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1. INTRODUCTION 

The Inverse Gaussian distribution was first introduced by (Schrodinger, 1915). 
Stemming from the earlier work by (Tweedie, 1947), the Inverse Gaussian (IG) 
distribution has received considerable attention in the statistical literature during 
the last two decades. Over the years it has found applications in different areas 
ranging from reliability and life testing to meteorology, biology, economics, medi-
cine, market surveys and remote sensing. See (Seshadri, 1999) for an extensive list 
of applications (Sen and Khattree, 2000). The review paper by (Folks and Chhi-
kara, 1978) has presented various interesting properties of the IG distribution. 
There are various alternative forms of a IG distribution available in the literature. 
Out of these we choose to work with the most familiar one having probability 
density function (p.d.f). 
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Here, the parameters µ  and λ  are called location and shape parameters re-
spectively. The mean and the variance of the IG distribution corresponding to (1) 
are respectively given by E( )X µ=  and 3V( )X µ λ= . In cases, where the dis-
tribution has arisen from the inverse Gaussian process, one may be interested in 
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The sample mean x  follows Inverse Gaussian distribution with parameters µ  
and nλ . The sample mean x  is unbiased for µ  where as λ̂  is a biased estimator 
λ . The statistics ( , )x V  are jointly complete sufficient statistics for ( , )µ λ  if 
both µ  and λ  are unknown. When λ  is known, the uniformly minimum vari-
ance unbiased estimator (UMVUE) of the reciprocal mean (1/ )µ  is 
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with the variance 
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We note that in many practical situations the value of λ  is not known, in such a 
case the maximum likelihood estimator (mle), uniformly minimum variance unbi-
ased estimator (UMVUE) and minimum mean squared error (MMSE) estimators 
of (1/ )µ  are respectively given by 
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It is pointed out in (Sen and Khattree, 2000) that the estimators ˆ
mlθ , ÛMVUEθ  and 

ˆ
MMSEθ  are particular members of the following class of estimators 

{ }ˆ 1 ; 0V
x

θ α α= − ≥  (7) 

The class θ̂  is a convex subspace of the real line. But it does suffer from certain 
undesirable features. For instance, this class does not ensure the non-negativity of 
the estimators and unless 0α = , with positive probability, any estimator includ-
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ing the UMVUE and MMSE in θ̂  can take negative values and hence be out of 
the parameter space. Following (Lehmann, 1983, p. 114) one may comment on 

ÛMVUEθ  as follows “ ÛMVUEθ  can take negative values although the estimate is 
known to be non-negative. Except when n is small, the probability of such values 
is not large, but when they do occur they cause an embarrassment. This difficulty 
can be avoided by replacing it by zero whenever it leads to a negative value, the 
resulting estimator of course, will no larger be unbiased”. This problem has been 
further discussed by (Pandey and Malik, 1989). 

It is to be mentioned that the estimator 1̂θ  in (2) can be used only when the 
value of the parameter λ  is known. The value of λ  is not known in most of the 
practical situations. However, in many practical situations the experimenter has 
some prior estimate regarding the value of the parameter, either due to his ex-
perience or due to his acquaintance with the behavior of the system. Thus the ex-
perimenter may have evidence that the value of λ  is in the neighborhood of 0λ , 
a known value. We call 0λ  the experimenter’s prior guess see (Pandey and Malik, 
1988). 

The study of the estimators based on prior point estimate (or guess value) 0λ  
revealed that these are better (in terms of mean squared error) than the usual es-
timators when the guess value is in vicinity of true value. This property necessi-
tated the use of preliminary test of hypothesis to decide whether guess value is in 
vicinity of true value or not. The intention behind preliminary test was that if 
guess value is in vicinity of the true value, the estimator based on prior point es-
timate or guess value 0λ  should be used otherwise usual estimators. 

In this paper, we define the estimator of the reciprocal of the mean (1/ )µ  by 
incorporating the additional information 0λ  of λ . The mean square error crite-
rion will be used to judge the merits of the suggested estimator. Numerical illus-
trations are given in the support of present study. 

