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GINI ̦S IDEAS: NEW PERSPECTIVES 
FOR MODERN MULTIVARIATE STATISTICAL ANALYSIS 

A. Montanari, P. Monari 

1. INTRODUCTION 

Corrado Gini may be considered the greatest Italian statistician. He intensely 
worked from 1905 up to the end of his life; a long period during which, modern 
statistics acquired its distinguishing features and reached its highest levels. He 
studied Law at the University of Bologna, but like the great figures of the early 
twentieth century, he was an eclectic and multidisciplinary scientist whose inter-
ests ranged from statistics to biometry, from economics to sociology and demog-
raphy. 

During his long life he wrote 87 books and more than 800 papers and brought 
a lot of new ideas in many aspects of statistical theory and practice. 

In the last fifty years, the interest about Gini’s methodological contributions 
has been largely focused on the measures of concentration and on the application 
of income distribution modelling to the evaluation of human capital. A wide lit-
erature has flourished on these subjects (Dagum, 1987), whose origin may be tra-
ced back to Gini’s papers dated 1912 and 1914. Outside this context Gini’s stud-
ies on the analysis of variability have almost been neglected; indeed they include 
authentically original indices like the mean differences and the measures of trans-
variation which might have a strong impact on multivariate statistics. 

It’s true that in his vast production Gini never explicitly addressed multivariate 
issues, if one excludes some works on multidimensional transvariation and the 
multivariate median, and it was a precise choice of interest. 

He was well aware of the developments in the field that were taking place at 
his time. As the editor and founder of Metron he had got in touch with R.A. 
Fisher, also publishing his paper “On the probable error of a coefficient of corre-
lation deduced from a small sample” which Pearson had refused for Biometrika. 
He debated with those two masters on the logical foundations of statistical infer-
ence and hypothesis testing, but, according to our recollections, he was not spe-
cifically concerned with multivariate methods. He was very well acquainted with 
the Anglo Saxon contributions, for instance Pearson’s 1901 paper “On lines and 
planes of closest fit to a system of points in space” which is always quoted in the 
statistical literature as the origin of principal components analysis. In his paper 
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“Sull’interpolazione di una retta quando i valori della variabile indipendente sono 
affetti da errori accidentali” (1921) Gini commented upon it, noticing that Pear-
son’s solution may be really useful in the error in variables case (Fuller, 1987) 
when the fit has a descriptive aim, but may fail to fulfil the purpose when the aim 
is that of detecting the true relationship which would have emerged had the vari-
ables been measured without error. When the latter is the goal, Gini showed that 
Pearson’s solution implicitly admits errors of equal intensity in all the variables 
involved and suggested a new method capable of dealing with more general error 
conditions, allowing for Pearson’s solution as a special case. But he never went 
beyond considering the two variable case. 

Recently larger and larger data sets, also as far as the number of observed vari-
ables is concerned, have become available thus requiring the development of new 
techniques also capable to face the so called curse of dimensionality. The result 
has been the flourishing of methods whose common feature is the reinterpreta-
tion of the solution of multivariate problems as the solution of a sequence of 
suitably posed univariate ones. In this new setting Gini’s contribution emerges as 
original and fundamental (Monari and Montanari, 2003). 

2. GINI INDEXES FOR CLASSIFICATION AND REGRESSION TREES 

Among Gini’s ideas, the best known to statisticians working in multivariate sta-
tistical analysis is what is generally called Gini index, largely employed in the con-
text of classification tree methodology (Brieman, Friedman, Olshen and Stone, 
1984). 

