cauchy. (Terrell and Scott (1992) 
scale K so that 1 1pB = ± .) Prakasa Rao (1983) has many related results. For ex-

ample, some give convergence rates for ˆ| ( ) ( )|xsup f x f x− . See Theorems 
2.1.10, 12, 15 and 20 and Theorems 2.2.3 and 2.2.4 for similar results. Silverman 
(1986) and Terrell and Scott (1992) also consider estimates of the form 

0 ( ) 0
ˆ( ) ( ) ( )h yf x K x y dF y= −∫�  for hK  of (1). When 2p =  one can choose h(y) 

to achieve (4) as if 4p = , that is with 8/9y = . Optimizing c is one way of decid-
ing how to choose h or equivalently how to scale K. Another way is to replace h 
by 1/2

2( ) ( )n nh F cn Fα µ−= , where 2( )Fµ  is the variance and nF  the empirical dis-
tribution. One can show that this does not affect the optimal rate γ. Silverman 
(1986, page 45) suggests this with 1/(2 1)pα = +  for 2p =  and 1.06c = . 

Turning now to CIs for 0( )f x , the AMSE and AIMSE criteria are no longer 
relevant. The obvious criterion is to minimise the coverage error - the difference 
between the actual coverage probability and the nominal level of the CI - or 
rather the asymptotic coverage error (ACE). Theorem 2.1.18 of Prakasa Rao (1983) 
gives a consistent CI for 0( )f x  but the ACE is not given. The first order CIs are 
based on Studentizing. Their optimal bandwidth h again has the form (3), giving 

( )ACE O n β−= . We shall refer to β  as the ACE rate. Its possible values are 
0β > . 

The contents of this paper are organized as follows. Section 2 provides Edge-
worth and Cornish Fisher expansions for Studentized versions of the kernel den-
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sity estimate, 0
ˆ( )f x , and its extensions. These expansions are used to derive 

various CIs for 0( )f x . Section 3 derives first order one- and two-sided CIs using 
asymptotic Studentization ( 1)ε =  and empirical Studentization ( )pε = , where ε is an 
indicator variable. Section 4 derives second order one- and two-sided CIs. Section 
5 considers choosing the ACE-optimal constant c in (3) for first order CIs based 
on empirical Studentization. Finally, some conclusions are noted in Section 6. 

2. CORNISH FISHER EXPANSIONS 

Here, we lay the groundwork by showing that the kernel density estimate has 
Cornish-Fisher expansions with parameter m=nh. Moments and cumulants of the 
kernel estimate 0

ˆ( )f x  in (1) are derived in Section 2.1. These quantities are used 
in Sections 2.2–2.5 to provide Cornish Fisher expansions for Studentized ver-
sions of 0

ˆ( )f x . Section 2.2 derives Cornish Fisher expansions for 

1/2 1/2
1 1 2ˆ( ) ,n hY m w w k−= −  (5) 

where 1 0( )w f x= , 1 0
ˆˆ ( )w f x= , 1 0( )hU K x X= − , 1( )rh r Uκ κ=  and 

1r
rh rhk h κ−= . Section 2.3 derives Cornish Fisher expansions for 

1/2 ˆ( ),nY m W W= −  (6) 

where 1( , ..., )qW w w ′= , 1
ˆ ˆ ˆ( , , )qW w w ′= " , q 1≥ , ( , )i

ih hw T F K= , ( ) ( )i iK z K z=  

and ˆˆ ( , )i
ih hw T F K= . Note that we have suppressed the dependency of ihw  on h 

by simply writing iw  for ihw . Section 2.4 derives Cornish Fisher expansions for 

1/2 1/2
0 21

ˆ( ( ) ( )) ,nY m t W t W a −= −  (7) 

where ( )t W  is a real function with finite derivatives and satisfies the asymptotic 
expansion (see (19) and Withers (1982)): 

1

ˆ( ( )) i
r ri

i r
t W a mκ

∞
−

= −

≈ ∑  (8) 

for r 1≥  and for certain bounded functions ( )ri riha a w=  given by Withers (1982). 
Finally, Section 2.5 derives Cornish Fisher expansions for 

1/2
1

ˆ( )nY m t W=  (9) 

for 1/2
1 0 2

ˆ( )  ( ( )) ht W w f x k−= −  and 2
ˆ

hk  an estimate of 2hk . 
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The expansions given are “formal”. We have given the expansions in the full-
est possible forms - rather than say to the first or the second order - because they 
could lead to better approximations and have wider applicability. Often expan-
sions give better approximations even if they diverge. We have not attempted to 
check the existence or the validity of the expansions. Some Cramer-type condi-
tions and conditions on differentiability may be required to ensure existence and 
validity, see, for example, Hall (1992) and Garcia-Soidan (1998). This task is be-
yond the purpose of the present paper. 

2.1 Moments and cumulants 

The estimate 0
ˆ( )f x  of (1) can be viewed as the mean of a random sample of 

size n, where each observation of the sample is distributed as 1U . Its ith moment 
is 

1
1 0( ) ( ) .i i i

ih h ihm EU K x y dF y h w−= = − =∫  

By (2), 

0
0

( ) ( ) / !r
ih r ri

r
w f x B h r

∞

⋅
=

= −∑  (10) 

 0 ( )iw O h= +  (11) 

for 0 0( ) ( )i
iw f x K z dz= ∫ . So, ihw  is of magnitude 1 and 1( )i

ihm O h −= . Typi-

cally K is symmetric so that (10) is a power series in 2h . Both parametric and 
nonparametric approaches, using ŵ and ˆ ,F  have their merits. We can view ˆ iw  as 
the mean of a random sample of size n, where each observation of the sample is 
distributed as 

1
0 0( ) (( )/ ) .i i

i hU K x X h K x X h−= − = −  (12) 

The rth cumulant of 1ŵ  is given by 

1 1
1ˆ( ) .r r

r rh rhw n m kκ κ− −= =  (13) 

The moments and cumulants of ŵ are polynomials in h and w. An expression 
for the general ( )rh rhk k w=  as a polynomial in h and w is given in Appendix B. 
One can now use (10) to expand rhk  as a formal power series in h with coeffi-
cients functions of the derivatives of f at 0x . Note that rhk  is bounded as 0h →  
and 
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1
0 0 00

lim ( ) .r
r rh rh

k h m f x B−

→
= =  (14) 

