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DUMMY COVARIATES IN CUB MODELS 

Maria Iannario 

1. INTRODUCTION 

In several disciplines, the analysis of qualitative data and ordinal variables is a 
relevant issue for the study of phenomena whose information are obtained by 
surveying a sample of population1. Thus, in Marketing and Medicine, in Linguis-
tics and Economics, in Psychology and Cognitive sciences it is quite common to 
ask people to express ordered evaluation on several items (rating analysis) or to 
grade preference/liking/concern towards a set of comparable items/objects/ 
services from the best to the worst (ranking analysis). 

In fact, in rating analysis distinct but generally dependent qualitative evalua-
tions are expressed by subjects on several related items using a convenient scale; 
instead, in ranking analysis people are asked to order a set of objects/items/ 
services from the best to the worst degree of feeling/affection/concern, and so 
on. Although there is a substantial difference between these two methods of col-
lecting information on ordinal data, in both cases the survey ends up with a se-
quence of integers expressing preferences or feeling with respect to a set of items. 

Thus, it is worth to analyse such topics within a probabilistic framework where 
the response is a discrete random variable whose distribution and moments 
should be consistent with the observed behaviour of respondents. In fact, the 
study of ordinal data can not be simply assimilated to the discrete ones since a na-
ive approach lowers both efficiency and interpretation. 

One of the most accredited theory concerns Generalized Linear Models 
(GLM), promoted by Nelder and Wedderburn (1972), McCullagh and Nelder 
(1989) and for ordinal data by McCullagh (1980). Related studies of ordinal data 
derive from the development of multinomial logit models for discrete-choice model-
ling and ordered response models, as in Agresti (2002). A wide literature uses the latent 
variable approach as a convenient way to assess the distribution of multinomial 
responses, as mainly discussed by Moustaki (2000, 2003), Moustaki and Knott 
(2000), Cagnone et al. (2004), Bock and Moustaki (2007). 

In this area, a random variable based on a mixture distribution has been for-
                

1 We refer to Agresti (2002), Dobson (1990), Johnson and Albert (1999), Lloyd (1999), Marden 
(1995), Power and Xie (2000), Simonoff (2003) for a discussion about these topics. 
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mally introduced by D’Elia and Piccolo (2005a) and then applied to several data 
sets. Explicit reference to subjects’ covariates (Piccolo, 2006) and objects’ charac-
teristics (Piccolo and D’Elia, 2008) has been also examined by the introduction of 
the class of CUB models. Specifically, in this paper, we deepen the role of covari-
ates in CUB models when they are related to time lags, clusters, sub-populations, 
space, groups, that is under dichotomous circumstances; thus, they may be speci-
fied as dummy variables. 

The paper is organized as follows: after an introduction to this class of models, 
in section 3 we specify the statistical implications of dummy covariates by empha-
sizing the interpretation of the estimated parameters. In section 4, a simulation 
study is pursued to show how the use of dummy covariates in CUB models al-
lows a sharp discrimination among sub-populations. Then, in section 5 we sup-
port the previous analysis by some empirical evidence on real data sets both when 
dummy refers to the same survey and when different samples are to be com-
pared. Some concluding remarks end the paper. 

2. ORDINAL DATA AND CUB MODELS 

If we observe how people select a single choice out of a set of m items  
(ranking) or assign a value (rating) within a range of ordered responses from 1 to 
m, we register two main factors that specify the outcome: a strictly personal judge-
ment towards the objects caused by several latent factors and an inherent indecision in 
the choice mechanism that reflects the rater’s uncertainty. Thus, the discrete re-
sponse is a mixture of two elements (both continuous and latent) that should be 
modelled by discrete random variables. 

The first component, that we call feeling, is the result of many unobservable 
subjective variables and thus it may be interpreted as a discretization of a Gaus-
sian random variable. In this respect, by appropriate selection of the thresholds, a 
shifted Binomial random variable has been proved to be an effective choice to 
take into account several possibilities that arise when we transform a unimodal 
continuous random variable into a discrete one whose support is the set of the 
first m integers (D’Elia, 2000). 