In a J class problem, denoting by x the p-dimensional measurement vector cor-
responding to a given case and by X the measurement space defined to contain 
all possible measurement vectors, a classifier is a partition of X into J disjoint 
subsets A1, ..., Aj , ..., AJ, j

j
X A=∪ , such that for every x∈Aj the predicted class 

is j . In a binary tree structured classifier such a partition is reached by repeated 
splits of subsets of X into two descendant subsets beginning with X itself. Ac-
cording to tree terminology a generic subset of X is called a node t. The terminal 
subsets (called terminal nodes) form a partition of X. Each terminal subset is de-
noted by a class label. The partition corresponding to the classifier is got by put-
ting together all the terminal subsets corresponding to the same class.  

A first interesting feature of the method is that the splits are formed by condi-
tions on the coordinates of x, thus translating a multivariate problem into a se-
quence of suitably posed univariate ones. A second aspect worth underlining he-
re, as it directly leads to Gini index, is that each split is selected so that the data in 
each of the descendant subsets are “purer” than the data in the parent subset. 

This requires to define an impurity function which, according to Brieman et al., 
is a function φ  defined on the set of all J-tuples of numbers 1( , ..., )Jp p  satisfying 

0, 1,..., , 1j j
j

p j J p≥ = =∑  with the properties 
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(i) φ  is maximum only at the point 1 1 1, , ...,
J J J

⎛ ⎞
⎜ ⎟
⎝ ⎠

 

(ii) φ  achieves its minimum only at the points (1,0,...0); (0,1,...,0); ... (0,0,...,1) 
(iii) φ  is a symmetric function of 1( , ..., )Jp p . 
Given an impurity function φ , the impurity measure of any node t, may be de-

fined as 

( ) ( (1| ),..., ( | ), ... ( | ))i t p t p j t p J tφ=  (1) 

where ( | )p j t , 1, ...,j J= , denotes the proportion of cases in node t belonging to 
class j. 

If a split s of a node t sends a proportion Rp  of the data cases in t to Rt  and 
the proportion Lp  to Lt , the decrease in impurity due to the split may be de-
fined as 

( , ) ( ) ( ) ( )R R L Li s t i t p i t p i tδ = − −  (2) 

and the split *s  which maximises it is selected. 
A useful expression for ( )i t  is indeed represented by the Gini index, which is 

defined as 

( ) ( | ) ( | )
j i

i t p j t p i t
≠

=∑  (3) 

or equivalently as 

2
2 2( ) ( | ) ( | ) 1 ( | )

j j j
i t p j t p j t p j t

⎛ ⎞
= − = −⎜ ⎟⎜ ⎟
⎝ ⎠
∑ ∑ ∑ . (4) 

Expression (4) satisfies properties (i)-(iii) and is a concave function of class prob-
abilities, thus guaranteeing that ( , ) 0i s tδ ≥ , for any split s. 

As Brieman et al. suggest, this index has an “interesting interpretation”. If one 
assigns an object selected at random from a node t to class i with probability 

( | )p i t , given that the estimated probability the item is actually in class j is 
( | )p j t , the estimated probability of misclassification associated to this assign-

ment rule is the Gini index (3). 
Light and Margolin (1971) introduced a different interpretation in terms of va-

riances: in a node t, assign all class j objects the value 1, and all other objects the 
value 0. Then the sample variance of these values is ( | )[1 ( | )]p j t p j t− . If this is 
repeated for all the J classes and the variances summed, the result is again the Gi-
ni index. Infact 
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2( | )[1 ( | )] 1 ( | )
j j

p j t p j t p j t− = −∑ ∑ . 

A third interpretation is the one Gini gave in his almost never quoted paper 
“Variabilità e Mutabilità” (1912) (reprinted in Gini, 1939), where he first intro-
duced his index. 

This original interpretation is deeply rooted in Gini’s theory of variability and 
so a short digression is here necessary in order to view it in the proper light. In 
Gini’s view, the goal of a variability measure differs according to the nature of the 
characters which are being studied. If the character keeps its intensity, but ap-
pears with different values only because of random or systematic measurement 
errors (the repeated measures of the same quantity, for instance) the goal of a va-
riability measure is that of determining how much the observed quantities differ 
from the true one. On the contrary if the character really takes different values 
for different statistical units (i.e. income, weight, etc.) the goal of a variability me-
asure is that of determining how much the observed quantities differ from each 
other. 