2.2 Cornish Fisher expansions for (5) 

By (13), 0
ˆ( )f x  behaves like the mean of a random sample of size m nh=  with 

rth cumulant rhk . (Hall (1992, page 211) gave a heuristic justification for this.) By 

(13), the cumulants of 1 0
ˆˆ ( )w f x=  satisfy the Cornish-Fisher assumption with re-

spect to m nh= . That is 1
1ˆ( ) ( )r

r w O mκ −=  as m → ∞ . So, the distribution of nY  
in (5) satisfies the Cornish-Fisher expansions 

( ) ( )n nP x P Y x= ≤  ≈ /2

1
( ) ( ) ( , ),r

r rh
r

x x m h xφ λ
∞

−

=

Φ − ∑  (15) 

( )/ndP x dx  ≈ /2

1
( ) ( , ),r

r rh
r

x m h xφ λ
∞

−

=
∑  (16) 

1( ( ))nP x−Φ  ≈ /2

1
( , ),r

r rh
r

x m f x λ
∞

−

=

− ∑  (17) 

1( ( ))nP x− Φ  ≈  /2

1
( , ),r

r rh
r

x m g x λ
∞

−

=

+ ∑  (18) 

where Φ and φ are the unit normal distribution and density. Note that rh , rh , rf , 

rg  are functions given in Cornish and Fisher (1960) for r ≤ 4 or in Withers (1984) 
and that rhλ  are the coefficients of the expansions. For example, 1( , )rhh x λ = 

1( , )rhf x λ = 1( , )rhg x λ = 2
3 ( 1)/6h xλ −  and 1( , )rhh x λ = 3

3 ( 3 )/6h x xλ − . (An al-
ternative derivation is to apply Example 1 of Withers (1983) with 

0( ) ( ) ( ) ( )h hT F T F K x y dF y= = −∫ , 0ria =  if 1i r≠ − , and ri rha κ=  if 1i r= − . 

So, 1 1
0

ˆ( ( )) r r
r rh rhf x n k mκ κ − −= = , and 1/2 1/2 1/2 1/2

0 1 2 1 1 2ˆ( ( ) ) ( )n h h h hY n f x m w k kκ κ − −= − = −�  
has an Edgeworth-Cornish-Fisher expansion with respect to m in terms of the 
coefficients , 1r rA −  = /2

2
r

rh hκ κ − = 1 /2r
rhhλ −  for rhλ  of (17). By (18), one can replace 

n and , 1{ }r rA −  in the Cornish-Fisher expansions by m and { }rhλ .) The expansion 
(15) was noted in (4.83) of Hall (1992). (There is a slip there: 40µ  in 2( )p y  in 

second equation of page 212 should be 2
40 203hµ µ− . This slip is also on pages 269 

and 271.) 
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2.3 Cornish Fisher expansions for (6) 

The joint rth order cumulants of ŵ have magnitude 1 rm −  for the same reason 
that rhk  is bounded: 

1

1
1ˆ ˆ( , ..., ) ( ... )

r

r
i i h rw w m k i iκ −=  (19) 

for 
1

1
1( ... ) ( , ..., ) (1)

r

r
h r i ik i i h U U Oκ−= =  and iU  of (12). This expresses 1( ... )h rk i i  

in the form 
1... ( )

ri i hk F . We can also write 
11 ...( ... ) ( )

rh r i i hk i i k w=  as a polynomial in 

h and w: see Appendix A. For example, ( )h i j i jk ij w hw w+= − . Now fix q and set 

( ( ) : 1 , )hV k ij i j q= ≤ ≤ . So, V is q q× . For x  in qℜ , let ( )V xΦ  and ( )V xφ  be 
the distribution and density of a normal q-vector with mean 0 and covariance V. 
Then for nY  in (6) the Edgeworth expansion (15) has an extension of the form 

/2

1
( ) ( ) ( / , ) ( )/ !,r

n V r h V
r

P Y x x m b x k x r
∞

−

=

Φ ∂ ∂ Φ≤ ≈ + −∑  (20) 

where, for s in qℜ , ( , ) ( ( ))r h rb s k B c s= , 
0

( ) ( )
r

r ri
i

B c B c
=

= ∑ , ( )rB c  and ( )riB c  are 

the complete and partial exponential Bell polynomials tabled on page 307 of Com-
tet (1974), 2, 1( ) ( )/{( 2)( 1)}r r rc s k s r r+ += + +  for 

1 1, 1( ) ( , ..., ) ...
r rr r i i i ik s U U s sκ− = , 

and we use the tensor sum convention of implicitly summing repeated pairs of in-
dices 1 , ..., ri i  over their range 1,...,q . (See Appendix B for a definition of these Bell 
polynomials.) Equation (5.67) of Hall (1992) gives a double expansion version of 
this for 2q = . 

2.4 Cornish Fisher expansions for (7) 

By Withers (1982), the Cornish-Fisher expansions (15)–(18) also hold with nY  
replaced by 0nY  in (7) and rhλ  replaced by 

/2
21{ }r

h ri riA A a a−= =  (21) 

provided that 21a  is bounded away from 0 and that some regularity conditions 
ensuring 

1| | | |
1

1 ( ) ( ) 1 ( )
q

q
j

t t j
j

sup exp t K u dF x hu C hς ς
∞

+…+ >
=−∞

⎧ ⎫⎪ ⎪− − < −⎨ ⎬
⎪ ⎪⎩ ⎭
∑∫  (22) 
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hold, where C(⋅) is some bounded real valued function. Also by Withers (1982), 
the first few coefficients in (8) are: 

21 ( ),i j ha t t k ij⋅ ⋅=  

11 ( )/2,ij ha t k ij⋅=  

32 21 233a c c= +  (23) 

for 
1 1

( )/ ...
r r

r
i i i it t W w w⋅ ∂ ∂ ∂=" , 21 ( )i j l hc t t t k ijl⋅ ⋅ ⋅= , and 23 ( ) ( )i h jl h qc t k ij t k lq t⋅ ⋅ ⋅= , 

where we use the tensor summation convention. For example, 

/2
0

1
( ) ( ) ( ) ( )r

n r
r

P Y x x x m h xφ
∞

−

=

Φ≤ ≈ − ∑  (24) 

for 
3 1

0
( , ) ( ) ( )

r

r h r rih r
i

h x A h x P He x
−

=

= = ∑ , where 1( ) ( ) ( / ) ( )i
rHe x x d dx xφ φ−= −  is 

the rth Hermite polynomial, rihP  is a polynomial in hA , and the last summation  
is restricted to r−i odd. For example, 1 1