The relevant references in this connection are (Thompson, 1968), (Singh and 
Saxena, 2001), (Singh and Shukla, 2000, 2003), (Tweedie, 1945, 56, 57a, 57b), 
(Travadi and Ratani, 1990), (Jani, 1991), (Kourouklis,1994), (Iwase and Seto, 
1983, 85), (Iwase, 1987), (Korwar, 1980), (Srivastava et al. 1980), and (Singh and 
Pandit, 2007, 2008). 

2. SUGGESTED ESTIMATOR AND ITS PROPERTIES 

If sample size is sufficiently large the maximum likelihood estimators (MLE) 
are consistent and efficient in terms of mean squared error. If sample size is 
small, there is relatively little information about the parameter available from the 
sample and if there is any prior estimate for the parameter, the shrinkage method 
can be useful, see (Pandey, 1983). Let the prior point estimate 0λ  of the parame-
ter λ  be available. Then we define the following estimator for (1/ )µ  as 
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where 0 0
ˆ ˆ1/ , 1/ /( 1)V nδ λ δ λ= = = −  is the UMVE of 1/δ λ= ; W is a constant 

such that MSE of θ̂  is least and p is a non-zero real number. 
Taking expectation both sides of (8) we have 
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Using (10) and (11) in (9) we have 
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Thus we get the bias of θ̂  as 
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The mean squared error of θ̂  is given by 
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Since δ  in (15) is unknown, therefore, replacing δ  by its estimate δ̂ , we get an 
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Thus replacing W by Ŵ  in (8), we get a class of shrinkage estimators of (1/ )µ  
as 
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As pointed out earlier regarding UMVUE ÛMVUEθ , we note that the resulting 
family of shrinkage estimators ( )

ˆ
pθ  can also take negative values for smaller val-

ues of n . However, this difficulty can be avoided by replacing it by zero when-
ever it yields negative values. 
The bias of ( )
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pθ  is given by (17) 
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Thus we have the following proposition. 
 
Proposition 2.1 The class of shrinkage estimators ( )

ˆ
pθ  has smaller relative mean 

squared error (RMSE) than that of ˆ 1
ml x

θ =  for 1 1(1 , 1 )G Gη∈ − + . 

The MSE expression at (19) can be re-expressed as 
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Now we state the following propositions which can be easily proved from (20) 
and (21). 
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where 
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3. SPECIAL CASE 

In this section we discuss the properties of an estimator (1)θ̂  (say), which is a 

particular member of the proposed class of shrinkage estimators ( )
ˆ

pθ  defined at 
(17). 
For p=1, the estimator ( )
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Putting p=1 in (18) and (19) we get the bias and MSE of (1)θ̂  respectively as 
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where ˆMSE( )MMSEθ  is given by (23). 
In order to compare the bias of ˆ

MMSEθ  with (1)
ˆ( )B θ , we write the bias of ˆ
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It follows from (25) and (27) that 
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Further from (26) we note that 

(1)
ˆ ˆMSE( ) MSE( )MMSEθ θ<  if 

0 2η< <  (29) 

Thus we state the following theorem. 
 
Theorem 3.1 The estimator (1)θ̂  is less biased as well more efficient than MMSE 

estimator ˆ
MMSEθ  iff 0 2η< < . 

 
Remark 3.1 It is to be noted that the estimator ˆ

MMSEθ  is the minimum mean 
squared error estimator so it has less MSE than that of usual estimator ˆ 1/ml xθ =  
and UMVUE ÛMVUEθ . Thus it is interesting to note from (29) that the estimator 

(1)θ̂  is more efficient than the estimators ˆ ˆ,ml UMVUEθ θ  and ˆ
MMSEθ  under the con-

dition 0 2η< < . 

4. NUMERICAL ILLUSTRATION AND CONCLUSIONS 

To get tangible idea about the performance of the proposed class of shrinkage 

estimators ( )
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pθ  over usual estimator ˆ 1
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θ = , UMVUE 
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have computed the percent relative efficiencies (PRE’s) of ( )
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, is the coefficient of variation. 