Gini approached the latter problem by a measure, known as Gini’s mean dif-
ference, which is defined, for n observed values of a variable X, as the average of 
all the possible differences between those values (also including the comparison 
of a unit with itself): 

2

1 1

n n

i j
i j

x x n
= =

∆ = −∑∑ . (5) 

It follows from (5) that: 

( )
1

2

2 (2 1)
n

i
i

i n x

n
=∆

− −
=
∑

 (6) 

(where ( )ix  denotes the i-th observation in the ascending ranking of the observa-
tions). 

An extension of this measure to qualitative variables, such as the identifiers of 
the J classes in a J class classification problem, was proposed by Gini in the same 
paper (Gini, 1912). 

Denoted by 1 2, , ..., Jn n n  the frequencies of each of the J distinct attributes of a 

given nominal character, such that 
1

J

j
j

n n
=

=∑ , and setting equal to 1 the diversity 

between any two different attributes, the sum of the differences of a case which 
shows the j-th attribute from all the other cases will be 0 ( ) 1j jn n n⋅ + − ⋅ , and the 
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sum of all the possible 2n  differences 
1

( )
J

j j
j

n n n
=

−∑ . Gini’s mean difference will 

then be 2

1
( )

J

j j
j

n n n n
=

∆ = −∑ , or equivalently, after putting j jp n n= , 

1
(1 )

J

j j
j

p p
=

∆ = −∑  (7) 

where one can easily recognise equation (4) which was also derived by Brieman  
et al. 

Gini also extended his mean difference to ordinal characters. Assuming equally 
spaced ordinal categories, he proposed to code the classes according to the first J 
natural numbers and then compute the average mean difference (5). This measure 
however doesn’t fulfil all the properties advocated by Brieman et al. for an impurity 
function: it is minimum when all the units belong to the same category, but it takes 
its maximum value only when half the cases belong to the lowest class and half to 
the highest. The use of this measure as a splitting criterion for classification trees 
with order classes is therefore not straightforward and its limits should be somehow 
overcome before it can represent an alternative to the ordered twoing approach, 
developed by Brieman et al. in order to account for the class order. 

More promising seems the possibility of using a function based on Gini’s mean 
difference as a splitting criterion in the regression tree context, as an alternative to 
ordinary least squares or least absolute deviation fitting methods. 

As will be shown also in the following, the use of Gini’s mean difference as the 
function of the residuals which should be minimized in order to estimate the 
model parameters is not new when dealing with robust multiple linear regression 
models (see also Hettmansperger, McKean 1998, for an approach to R estimators 
which uses a generalization of Gini’s mean difference known as Wilcoxon pseu-
donorm), but has never been explored so far for building regression trees. 

Ordinary least squares (OLS) regression trees produce a partition of the co-
variate space such that, within each element of the partition, the regression func-
tion may be approximated by the mean value of the response variable Y corre-
sponding to those units whose covariate values belong to that partition member. 

This is obtained by choosing the total within node sum of squares as the split 
function: 

~

2_1 ( )
j

j
x tt T

y y t
n ∈∈

⎛ ⎞−⎜ ⎟
⎝ ⎠

∑ ∑  (8) 

(where T�  is the set of terminal nodes, jy  is the response value measured on the 
j-th statistical unit belonging to node t and ( )y t  is the node average response 
value) and by iteratively splitting nodes so as to maximise its decrease. 
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An alternative solution is to choose 

~

1 ( )
j

j
x tt T

y M t
n ∈∈

−∑∑  (9) 

(where ( )M t  is the sample median of the y  values in node t ). This leads to least 
absolute deviation (LAD) trees and amounts to approximate the regression sur-
face, within each element of the partition, by the median of the response values in 
the node and to choose those splits which iteratively allow to minimise the sum 
of the absolute deviations from the node medians. 