0,2
( , ) ( )h ih i

i
h x A P He x

=

= ∑  and 

2 2
1,3,5

( , ) ( )h ih i
i

h x A P He x
=

= ∑  for 10 11h hP A= , 12 32 /6h hP A= , 2
21 11 22( )/2h h hP A A= + , 

23 11 32 43(4 )/24h h h hP A A A= + , and 2
25 32 /72h hP A= . By Withers (2000), 

( ) ( 1 )r
i iHe x E x N ψ= + − =  say, where (0,1)N N∼ , 0 1ψ = , 1 xψ = , 

2
2 1xψ = − , 3

3 3x xψ = − , 4 2
4 6 3x xψ = − + , 5 3

5 10 15x x xψ = − + , .... 

2.5 Cornish Fisher expansions for (9) 

Now consider the Studentized estimate of 0( )f x  given by (9). We shall con-

sider two types of estimates with 21 1 ( )a O hε= +  for ε =1 or p. We can apply (24) 

by noting that 1nY z≤  if and only if 1/2 1/2
0 21 ( ( ))nY x a z m t W−≤ = − . So, 

x z δ= +  for 0 1zδ δ δ= + , 1/2 1/2 1/2
0 21 ( ) ( )p

pa m t W O m hδ −= − = , and 

1/2
1 21 1 ( ).a O hεδ −= − =  (25) 

Also at x z δ= + , 

2
1( ) ( ) ( ) ( ) ( ) ( ) ( ),i i ix He x z He z z He z Oφ φ δφ δ+= − +  

2
1 1 1 1

0,2

( ) ( ) ( ) ( ) ( ) ( ) ( ),ih i
i

x h x z h z z P He z Oφ φ δφ δ+
=

= − +∑  
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1 0( ) ( )n nP Y z P Y x≤ = ≤ =
3

/2 2

1
( ) ( ) ( ) ( )r

r
r

x x m h x O mφ − −

=

Φ − +∑  

                 =
3

2 /2

1
( ) ( ){ /2 ( )r

r
r

z z z m h zφ δ δ −

=

Φ − − + + ∑  

                 1/2 3 1/2 1 2
1 1

0,2
( ) ( ),ih i

i
m P He z O m m mδ δ δ δ− − − −

+
=

= − + + + +∑  (26) 

giving 

1(| | )nP Y z≤ = 2 1
1 0 22 ( ) 1 2 ( ){ ( /2) ( )z z z m h zφ δ δ −Φ − − − + +  

                   1/2 3 1/2 2 1 2
0 1 1 0 0 0

0,2
( ) ( ),ih i

i
m P He z O m m mδ δ δ δ− − − −

+
=

= − + + + +∑  (27) 

3. FIRST ORDER CIs 

The first order CIs for 0( )f x  are obtained as usual by Studentizing. This can 

be done using the empirical estimate of 0 2
ˆ( ) ( )hmvarf x k w=  or by estimating its 

asymptotic approximation of (14), 2
2 0( ) ( ) ( )hk w f x K z dz≈ ∫ . 

3.1 First order one-sided CIs based on asymptotic studentization 

Choose 

1/2
1 1 0 1 02( ) ( ( ))( ) .t w w f x w B −= −  (28) 

Then 2
21 1 2 1 ( )ha t k O h⋅= = + . So, ε=1 in (25) and, by (26), 

1 1( ) ( ) ( )n nP Y z z O eΦ≤ = +  (29) 

for 1/2 1/2
1

p
ne m h m h−= + + . Taking h as in (3), 1 ( )ne O n β−=  with 

min((1 )/2,  ,  ( 1/2) 1/2)pβ α α α= − + − . 

The case 2p ≥ : β  has its maximum 1/3 at =1/3α . So, a one-sided lower CI for 

0( )f x  of level 1/3( ) ( )z O n−Φ +  and “half-width” 1/2 1/3( ) ( )O m O n− −=  is given 
by 1nY z≤ , that is 

1/2
0 1 02 1ˆ ˆ( ) ( / ) .f x L w B w m z≥ = −  (30) 
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Replacing z by −z, a one-sided upper CI for 0( )f x  of level 1/3( ) ( )z O n−Φ +  and 

“half-width” 1/3( )O n−  is given by 1nY z≥ , that is 

1/2
0 1 02 1ˆ ˆ( ) ( / ) .f x U w B w m z≤ = +  (31) 

The case 1p = : β  has its maximum 1/4 at =1/4α . So, both the error and width 

of these one-sided CIs of nominal level ( )zΦ  are 1/4( )O n− . 

Note 1. Note 1( )t w  is strictly increasing. So, 1nY z≤  if and only if 1 1/2
1ˆ ( )w t m z− −≤  if 

and only if 0nY z≤  = 1/2 1 1/2 1/2
1 2{ ( ) }h hm t m z k k− − −− . So, an asymptotic expansion for the 

left hand side of (29) is given by the right hand side of (15) at 0x z= . Alternatively, we can 
“stabilize the variance” by choosing 1ˆ( )s w  with variance 2

1 1 1 02( ) / 1/s w w B n n⋅≈ = , that is 
1/2

1 1 02( ) 2( / )s w w B= . That is, choosing 1 1 0( ) ( ) ( ( ))t w s w s f x= − , a CI with the same 
properties as (30) is given by 1/2

1 1ˆ( )nY m t w z= ≤ , that is  

1/2 1/2 2
0 1 02ˆ( ) { ( / ) /2} .f x L w B m z≥ = −�  (32) 

Replacing z by –z, a one-sided upper CI for 0( )f x  of level 1/3( ) ( )z O n−Φ +  and “half-
width” 1/3( )O n−  is given by 

1/2 1/2 2
0 1 02ˆ( ) { ( / ) /2} .f x U w B m z≤ = +�  (33) 

A similar idea was used in S3, see page 210 of Hall (1992). 