The PRE’s have been computed for different values of 1, 2p = ± ± . n = 5, 10, 15; 
0.25(0.25)1.75η = ; and C = 1,5. The computed values are displayed in tables 

4.1(a). 4.2(a) and 4.3(a). 
We have also computed the range of η  for different values of , ,p n η  and C; 

and presented in tables 4.1(b), 4.2(b) and 4.3(b). We note that  
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It is observed from tables 4.1(a), 4.2(a) and 4.3(a) that the percent relative effi-
ciencies of ( )

ˆ
pθ , 2, 1p = ± ± ; with respect to ˆ

mlθ , ÛMVUEθ  and ˆ
MMSEθ  respectively 

( ) ( ) ( )
ˆ ˆ ˆ ˆ ˆ ˆ( . . ( , ), ( , ) ( , ))p ml p UMVUE p MMSEi e PRE PRE and PREθ θ θ θ θ θ : 

 
(i) attain their maximum at 1η =  (i.e. when λ  coincide with 0λ ), 
(ii) decrease as n increases, 
(iii) increase as the value of coefficient of variation (C) increases,  
(iv) is more than 100% for the largest range of dominance of η  when p=1,  
(i.e. (1)θ̂ ), but the gain in efficiency is smaller compared to other estimators ( 2)θ̂ − , 
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( 1)θ̂ −  and ( 2)θ̂ . However, the estimator ( 2)θ̂  seems to be the good intermediate 

choice between the estimators ( 2)θ̂ − , ( 1)θ̂ −  and (1)θ̂ . 
Comparing the results of tables 4.1(a), 4.2(a) and 4.3(a) it is seen that the gain 

in efficiency by using ( )
ˆ

pθ  over ˆ
mlθ  is the largest followed by ÛMVUEθ  and then 

ˆ
MMSEθ . Also the proposed family of shrinkage estimators ( )

ˆ
pθ  is more efficient 

than ˆ
mlθ  for widest range of η  followed by ÛMVUEθ  and ˆ

MMSEθ  see tables 4.1(b), 
4.2(b) and 4.3(b). It is expected too. 

Thus we conclude that the suggested family of shrinkage estimators ( )
ˆ

pθ  is to 
be recommended for its use in practice when 
(i) the guessed value 0λ  moves in the vicinity of the true value λ . 
(ii) sample size n is small (i.e. in the situations where the sampling is costly) and  
(iii) the population is heterogeneous. 

TABLE 4.1(a) 

Percent relative efficiency of ( )
ˆ

pθ  over ˆ
mlθ  

C P →  – 1 – 2 

η ↓  n →  5 10 15 5 10 15 

0.25 110.11 103.82 103.87 105.79 106.74 105.15 
0.50 111.30 106.28 104.95 110.35 107.28 105.30 
0.75 112.04 107.81 105.61 113.27 107.61 105.40 
1.00 112.28 108.33 105.83 114.29 107.72 105.43 
1.25 112.04 107.81 105.61 113.27 107.61 105.40 
1.50 111.30 106.28 104.95 110.35 107.28 105.30 

1 

1.75 110.11 103.82 103.87 105.79 106.74 105.15 
0.25 129.78 116.36 122.90 115.84 131.80 132.41 
0.50 134.03 129.17 130.86 130.61 135.03 133.67 
0.75 136.72 138.31 136.15 141.44 137.05 134.43 
1.00 137.63 141.65 138.01 145.45 137.73 134.69 
1.25 136.72 138.31 136.15 141.44 137.05 134.43 
1.50 134.03 129.17 130.86 130.61 135.03 133.67 