A further possibility is to choose a split function derived from Gini’s mean dif-
ference: 

~
2

1

j
i

j i
x tt T x t

y y
n ∈∈

∈

−∑ ∑ . (10) 

As the Gini’s mean difference for a variable Y may be rewritten as 

,
1

,
1

n

i M i
i

n

i M
i

d y M

d

=

=

∆
−

=
∑

∑
 (11) 

(where, for a group of n units, M is the median and di,M is the gradual distance  
between the i-th statistical unit and the median, i.e. the number of observations 
which lie between yi and M in the ordered data sequence) that is as a weighted av-
erage of the absolute distances from the median, with weights equal to ,i Md , us-
ing it as a split function amounts to approximate once again the regression sur-
face by the median of the response values in a given node but to chose those 
splits which iteratively allow to minimise the sum of the weighted absolute devia-
tions from the node medians. (It should be pointed out that a different strategy 
might be devised too which minimizes the overall Gini mean difference of the 
partition, thus taking into account also transvariation). 

In other words, the median is still the function approximator, as in LAD trees, 
but is computed on possibly different sets of units. As Gini himself underlines, ∆  
differs from the mean absolute deviation from the median as it overweights larger 
deviations (see also Bowley, 1920). The standard deviation does too, but in a to-
tally different way: while ∆  gives a weight which is proportional to the rank of 
the deviation, the standard deviation weights each difference according to its in-
tensity.  

The use of the split function based on Gini’s mean difference may then lead to 
regression trees whose properties are intermediate between those of OLS and 
LAD trees, but the research is still in progress. 
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It may be interesting to note that after putting ( ) ( )p t n t n=  (where ( )n t  is the 
number of units belonging to node t ), the function which is minimised at each 
step in the growing of OLS trees can be interpreted as the weighted average of 
within node variances ( 2( )s t ), 

~

2 ( ) ( )
t T

s t p t
∈

∑ , the one which is minimised in LAD 

trees as the weighted average of the within node sum of absolute deviations from 
the median ( ( )d t ) 

~

( ) ( )
t T

d t p t
∈

∑ , the one which would be minimised in what we 

might call MD (mean difference) trees is the weighted average of within node Gi-
ni’s mean difference ( ( )t∆ ) 

~

2( ) ( )
t T

t p t
∈

∆∑ . 

Gini’s concentration ratio too has proved to be an interesting alternative to the 
OLS criterion for the construction of regression trees aimed at modelling income 
inequalities (Costa, Galimberti, Montanari 2005) 

3. GINI’S MEAN DIFFERENCE FOR REGRESSION AND LINEAR DIMENSION REDUCTION 

3.1 Multiple linear regression 

As already mentioned, Gini’s mean difference can be defined in a variety of 
ways, each of which provides some insight into it. Stuart (1954) has derived the 
following expression: 

1 2 1 24cov( , ( )) xx X XX F X E E X X∆ ∆= = = −  (14) 

(where ( )F X  denotes the cumulative distribution function of the random vari-
able X). Hence ∆  is interpreted as a function of the covariance between a variate 
and its rank and its empirical estimate xx∆�  is obtained by (5). 

Expression (14) suggests a possible way of defining the analogous of the classi-
cal covariance and correlation based on the concept of mean difference. What 
may be called Gini covariance (Taguchi, 1981; Schechtman and Yitzhaki, 1987) or 
co-difference is then defined as 

( )1, 1 2 2( ) 1 2 1 2,4 cov( , ( )) {[ sgn( )]( )}XY X Y X YY F X E E X X Y Y∆= = − −  (15) 

or as 

( ) ( )2 21, 1 1 2 1 2,4 cov( , ( )) {[ sgn( )]( )}YX X YX YX F Y E E Y Y X X∆= = − − . (16) 