Note (11) suggests estimating 1wθ =  by 
1

ˆ ˆ
i i

i
θ τ θ

∞

=

= ∑  for 0
ˆ ˆ /i i iw Bθ =  and { }iτ  

constants adding to 1. Its bias is ( )O h or 2( )O h  if K is symmetric (about 0).  

Also 
, 1

ˆ( ) ( )i j h
i j

mvar k ijθ τ τ
∞

=

= ∑  so that 2 1 2ˆ( ) ( / )E m B O h h mθ θ θτ τ− ′− = + +  for 

0,( )i jB B += . To this degree of accuracy this MSE is minimized by 
1 11/1 1B Bτ − −′= , where 1 is an infinite vector of 1’s, giving 

2 1 1 2ˆ( ) /1 1 ( / )E m B O h h mθ θ θ− −′− = + + . Apart from the question of if and how 
these infinite sums need to be truncated, clearly this estimate can be used to pro-
vide an alternative CI to that of (30). However, we shall see that its asymptotic 
efficiency relative to the following method is 0 for p≥3. 

3.2 First order one-sided CIs based on empirical studentization 

Choose 
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1/2
1 0 2( ) ( ( )) ( ) ,ht W w f x k w −= −  (34) 

where 2
2 2 2 1( )h hk w k w hw= = − . Then 

2 2
21 1 1 2 2(11) 2 (12) (22) 1 ( )p

h h ha t k t t k t k O h⋅ ⋅ ⋅ ⋅= + + = +  since 1/2 1
1 2 ( )p

ht k O h− +
⋅ = +  

and 2 ( )pt O h⋅ = . So, pε =  in (25). So, by (26), 

1 1( ) ( ) ( ) ( )n nP Y z z O e O n β−Φ≤ = + =′  

for 1/2 1/2
1

p
ne m m h−= +′  and min((1  )/2,( 1/2)  1/2)p= +  with the maximum 

/(2 2)p pβ = +  (35) 

at 1/( 1)pα = + . So, a one-sided lower CI for 0( )f x  of level 
/( 2 2 )( ) ( )p pz O n− +Φ +  and “half-width” 1/2 /( 2 2)( ) ( )p pO m O n− − +=  is given by 

1nY z≤ , that is 

1/2
0 1 2ˆ ˆ( ) ( ( )/ ) .hf x L w k w m z′≥ = −  (36) 

Replacing z by −z gives the corresponding one-sided upper CI 

1/2
0 1 2ˆ ˆ( ) ( ( )/ ) .hf x U w k w m z′≤ = +  (37) 

So, for 1p = or 2, empirical and asymptotic Studentization achieve the same β  
but for 3p ≥  empirical Studentization is superior. 

3.3 First order two-sided CIs 

By (27) with h of (3), 1 2(| | ) 2 ( ) 1 ( )n nP Y z z O eΦ≤ = − +  for 
2 1 2 1

2 1 0
p

ne m h mh m n βεδ δ − − −= + + ∼ + + ∼  and =min( ,1 ,(2 +1) 1)pβ εα α α− − .  
If 1ε =  the corresponding two-sided CI of level 2 ( ) 1 ( )z O n β−Φ − +  is given by 

0( )L f x U≤ ≤  for L and U of (30) and (31). An alternative with the same as-
ymptotic properties is 0( ) ,L f x U≤ ≤� �  for L�  and Ũ of (32) and (33). If pε =  
(i.e. using empirical Studentization), the corresponding two-sided CI of level 
2 ( ) 1 ( )z O n β−Φ − +  is given by 0( )L f x U′ ′≤ ≤  for L' and U' of (36) and (37). 

4. SECOND ORDER CIs 

Here, we give second order one- and two-sided CIs for 0( )f x . 
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4.1 Second order one-sided CIs using asymptotic studentization 

Taking t of (28), by (26), 1/2 1
1 1 0( ) ( ) ( ) ( )nP Y z z m h z O mδ− −Φ≤ = + + +  so 

1/2 1
1 1 0( ( ) ) ( ) ( )nP Y m h z z z O mδ− −Φ− ≤ = + + . So, one would expect that 

1/2 1
1 1 0

ˆ( ( ) ) ( ) ( )nP Y m h z z z O mδ− −Φ− ≤ = + +  (38) 

if 1/2
1 1

ˆ ( ) ( ) ( )ph z h z O m−= + . Let us take 1 1
ˆ ˆ( ) ( , )hh z h z w= . We now confirm (38). 

Given z, set 1
1 1( ) ( ) ( , )m ht W t w m h z w−= −  for 1( )t w  of (28). By Lemma 5.1 of 

Withers (1983), 
1

ˆ( ( )) i
r m ri

i r
t W a mκ

∞
−

= −

′′≈ ∑  for certain functions ( )ri ria a w′′ ′′= . 

Also 10 10a a′′ = , 21 21a a′′ = , 11 11 1( )a a h z′′ = − , and 32 32a a′′ = . Set 
1/2 1/2

0 21
ˆ( ( ) ( ))n mY m t W t W a−′′ = −  and 1/2

1
ˆ( )n mY m t W′′ = . Then 0nY x′′ ≤  if  

and only if 1/2 1/2
21ˆ( ( ) ( ))mm t w t w y a x− ≤ =  if and only if 

1/2 1/2
1 ˆ( ) ( )n mY m t w z y m t w′′ = ≤ = +  and this occurs with probability 

1/2 1
1( ) ( ) ( ) ( )x m h x x O mφ− −Φ ′′− + = 1/2

1 2( ) ''( ) ( ) ( )nz m h z z O eφ−Φ − +  since 
1/2( )px z O h m h= + + . Here, 1h ′′  is 1h  for the coefficients ria ′′ . So, 1 ( )h z′′  = 

2
11 32( 1)/6A A z′′ + −  = 1/2

1 21 1( ) ( ) ( )h z a h z O h−− =  since 1/2
11 11 21 1( )A A a h z−′′ = − . 