5 

1.75 129.79 116.36 122.90 115.84 131.80 132.41 
  1 2 

0.25 109.82 106.84 105.15 108.40 106.29 104.90 
0.50 110.35 106.93 105.18 111.42 107.23 105.30 
0.75 110.66 106.99 105.20 113.31 107.80 105.54 
1.00 110.77 107.01 105.21 113.96 107.99 105.62 
1.25 110.64 106.99 105.20 113.31 107.80 105.54 
1.50 110.35 106.93 105.18 111.42 107.23 105.30 

1 

1.75 109.82 106.84 105.15 108.40 106.29 104.90 
0.25 128.79 132.43 132.44 124.03 129.25 130.48 
0.50 130.61 132.97 132.68 134.45 134.72 133.62 
0.75 131.73 133.29 132.82 141.59 138.23 135.57 
1.00 132.11 133.40 132.87 144.14 139.44 136.24 
1.25 131.73 133.29 132.82 141.59 138.23 135.58 
1.50 130.61 132.97 132.68 134.45 134.72 133.62 

5 

1.75 128.79 132.43 132.44 124.03 129.25 130.48 
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TABLE 4.2(a) 

Percent relative efficiency of ( )
ˆ

pθ  over ÛMVUEθ  

C P →  – 1 – 2 

η ↓  n →  5 10 15 5 10 15 

0.25 103.23   97.61   98.92   99.17 100.35 100.10 
0.50 104.35   99.10   99.95 103.40 100.86 100.30 
0.75 105.03 101.36 100.60 106.20 101.17 100.40 
1.00 105.26 101.85 100.80 107.10 101.27 100.40 
1.25 105.03 101.36 100.60 106.20 101.17 100.40 
1.50 104.35   99.10   99.95 103.40 100.86 100.30 

1 

1.75 103.23   97.61   98.92   99.17 100.35 100.10 
0.25 109.51   89.74   93.64   97.74 101.65 100.90 
0.50 113.09   99.62   99.61 110.20 104.14 101.80 
0.75 115.35 106.67 103.70 119.30 105.70 102.40 
1.00 116.13 109.25 105.10 122.70 106.22 102.60 
1.25 115.35 106.67 103.70 119.30 105.70 102.40 
1.50 113.09   99.62   99.69 110.20 104.14 101.80 

5 

1.75 109.51   89.74   93.64   97.74 101.65 100.90 
  1 2 

0.25 102.96 100.45 100.10 101.60   99.93   99.91 
0.50 103.45 100.54 100.20 104.50 100.81 100.30 
0.75 103.75 100.59 100.20 106.20 101.35 100.50 
1.00 103.85 100.61 100.20 106.80 101.53 100.60 
1.25 103.75 100.59 100.20 106.20 101.35 100.50 
1.50 103.45 100.54 100.20 104.50 100.81 100.30 

1 

1.75 102.96 100.45 100.10 101.60   99.93   99.91 
0.25 108.66 102.14 100.90 104.70   99.68   99.41 
0.50 110.20 102.55 101.10 113.40 103.90 101.80 
0.75 111.15 102.80 101.20 119.50 106.61 103.30 
1.00 111.47 102.88 101.20 121.60 107.54 103.80 
1.25 111.15 102.80 101.20 119.50 106.61 103.30 
1.50 110.20 102.55 101.10 113.40 103.90 101.80 

5 

1.75 108.66 102.14 100.90 104.70   99.68   99.41 
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TABLE 4.3(a) 

Percent relative efficiency of ( )
ˆ

pθ  over ˆ
MMSEθ  

C P →  – 1 – 2 

η ↓  n →  5 10 15 5 10 15 

0.25 100.93   97.28   98.82   96.98 100.02 100.04 
0.50 102.03   99.59   99.85 101.15 100.53 100.18 
0.75 102.70 101.02 100.47 103.83 100.83 100.27 
1.00 102.92 101.51 100.68 104.76 100.94 100.30 
1.25 102.70 101.02 100.47 103.83 100.83 100.27 
1.50 102.03   99.59   99.85 101.15 100.53 100.18 