1 1( , )X Y  and 2 2( , )X Y  are mutually independent pairs of random variables with 
the same joint density function and 
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1  for 0
( ) 0  for 0

1  for 0

x
sgn x x

x

− <⎧
⎪= =⎨
⎪ >⎩

 

according to which variable is ranked. 
XY∆  can be empirically estimated as 

2{[ sgn( )]( )}XY i j i j
i j

x x y y n∆ = − −∑∑�  (17) 

whose computational version is 

( )
1

2

2 (2 1)
i

n

r x
i

XY

i n y

n
=∆

− −
=
∑

�  (18) 

(where ( )ir xy  is the observation on Y that corresponds to the i-th lowest value of X). 
Gini correlation is therefore 

( , ) XY

YY
C X Y ∆

∆
=  and ( , ) YX

XX
C Y X ∆

∆
= . 

The first striking feature of these quantities is that unlike ordinary covariance and 
Pearson’s correlation, neither Gini covariance nor Gini correlation are symmetric. 

However Schechtman and Yitzhaki have proved that 
1) 1 ( , ) 1C X Y− ≤ ≤  for all X,Y 
2) if X and Y are independent random variables ( , ) ( , ) 0C X Y C Y X= =  
3) if X and Y are exchangeable random variables, then ( , ) ( , )C X Y C Y X=  
4) if (X,Y) has a bivariate normal distribution with correlation ρ , then 

( , ) ( , )C X Y C Y X ρ= =  
In order to maintain symmetry in all cases Taguchi (1981) suggests the squared 

Gini correlation coefficient 

cov( , ( ))cov( , ( ))
cov( , ( ))cov( , ( ))

X F Y Y F X
X F X Y F Y

 (19) 

which may be proved to vary between 0 and 1. 
The correlation measure that varies between –1 and 1 is then given by the 

square root of (19) with the sign determined by 

cov( , ( )) cov( , ( ))
cov( , ( )) cov( , ( ))

X F Y Y F Xsgn
X F X Y F Y

⎛ ⎞
+⎜ ⎟

⎝ ⎠
. (20) 



Gini ̦s ideas: new perspectives for modern multivariate statistical analysis 247 

These concepts have been widely employed in order to develop what have been 
called Gini multiple linear regression and Gini principal components analysis. 

The first problem, multiple linear regression, has been approached from vari-
ous perspectives, all based on the idea of Gini’s mean difference. 

Olkin and Yitzhaki (1992) for instance suggest to estimate the parameters of 
the linear multiple model 

1 1 2 2 ... p pY X X Xα β β β ε= + + + + +  where ( ) 0E ε =  

by minimising 

cov( , ( )) ( )ee i i
i

e R e e R e∆ = =∑�  

where e represents the sample residual and R(e) is the rank of the estimated error 
term. This approach further develops a former proposal by Jaeckel (1972) and 
represents a special case of R estimation for linear models (Hettmansperger and 
McKean, 1998).  

The method doesn’t allow to estimate α , which is therefore estimated resort-
ing to the OLS intercept estimator, based on the previously obtained regression 
coefficients. 

Minimisation of Gini’s mean difference of the sample error term yields the first 
order conditions 

cov( , ( )) 0     1,...,kX R e k p= =  (21) 

which are analogous to the normal equations in OLS regression estimation. 
Since the error e is a function of all the regression weights the solution of (21) 

yields the partial effect of kX  on Y, which is similar to that obtained from OLS. 
Observing that ( )R e  is strongly dependent on how the residuals have been es-

timated and that the rank of the true population residual corresponding to a given 
covariate vector is unknown, Podder (2002) suggests a more general framework 
within which a different version of Gini regression can be derived. 

His proposal is to obtain an estimator for the vector parameter β  by optimis-
ing a weighted sum of the residuals, which is a translation invariant measure of 
dispersion: 

1

n

i i
i

w e
=
∑  (22) 

under the constraint that 
1

0
n

i
i

w
=

=∑ . 