So, 1 2( ) ( ) ( )n nP Y z z O eΦ′′ ≤ = + . This confirms (38). 
So, a second order lower one-sided CI is 

1/2 1/2
0 2 1 02 1 1̂ˆ ˆ( ) ( / ) ( ( ))f x L w B w m z m h z−≥ = − + . For h of (3), its error behaves 

as 1 1/2 1pm h m h m nε βδ − − −∼ + ∼ + + ∼  for min((1 ), ,( 1/2) 1/2).pβ α εα α= − + −  
(For 2p ≥  this rate improves on β  using the method of Section 3.2.) Replacing 

z by −z, a second order upper one-sided CI of level ( ) ( )z O n β−Φ +  is 
1/2 1/2

0 2 1 02 1 1̂ˆ ˆ( ) ( / ) ( ( ))f x U w B w m z m h z−≤ = + − . 

Recall that 2
1 11 32( ) ( 1)/6h z A A z= + −  is given by (21)-(23) and (20). 

Now suppose we take instead 10 10
ˆ ˆ( ) lim ( , )hh
h z h z w

→
= . This introduces another 

error of magnitude ( )pO h  since 1 ( , )hh z w  has a power series expansion in h. The 

effect is to add a term of magnitude 1/2m h−  into 2ne  in (38). But 1/2
2( )nm h O e− =  

so there is no change to the above α and β. Using 30λ = 30
lim hh

λ
→

= 3/2
20 30w w− = 

1/2 3/2
0 02 03( )f x B B− − , we obtain 
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2
210 110 30 320 30 10 301, /2, 2 , ( ) (2 1)/6.a a a h z zλ λ λ= = − = − = − +  (39) 

4.2 Second order one-sided CIs using empirical studentization 

Now consider the second type of Studentizing. By (26), 
1/2

1 1 2( ( ) ) ( ) ( )n nP Y m h z z z O e− Φ ′− ≤ = +  for 1 1/2
2

p
ne m m h n β− −′ = + ∼  and 

=min(1 , ,( +1/2) 1/2)p pβ α α α− − . As before one can show that 
1/2

1 1 2
ˆ( ( ) ) ( ) ( )n nP Y m h z z z O e− Φ ′− ≤ = + . So, a second order lower one-sided CI 

of level ( ) ( )z O n β−Φ +  for 2 /(2 3)p pβ = +  is given by =3/(2p+3)α  and 

0 2( )f x L ′≥ = 1/2 1/2 1
1 2 1ˆ ˆ ˆ( ) { ( , )}h hw k w m z m h z w− −− − . The corresponding upper 

one-sided CI is 0 2( )f x U ′≤  = 1/2 1/2 1
1 2 1ˆ ˆ ˆ( ) { ( , )}h hw k w m z m h z w− −+ − . So, a two-

sided CI of level 2 ( ) 1 ( )z O n β−Φ − +  is given by 2 0 2( )L f x U′ ′≤ ≤ . 

4.3 An alternative approach 

For j ≥ 1, Example 1 of Withers (1983) gives a one-sided CI of level 
/2( ) ( )jx O n−Φ +  of the form ˆ( , ) ( )jmV F x Fµ≤  for a mean ( )  F E Yµ =  for 

( )Y h X=  and h(x) a given function, where, for example, 

/2

1

ˆ ˆ ˆ( , ) ( ) ( , )
j

r
jn r

r
V F x F n q F xµ −

=

= + ∑ , 1/2
1 2( , )q F x xµ= − , 

1 2
2 2 3( , ) (1 2 )/6q F x xµ µ−= + , and ( )r r Yµ µ= . 

Taking 0( )hY K x X= − , we have /2 /2( , ) ( , )r r
r rn q F z m q w z− −= , where 

1/2
1 2( , ) hq w z zν= − , 1 2

2 2 3( , ) (1 2 )/6h hq w z zν ν−= +  and 1 ( )r
rh rh Yν µ−= . See Appen-

dix B for these as polynomials in h and w. Replacing x by z, this suggests evaluat-
ing the coverage probability of the following jth order CI for 0( )f x : 

0ˆ( , ) ( ),j jmL V w z f x′′ = ≤  (40) 

where /2
1

1

ˆ ˆ ˆ( , ) ( , )
j

r
jn r

r
V w z w m q w z−

=

= + ∑ . We now evaluate the probability of (40) 

for the case j=2. Note (40) holds if and only if 1/2 ˆ( )mm t W z≤  for 
1

1( ) ( ) ( )mt W t W m t W−= + , 3/2 2
1 2 3( ) (1 2 )/6t W w w z−= + , and t of (34). By 

Lemma 5.1 of Withers (1983), 

1

ˆ( ( )) ,i
r m ri

i r
t W a mκ

∞
−

= −

′≈ ∑  (41) 
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where the leading ria′  are given in terms of ria  for 0t t=  by , 1 , 1r r r ra a− −′ =   

and 11 11 1( )a a t W′ = + . So, the Cornish-Fisher expansions hold for 
1/2 1/2

0 21
ˆ( ( ) ( ))n mY m t W t W a−= −  with polynomials ( )ih x′  say. By an argument 

similar to that proving (38) one obtains the probability of (40) as 
1/2

1 2( ) ( ) ( ) ( )nz m h z z O eφ−Φ ′ ′− +  for 1 ( )h z′  = 1/2
1 21 1( ) ( ) ( )h z a t W O h−+ =  so that 

the ACE has magnitude 1/2
2nm h e− ′+ . If 3p ≥  this gives ACE rate 2/3β =  for 

1/3α = . If 3p ≤  this gives ACE rate 2 /(2 3)p pβ = +  for 3/(2 3)pα = + , the 
same as achieved by a one-sided CI by empirical Studentization. 

4.4 An improvement 

One can show that we can improve the rate given above for 3p ≥  to that 

given for 3p ≥  if we choose 1( )t w  so that 1 ( ) ( )h z O hε′ =  with 3 pε ≥ . (This fol-

lows since the ACE then has magnitude 1/2
2nm h eε− ′+ .) We now show how to 

achieve this with pε = . 