1 

1.75 100.93   97.28   98.82   96.97 100.02 100.04 
0.25 102.75   88.36   93.02   91.70 100.08 100.23 
0.50 106.11   98.09   99.05 103.40 102.54 101.18 
0.75 108.23 105.03 103.06 111.97 104.07 101.75 
1.00 108.96 107.56 104.46 115.15 104.59 101.95 
1.25 108.23 105.03 103.06 111.97 104.07 101.75 
1.50 106.12   98.09   99.05 103.40 102.54 101.18 

5 

1.75 102.75   88.36   93.03   91.70 100.08 100.23 
  1 2 

0.25 100.67 100.11 100.04   99.37   99.60   99.80 
0.50 101.15 100.20 100.07 102.13 100.48 100.18 
0.75 101.44 100.25 100.09 103.87 101.01 100.41 
1.00 101.54 100.27 100.09 104.46 101.19 100.48 
1.25 101.44 100.25 100.09 103.87 101.01 100.41 
1.50 101.15 100.20 100.07 102.16 100.48 100.18 

1 

1.75 100.67 100.12 100.04   99.37   99.60   99.80 
0.25 101.96 100.56 100.25   98.19   98.15   98.76 
0.50 103.40 100.97 100.43 106.44 102.30 101.14 
0.75 104.29 101.21 100.54 112.09 104.96 102.62 
1.00 104.59 101.30 100.58 114.11 105.88 103.13 
1.25 104.29 101.21 100.54 112.09 104.96 102.62 
1.50 103.40 100.96 100.43 106.44 102.30 101.14 

5 

1.75 101.96 100.56 100.25   98.19   98.15   98.76 
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TABLE 4.1(b) 

Range of η  for different values of n 

n →  

Estimator ↓  
5 10 15 

( 2)θ̂ −  (0.0000, 2.8708) (0.0000,2.0383) (0.0000, 2.3186) 

( 1)θ̂ −  (0.0000, 2.0000) (0.0000, 3.1715) (0.0000, 4.3700) 

(1)θ̂  (0.0000, 3.6458) (0.0000, 6.0745) (0.0000, 8.5498) 

(2)θ̂  (0.0000, 2.2374) (0.0000, 2.6774) (0.0000, 3.1481) 

TABLE 4.2(b) 

Range of η  for different values of n 

n →  

Estimator ↓  
5 10 15 

( 2)θ̂ −  (0.0000, 2.1067) (0.3006, 1.6994) (0.3033, 1.6966) 

( 1)θ̂ −  (0.1591, 1.8409) (0.0609, 1.9391) (0.3780, 1.9622) 

(1)θ̂  (0.0000, 2.2574) (0.0000, 2.2209) (0.0000, 2.2099) 

(2)θ̂  (0.0693, 1.9306) (0.1436, 1.8564) (0.1658, 1.8342) 

TABLE 4.3(b) 

Range of η  for different values of n 

n →  

Estimator ↓  
5 10 15 

( 2)θ̂ −  (0.0446,1.9554) (0.3348,1.6651) (0.3278,1.6722) 

( 1)θ̂ −  (0.2402,1.7598) (0.1299,1.8701) (0.1061,1.8939) 

(1)θ̂  (0.0000,2.0000) (0.0000,2.0000) (0.0000,2.0000) 

(2)θ̂  (0.1635,1.8365) (0.1951,1.8049) (0.2056,1.7944) 
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SUMMARY 

Estimation of the reciprocal of the mean of the Inverse Gaussian distribution with prior information 

This paper considers the problem of estimating the reciprocal of the mean (1/ )µ  of 
the Inverse Gaussian distribution when a prior estimate or guessed value 0λ  of the shape 
parameter λ  is available. We have proposed a class of estimators ( )

ˆ
pθ , say, for (1/ )µ  

with its mean squared error formula. Realistic conditions are obtained in which the esti-
mator ( )

ˆ
pθ  is better than usual estimator, uniformly minimum variance unbiased estimator 

(UMVUE) and the minimum mean squared error estimator (MMSE). Numerical illustra-
tions are given in support of the present study. 