The weights 22(2 1)iw i n n= − −  which appear in the computational expres-
sion of Gini’s mean difference satisfy this constraint. With such weights one can 



 A. Montanari, P. Monari 248 

easily verify that α  cannot be directly estimated and Podder too suggests to es-
timate it by the OLS intercept estimator. 

The open problem is then to identify the best variable to be ranked, that is the 
most suitable variable to which the rank i in Gini’s weight refers. 

While Olkin and Yitzhaki suggest to rank the residuals themselves, Podder 
proposes to weight each residual by a function of the rank of the corresponding 

kX  value. As minimising (22) amounts to make it vanish (see Podder for a de-

tailed proof), by equating 1 1 2 2
1 1

( ... )
n n

i i i i i i p ip
i i

w e w y x x xβ β β
= =

= − − − −∑ ∑  to 0 

with respect to each of the regressors (i.e. by choosing the weights according to 
the rank of each of the regressors) one obtains a set of p normal equations which 
suggest that the residuals of a linear regression model estimated according to 
Podder’s suggestion satisfy the condition cov( ( ), ) 0   kR X e k= ∀ . Denoting the 
estimated covariance between the rank of the k-th regressor and the j-th regressor 
as kj∆�  and the estimated covariance between the rank of the k-th regressor and 

the dependent variable as ky∆� , the k-th normal equation is  

1 1 2 2 ...               ( 1,... )k k p kp ky k pβ β β∆ ∆ ∆ ∆+ + + = =� � �� � � �  

In order to solve this system of p equations one has to resort to Gini’s difference-
codifference matrix of order p 

11 12 1

21 22 2

1 2

...

...
... ... ... ...

...

p

p
xx

p p pp

∆ ∆ ∆

∆ ∆ ∆

∆ ∆ ∆

⎡ ⎤
⎢ ⎥
⎢ ⎥= ⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

D

� � �
� � �

� � �

 (23) 

which we assume to be full rank. Similarly we can define the codifference vector 

1

2

...

y

y
xy

py

∆

∆

∆

⎡ ⎤
⎢ ⎥
⎢ ⎥= ⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

D

�
�

�

. (24) 

The matrix form of the set of normal equations is then xx xyβ =D D�  and its solu-

tion is 1
xx xyβ −= D D�  whose structure closely resembles the one obtained by OLS. 

Podder derives some properties of his regression estimator, he proves it is un-
biased, consistent, asymptotically normal and provides an expression for its vari-
ance. He also suggests it is more robust than the OLS estimator against outlying 
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observations, but much work in this direction has still to be done and a thorough 
study of the performances of this estimator in presence of data pathologies (not 
only outliers or leverage points, but also multicollinearity) is necessary. 

3.2 Principal component analysis 

Based on xxD  transpose (it has already been stressed that xxD  is not symmet-
ric) Baccini and de Falguerolles (1993) propose to derive a Gini analogue of prin-
cipal components. Just as the coefficients of Hotelling’s principal components 
can be derived after a singular value decomposition of the covariance matrix of 
the observed variables, the coefficients of Gini principal components are derived 
from the singular value decomposition of the codifference matrix xx′D . 

However admissible from a computational point of view, the interpretation of 
the solution is not completely satisfactory, as it doesn’t clearly show which opti-
mality properties Gini components enjoy. xxD  cannot be viewed as an estimate 
of the population variance covariance matrix: Gini himself showed that variance 
and mean difference highlight different aspects of variability and answer different 
questions. Furthermore while classical principal components are the maximum 
variance linear combinations of the observed variables, it cannot be proved that 
the left singular vectors of xx′D  identify the directions along which Gini’s mean 
difference is maximum. 