Write t of (34) as 1/2ND− . So, ( )pN O h=  is not a function of w, but D and 
the derivatives of N and D are. For example, 1 12D hw⋅ = − . Also 

1t ⋅ = 1/2 1
1 1 1/2 ( ),pt ND D t O h− +

⋅− = +� �  

2t ⋅ = 3/2 /2 ( ),pND O h−− =  

11t ⋅ = 5/2 3/2 2
11 1 11 113 /4 /2 ( ),pt ND D ND D t O h− − +

⋅ ⋅+ − = +� �  

12t ⋅ = 5/2 2 1
12 1 123 /4 ( ),pt ND D t O h− +

⋅+ = +� �  

22t ⋅ = 5/23 /4 ( )pND O h− =  

for 1/2
1t D−=� , 3/2

11 1t D D−= −�  and 3/2
12 /2t D−= −� . In this way we can ap-

proximate the derivatives of t to ( )pO h , and so using (21)-(23), approximate the 

coefficients ria  and ( )rh z  to ( )pO h . Call these approximations ( )ri ria a w=� �  and 
( ) ( , )r rhh z h z w=� � . For example, 

11 3 /2,ha λ= −�  

32 21 233 ,a c c= +� � �  

3/2
21 3 ,hc D k−=�  
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3/2 2 5/2 1/2 3/2
23 1 2 2 1 2 3 1 2 2(12) 2 ( ) ,h h h h hc D D k D k k hw k w hw w k− − −

⋅= − − = − −�  

2
1 1 11 32( ) ( , ) ( 1)/6.hh z h z w a a z= = + −� � � �  

Now choose 1( ) ( ) ( , )m ht w t w h z w= − � . By (41), 1 ( )h z′ = 1/2
1 21 1( ) ( ) ( )ph z a t w O h−+ =  

so that the ACE of the CI 1/2 ˆ( )mm t w z≤  has magnitude 2ne′  giving ACE rate 
2 /(2 3)p pβ = +  for 3/(2 3)pα = + , the same as achieved for a one-sided CI by 

empirical Studentization. This gives the second order lower one-sided CI 

0 2( )f x L≥ � = 1/2 1/2 1
1 2 1ˆ ˆ ˆ( ) ( ( , ))h hw k w m z m h z w− −− + �  of level ( ) ( )z O n β−Φ + . The 

corresponding upper CI is 0 2( )f x U≤ � = 1/2 1/2 1
1 2 1ˆ ˆ ˆ( ) ( ( , ))h hw k w m z m h z w− −+ − � . 

4.5 Second order two-sided CIs using empirical studentization 

By (27), 

1(| | )nP Y z≤ = 1 2
2 02 ( ) 1 2 ( ) ( ) ( )z z m h z O mφ δ− −Φ − − + + = 

    1
22 ( ) 1 2 ( ) ( , )hz z m h z wφ −Φ − − � + 3( )nO e  

for 3ne = 2 2p ph mh m−+ +  so that 

1
1 2(| | ( , ))nP Y z m h z w−≤ + � = 32 ( ) 1 ( )nz O eΦ − +  

and this also holds with w replaced  by  ŵ .  Also  3ne n β−∼  for 

= min( , 1+(2 +1) ,2 2 )=2 /( +2) at =2/( +2)p p p p pβ α α α α− − . 

This gives the two-sided CI 0 1ˆ| ( ) |f x w−  ≤ 1/2 1
2 2ˆ ˆ( ( )/ ) ( ( , ))hk w m z m h z w−+ �  of 

asymptotic level 2 ( ) 1zΦ −  and ACE rate =2 /( +2)p pβ . 

5. OPTIMIZING THE CONSTANT C IN THE SMOOTHING PARAMETER (3) 

5.1 One-sided first order CI based on empirical studentization 

Consider the one-sided first order CI (36) with =1/( +1)pα . We noted that, for 

any 0c > , its coverage error is ( )O n β− , where =p/(2 +2)pβ . We now show how 
to choose 0( , )c c f x=  to minimize the asymptotic coverage error (ACE). Set 

0 1( ) ( 1) / !r
r r rf x B rρ ⋅= − . Since K is of order p, 0pρ ≠ . We now prove the fol-

lowing in terms of 10( )h z  of (39). For 0pρ > , 0( , )c f x  = 
1/( 1)

10[ ( )/{(2 1) }] p
ph z p ρ ++ . For 0pρ < , 
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1/( 1)
0 10( , ) [ ( )/ ] p

pc f x h z ρ +=  (42) 

and the ACE is improved to 1( )O n β− , where 1 ( 2)/(2 2)p pβ β= + + > . This 
surprising result is analogous to the result of Silverman (1986) quoted in the in-
troduction. (As for that result, in practice one needs to study the effect of replac-
ing pρ  by an estimate. We shall not consider that here.) 

We now prove these results. By (25), 

1/2 1/2
2 2( )p p

p hx z m h k O hρ δ−= − + +  

for 1/2 1
2

pm hδ += , and 

1
1 3 2( ) ( ) ( ) ( )p

n nP Y z z z e O m hφ δ −Φ≤ = − + + +   

for 

1/2 1/2 1/2 1/2
3 2 1 30( ) ( )p

n p h ne m h k m h z e O m hρ − − −= + = + , 
1/2 1/2

30 10( ) ( )p
n pe m h m h z n a cβρ − −= + = , 

1/2 1/2 1/2
2 10( ) ( )p

p ha c k c c h zρ − + −= + , 

and α, β as in (35). We want to minimize the asymptotic value of the error 30| |ne , 

that is, minimize |a(c)|. We assume that 3 0K >∫  so that 30 0w > . The minimiz-

ing c is as given. For 0, |a(c)|=0pρ <  at c of (42) giving ACE rate behaves as 
11/2m h n βε − −+ ∼  since 1 /( 1)p p pm h n− − ++ ∼  and 1/( 1)p p β+ >  for 2p > . For 

0pρ < , one can show that we can improve this ACE rate 1β  to 

2 1( /2 1)/( 1)p pβ β= + + >  by replacing h cn α−=  by 3(1 )h cn c nα α− −= +  for c of 

(42) and 3 /c N D=  for 3/2
1 11( )p

pN c ch zρ+
+= + , and 

1/2 1/2
10( 1/2) ( )/2p

pD p c c h zρ+ −= − + + , where 1 ( )rh z  is defined by the expan-

sion 1 1 1
0

( ) ( ) ( ) r
h r

r
h z h z h z h

∞

=

= = ∑ . In fact, this process may be repeated using a 

third term in h  to further increase the ACE rate above 2β . 

5.2 Two-sided first order CI based on empirical studentization 

First note that 2 1
21 201 2 ( )p p

pa w h O hρ− += − +  and 2 1
1 20 ( )p p

pw h O hδ ρ− += + . So, 

by (27), 1 2
1(| | ) 2 ( ) 1 2 ( ) ( ) ( )nP Y z z z n a c O nβ βφ − −Φ≤ = − − +  for 1 1/( 1)pα = + , 

1 /( 1)p pβ = + , 2 1 1 1β β α= + = , 1 2 1
0 1 2( ) p pa c c c cγ γ γ− += − + , 0 20 ( )h zγ = , 
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2 1/2
1 20 20 1 0 1

0,2
/ ( )p i i

i
zw w P He zγ ρ − −

+
=

= + ∑ , and 1 2
2 20 pzw ργ −= . The optimal c mini-

mizes|a(c)|. Again there are two cases. If the minimum is positive the CI has 
ACE rate 1 /( 1)p pβ = + . But if there exists c such that ( ) 0a c =  then the CI has 
ACE rate 2 1β = . Since 2 0γ >  there one such c exists if 0 0γ <  while if 1 0γ >  
there will be two such c if 1γ  is sufficiently large but otherwise no such c; that is, if 

1 10γ γ≥ , where 10γ  is given by eliminating 0c  from 0 0( ) ( ) 0a c a c= =�  for ( )a c�  the 
derivative of ( )a c . 

6. CONCLUSIONS 

In this paper, we have given first order and second order one- and two-sided 
CIs for 0( )f x . These CIs are based on Edgeworth and Cornish Fisher expan-

sions for Studentized versions of the kernel density estimate, 0
ˆ( )f x . Tables 1 

and 2 summarize the main CIs we give in terms of their ACE rate β  achieved at 
their optimal choice of α  and their subsection. 

TABLE 1 

ACE rate β  and α  for (3) for one-sided CIs 1( ε =  for asymptotic Studentization, pε =  for empirical 
Studentization, *p = best ACE rate achievable using the c in (3), p = order of the kernel) 

ε first order CIs § second order CIs § 
1 1/3 at 1/3 if p≥2 3.1 1/2 at 1/2 if p≥2 4.1.1, Hall 
1 1/4 at 1/4 if p=1 3.1 2/5 at 3/5 if p=1 4.1.1, Hall 
P p/(2p+2) at 1/(p+1) 3.2 2p/(2p+3) at 3/(2p+3) 4.1.2, 4.1.4, Hall, page 222 
p* (p+2)/(2p+2) at 1/(p+1) 5.1   

TABLE 2 

ACE rate β  and α  for (3) for twosided CIs 1( ε =  for asymptotic Studentization, pε =  for empirical 
Studentization, *p =  best ACE rate achievable using the c in (3), p = order of the kernel) 

ε first order CIs § second order CIs § 
1 1/2 at 1/2 3.3 2/3 at 2/3 4.5 
P p/(p+1) at 1/(p+1) 3.3 2p/(p+2) at 2/(p+2) 4.5 
p* 1 at 1/(p+1) 5.2   

 
Hall (1992, Section 4.4.3, page 222) gives one- and two-sided CIs based on boot-

strapping with 2 /(2 3)p pβ = +  and /( 1)p pβ = +  using 3/(2 3)pα = +  and 
1/( 1)pα = + , respectively. (This is for the case where bias is not estimated. Oth-

erwise the formulas for β  become too complicated.) We have used two types of 
Studentizations for the first order CIs given in Section 3. Using asymptotic Studen-
tization, we obtain 1/3β =  and 1/2  for one- and two-sided CIs  
using 1/3α =  and 1/2  for 2p ≥ . Using the usual empirical Studentization, these 
values of β are improved to /(2 2)p pβ = +  for one-sided CIs, and 
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 /( 1)p pβ = +  for two-sided CIs both using 1/( 1)pα = + . The second order 
one- and two-sided CIs given (Section 4) have 2 /(2 3)p pβ = +  for one-sided CIs, 
and 2 /( 2)p pβ = + ) for two-sided CIs using 3/(2 3)pα = +  and 2/( 2)p + . 

We have also considered two cases for choosing the ACE-optimal constant c 
in (3) for first order CIs based on empirical Studentization. In one case, using this 
c increases the ACE rate to ( 2)/(2 2)p p+ +  for one-sided CIs and to 1 for two-
sided CIs. This result is analogous to that of Silverman (1986). 
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APPENDIX A: WAYS TO CONSTRUCT KERNELS OF HIGHER ORDER 
 

We saw in Section 1 that 0
ˆ( )f x , the kernel estimate with kernel K of order  

p has bias ( )pO h . One can reduce the bias to 1( )pO h +  by using 

0 0 0 1
ˆ ˆ( ) ( ) ( ) ( ) / !p

p pf x f x f x B h p⋅= − −� , where ˆ ˆ( ) ( / ) ( )p
pf x d dx f x⋅ = . But this 

amounts to replacing the kernel K by a kernel of order p+1, giving 

0 1 1( ) ( ) ( ) ( 1) / ! (1 ( 1) / !) ( )p p p
p p pK z K z K z B p D B p K z⋅= − − = − −  for = /D z∂ ∂ . If 

K is symmetric then p is even so 0K  is of order 2p + . 
 
Example 1. Take ( )= ( )K z zφ  so 2p = . Set = /D z∂ ∂ . Then 

2 2
0 2( ) (1 /2) ( ) (1 ( )/2) ( ) (3 ) ( )/2K z D z He z z z zφ φ φ= − = − = −  

has order 4, 

4 2
1 2 4 6

2 4 6

( ) (1 /8)(1 /2) ( ) (1 ( )/2 ( )/8 ( )/16) ( )

(15 45 15 )/16 ( )/16

K z D D z He z He z He z z

z z z z

φ φ

φ

= + − = − + + =

= − + −
 

has order 8, 

6 4 2
2

2 4 6 8

10 12

( ) (1 /96)(1 /8)(1 /2) ( )
(1 ( )/2 ( )/8 ( )(1/16 1/96) ( )/(96 2)

( )/(96 8) ( )/(96 8 2)

K z D D D z
He z He z He z He z

He z He z

φ= − + − =
= − + − + + × =
= − × + × ×

 

has order 8, and so on. 
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APPENDIX B: CUMULANTS IN TERMS OF MOMENTS 