A more interesting solution may perhaps be derived by casting the problem wi-
thin the so called projection pursuit framework (Huber, 1985) and directly look-
ing for the linear combination of the observed variables which optimises Gini’s 
mean difference. The search can be repeated by restricting it each time to the or-
thogonal complement of the directions identified in the preceding steps. 

3.3 Linear discriminant analysis 

Liner combinations of the observed variables have found a wide use also in the 
context of discriminant analysis. The first idea goes back to Fisher (1936) who 
suggested to search directly the linear combination of the p measured characteris-
tics which maximises group separation, defined as the ratio of “between” to “wi-
thin” group variance under the condition of homoscedasticity. Apparently, it does 
not require any distributional assumption, but normality or at least symmetry is 
actually implicitly assumed. Furthermore it is well known that Fisher’s function is 
not robust against outlying observations and against violations of normality and 
homoscedasticity. 

In order to maintain the ease of interpretation of Fisher’s function while avoid-
ing the normality and heteroscedasticity assumption Posse (1992) proposed a pro-
jection pursuit version of linear discriminant analysis based on the search of the 
linear combination showing the minimum total probability of misclassification. 

It obviously gives the best error rates as far as the classification of the units be-
longing to the training sample is concerned, but for small or moderate sample si-
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zes nothing guarantees its good performances on new cases whose group mem-
bership is to be determined, in other words, it may be derailed by a sort of over-
fitting effect. A different promising solution may be obtained by looking for the 
linear combination which optimises group separation in terms of Gini’s transvari-
aton (Montanari and Calò 1998; Montanari 2004). 

According to Gini (1916), two groups 1g  and 2g  are said to transvariate on a 
variable X , with respect to their corresponding mean values 1xm  and 2xm  if the 
sign of some of the 1 2n n  differences 1 2 1     2( 1, 2,..., 1, 2, ... )i jx x i n j n− = =  which 
can be defined between the x values belonging to the two groups is opposite to 
that of 1 2x xm m− . Any difference satisfying this condition is called “a transvaria-

tion” and 1 2i jx x−  is its intensity. (It’s worth noting that Wilcoxon-Mann 
Whitney two sample test is based on the same idea). 

In order to measure the transvariation between two groups Gini first intro-
duced, among others, the concepts of transvariation probability, transvariation 
intensity and transvariation area. 

Transvariation probability is defined as the ratio of the number of transvaria-
tions (assuming the median as mean value) to its maximum. It takes value in the 
interval [0,1] and the more the two groups overlap, the greater its values. Its 
complement to 1 formally translates the notion of separability due to Hand 
(1997): “Two classes are said to be perfectly separable, or simply separable, if the 
support regions of the population distributions do not intersect. This means that, 
at any given point of the measurement space, objects from only one class will be 
observed”. 

Denoted by ( )  1, 2kf x k =  the probability density function of X in kΠ , the 
parent population of group kg , the transvariation area is 

( )x dx
+∞

−∞

Ψ∫  where 1 2( ) min( ( ), ( ))x f x f xΨ = . (25) 

When the transvariation probability is zero, the two groups do not overlap and 
therefore the transvariation area is also zero, but the inverse is not always true. 
This means that the two measures usually highlight different aspects of group 
transvariation. 

Transvariation intensity (defined with respect to the arithmetic mean) is equal 
to the ratio of the sum of transvariation intensities to its maximum. 

The above description may have shown that transvariation measures can be 
profitably used to discriminate between two groups. A linear discriminant func-
tion can then be derived as the linear combination which minimises transvariation 
probability, intensity or area. For normal data the three solutions coincide and 
also coincide with Fisher linear discriminant function. 

A closer look at the formal expression of transvariation area shows that it is 
but twice the total probability of misclassification, therefore minimising trans-
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variation area leads to the solution obtained by Posse. Based on the study of the 
statistical properties of transvariation measures and on simulations Montanari 
(2004) shows that the linear disciminant function obtained by optimising trans-
variation probability generally gives the best results as it is robust against viola-
tions of normality and homoscedasticity assumptions and against the presence of 
outliers. 