Here, we show how to express 1
1ˆ( )r

rh rk m wκ−=  and 

1

1
1 ˆ ˆ( ... ) ( , ..., )

r

r
h r i ik i i m w wκ−=  of (13) and (19) as polynomials in h and 

1 2( , , ...)w w w=  of (10). Let U be a real random variable with finite moments 

r
rm EU=  and cumulants rκ  defined as usual by 

1
/ ! ln(1 ( ))r

r
r

t r S tκ
∞

=

≡ +∑  for all 

t in C for which the moment generating function 1 ( ) UtS t Ee+ =  exists. By equa-
tion (2), page 160 of Comtet (1974), 

1

1
( 1) ( 1)! ( ),

r
i

r ri
i

i B mκ −

=

= − −∑  (43) 

where for 1 2( , , ...)m m m= , ( )riB m  is the partial exponential Bell polynomial defined by 

1
/ ! / ! ( ) / !

i
r r

r ri
r r i

m t r i B m t r
∞ ∞

= =

⎛ ⎞
=⎜ ⎟

⎝ ⎠
∑ ∑  

for i=0,1,... . These polynomials ( )riB m  are tabled by Comtet on page 307. For 

example, 1( )r rB m m= , 1( ) r
rrB m m= , 32 1 2( ) 3B m m m= , 2

42 1 3 2( ) 4 3B m m m m= + , and 
2

43 1 2( ) 6B m m m= . An explicit formula for ( )riB m  is given by 

1
1 1 1 2( ) { ( ) ... : ... , 2 ... }r

r

nn
ri r r r

n N
B m n m m n n i n n rn rπ

∈

= + + = + + + =∑  

for π(n) the partition function defined by 
1

( ) !/ ( ! !)i
r

n
i

i
n r i nπ

=

= ∏  for 

1 22 ... rr n n rn= + + + . Now take 1 0( )hU U K x X= = − , where X has distribution 

F on ℜ. In the notation of Section 2, 1 r
r rh rm m h w−= = , and 1 r

r rh rhh kκ κ −= = . It 
follows that 

1 1

1
( 1) ( 1)! ( ),

r
i i

rh ri
i

k i h B w− −

=

= − −∑  (44) 

a polynomial in h of degree 1r − . For example, 

1 1 ,hk w=  
2

2 2 1 ,hk w hw= −  
2 3

3 3 2 1 13 2! ,hk w hw w h w= − +  
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2 2 2 3 4
4 4 1 3 2 1 2 1(4 3 ) 2! (6 ) 3! ,hk w h w w w h w w h w= − + + −  

2 2 2 3 3 4 5
5 5 1 4 2 3 1 3 1 2 1 2 1(5 10 ) 2! (10 15 ) 3! (10 ) 4 ! .hk w h w w w w h w w w w h w w h w= − + + + − +  

Analogous to 1r r
r rhw w h EY−= =  and 1 ( )r

rh rk h Yκ−= , define 1 ( )r
rh rh Yν µ−= . 

Expanding in terms of non-central moments gives 

2
1

1 1 1
0 0

( ) ( ) ( 1)( )
r r

j j r r
rh r j r j

j j

r r
hw w hw w r h w

j j
ν

−
−

− −
= =

⎛ ⎞ ⎛ ⎞
= − = − + − −⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠
∑ ∑  

for 1
0w h−= . For example, 2

2 2 2 1h hk w hwν = = −  and 2
4 4 23h h hk hkν = + . The mul-

tivariate forms of (43) and (44) can now be written as 

1
1

1
...

1
( 1) ( 1)! ( )r

r

r
i ii

i i i
i

i B wκ −

=

= − −∑ "  

and 

11 1
1

1
( ... ) ( 1) ( 1)! ( ),r

r
i ii i

h r i
i

k i i i h B w− −

=

= − −∑ "  

where 1... ( )ri i
iB m  is the multivariate form of ( )riB m . These may be written down 

on sight. For example, 2
42 1 3 2( ) 4 3B m m m m= +  is replaced by 1 4...

2 ( )i iB m  = 

1 2 4 1 2 3 4

4 3

i i i i i i im m m m+∑ ∑" , where 1( ... )
N

rf i i∑  is 1( ... )rf j j  summed over  

all N permutations 1... rj j  of 1... ri i  giving different terms. So, 1 4...
2 ( )i iB m  is  

the sum of 
1 2 4 1 2 4 2 3 4 1 3 4 1 2 4 1 2 4

4
...i i i i i i i i i i i i i i i i i im m m m m m m m m m= + + +∑ "  and 

1 2 3 4 1 2 3 4 1 3 2 4 1 4 2 3

3

i i i i i i i i i i i i i i i im m m m m m m m= + +∑ . So, 

11( ) ,h ik i w=  

1 2 1 21 2( ) ,h i i i ik i i w hw w+= −  

1 2 3 1 2 3 1 2 3

3
2

1 2 3( ) 2! ,h i i i i i i i i ik i i i w h w w h w w w+ + += − +∑  

1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4

1 2 3 4
4 3 6

2 3

( )

{ } 2! 3! .

h

i i i i i i i i i i i i i i i i i i i i

k i i i i

w h w w w w h w w w h w w w w+ + + + + + + +

=

= − + + −∑ ∑ ∑
 

For example, 2 2 2
4 1 3 2 1 2(112) (2 ) 2hk w h w w w h w w= − + + .  
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SUMMARY 

Edgeworth and Cornish Fisher expansions and confidence intervals for the distribution, density and 
quantiles of Kernel density estimates 

We show that kernel density estimates 0
ˆ( )f x  of bandwidth ( ) 0h h n= →  satisfy the 

Cornish-Fisher assumption with parameter m=nh. This allows Cornish-Fisher expansions 
about the normal for standardized and Studentized kernel density estimates in powers of 

1/ 2m−  for smooth functions t. The expansions given are formal and the conditions for 
existence/validity are not explored. The expansions lead to first order confidence inter-
vals (CIs) for 0( )f x  of level 1 ( )O n βω −− + , where /(2 2)p pβ = +  for one-sided CIs 
and /( 1)p pβ = +  for two-sided CIs, where p is the order of the kernel used. The second 
order one- and two-sided CIs are given with 2 /(2 3)p pβ = +  and 2 /( 2)p pβ = + . We 
show how to choose the bandwidth for asymptotic optimality. 

 