4. MULTIVARIATE TRANSVARIATION AND MULTIVARIATE MEDIAN 

As already mentioned in the introduction, the only explicit Gini’s contribution 
to multivariate analysis is confined to multivariate transvariation (Gini and Liva-
da, 1959) and to the concept of spatial median (Gini and Galvani, 1929). 

In most of the cases he developed the methods for the two variable case be-
cause “it is the most frequent and most interesting for practical applications” 
(Gini 1959) and mentioned the possibility of extending them to more tan two va-
riables jointly observed on a given set of statistical units. 

It is also worth noting that in his works on the above mentioned topics he had 
a co-author. A further proof of his limited interest in multivariate topics. 

Extending his notion of transvariation between two groups to the multivariate 
context he required that at least one pair of units simultaneously transvariates on 
each variable. A more formal definition may be given as: two groups 1g  and 2g  
of 1n  and 2n  units respectively, are said to transvariate on a p-dimensional vari-
able X, with respect to their corresponding mean vectors 1Xm  and 2Xm , if there 
exists at least one pair ( , )i jx x , with 1i g∈x  and 2j g∈x , such that for any vari-

able ( 1,..., )kX k p=  the difference ki kjx x−  is opposite to that of 1 2k kX Xm m− . 
Transvariation may still be measured by transvariation probability, again de-

fined as the ratio of the number of transvariating pairs (with respect to the mar-
ginal medians) to its maximum. As opposite to the univariate case, however, 
transvariation probability can no longer be interpreted as a measure of group 
separability as it may be greater than 0 even if the groups are completely separate 
in the multidimensional space. On the contrary, Gini’s “transvariation space”, 
that is the multidimensional transvariation area 

1 2 1 2( , , ..., ) ...p px x x dx dx dx
∞

−∞

Ψ∫  (26) 

where 

1 2 1 1 2 2 1 2( , , ..., ) min( ( , , ..., ), ( , , ..., ))p p px x x f x x x f x x xΨ =  (27) 

with 1f  and 2f  the multivariate group densities, still maintains its meaning and 
its equivalence to the total probability of misclassification in the equal prior case. 
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Calò (2004) has introduced a modified version of Gini’s multidimensional 
transvariation probability which can be interpreted as a true measure of group se-
paration in the multivariate space and has suggested a stepwise variable selection 
method in discriminant analysis which is based on this new measure. 

In the statistical literature on robust location measures Gini’s spatial median is 
quite well known, even if he dedicated to it very little space. He just defined it and 
proposed an application to the study of population distribution. 

Given n points lying in pR , 1 2, , ..., nx x x , the spatial median is the p-vector M  

which minimises the Euclidean distance of the points from it 
1

n

i
i=

−∑ x M . When 

p=1 the definition yields the standard univariate median. 
Small (1990) presents a thorough survey of multidimensional medians, also 

highlighting the properties of Gini’s spatial one and relating it to other possible 
definitions of medians in the multivariate space. 

A reinterpretation of Gini’s contribution on this and many other issues in mul-
tivariate analysis can surely open new fields of research, towards more general 
and flexible solutions. 
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SUMMARY 

Gini ̦s ideas: new perspectives for modern multivariate statistical analysis 

Corrado Gini (1884-1964) may be considered the greatest Italian statistician. We be-
lieve that his important contributions to statistics, however mainly limited to the univari-
ate context, may be profitably employed in modern multivariate statistical methods, aimed 
at overcoming the curse of dimensionality by decomposing multivariate problems into a 
series of suitably posed univariate ones. 

In this paper we critically summarize Gini’s proposals and consider their impact on 
multivariate statistical methods, both reviewing already well established applications and 
suggesting new perspectives. 

Particular attention will be devoted to classification and regression trees, multiple linear 
regression, linear dimension reduction methods and transvariation based discrimination. 

 