The second component, that we call uncertainty, is the result of the unavoidable 
indecision of any person taking a definite choice; then, it may be so extreme to 
give a constant probability to each element of the support (and thus the respon-
dent acts by means of a purely random mechanism) or to be not present at all 
(and thus the respondent gives an answer only on the basis of the feeling compo-
nent). In real cases the behaviour of respondents is intermediate between these 
two extreme situations. Thus, it seems reliable to model this component through 
the propensity of acting according to the Uniform discrete random variable de-
fined on the support {1, 2, , }m… . 

If we have a set of > 3m  discrete choices2, with a given and known m, this 
                

2 The constraint > 3m  rules out the possibility of a degenerate random variable ( = 1)m , and of 
an indeterminate ( = 2)m  or saturated model ( = 3)m . 
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choice mechanism implies that the observed response ri of the i-th subject, in a 
sample survey of size n, is the realization of a discrete random variable R whose 
probability distribution is a mixture of a discrete Uniform and a shifted Binomial 
random variables (D'Elia and Piccolo, 2005a; 2005b). Then, it is defined by: 

1)
1 1( = )= (1 (1 ) , =1, 2, , .
1

r m rm
Pr R r r m

r m
π ξ πξ − −−⎛ ⎞

− + −⎜ ⎟−⎝ ⎠
…  (1) 

Since (0,1]π ∈  and [0,1]ξ ∈ , the parametric space ( , )π ξΩ  is the unit square: 

( , )={( , ) :0 1; 0 1}.π ξ π ξ π ξΩ < ≤ ≤ ≤  

Recently, Iannario (2009) proved that this model is identifiable for > 3m . 
A strong point in favor of this distribution is the circumstance that its shape is 

extremely flexible as it accounts for right to left skewness, high peaked and 
platykurtic, symmetric and completely flat distributions (Piccolo, 2003). 

For the interpretation of the parameters we observe that (1 )/mπ−  is the con-
stant proportion of probability uniformly spread over the support, and we define 
this quantity as uncertainty share. Thus, the parameter π  is inversely related to the 
uncertainty. 

Instead, the feeling is related to ξ  in the sense that if we rate a list of objects/ 
items/services in such a way that the best is set to 1 and the worst to m, then a 
large ξ  is a direct measure of our positive taste, preference, liking, etc. On the 
contrary, if we give a score to items (as a vote, increasing from 1 to m  as the lik-
ing increases) then the interpretation of ξ  is reversed, and (1 )ξ−  must be con-
sidered as the actual measure of preference. 

Although the value of the response is not metric (as it stems from a qualitative 
judgement), it may be useful for comparative purposes to compute the expected 
value of R:  

( )
( 1)1( )= 1 .

2 2
mE R mπ ξ
+⎛ ⎞− − +⎜ ⎟

⎝ ⎠
 (2) 

In fact, this quantity is related to the mean value of the latent variable that ex-
presses people feeling, and thus it is useful for comparative purposes. 

Notice that both parameters contribute to assess the expected response. This is 
a relevant issue, since it confirms that - given the correctness of the model - the 
numerical value of the expectation is unable to convey all the information of the 
stochastic choice mechanism3. 

As a consequence, the introduction of subjects’ covariates should not be re-
lated to the expectation (as it is common in GLM proposals); instead, it is con-

                
3 Specifically, random variables specified by (1) with substantially different parameters values 

produce the same expectation (Piccolo, 2006, pp. 43-44). 
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venient to introduce a more general approach in order to take account of the cir-
cumstance that both parameters express different aspects of the choice mecha-
nism. 

When we relate the parameters of the mixture random variable to the subjects’ 
covariates4 we are defining CUB models introduced by Piccolo (2006). Although 
their logic is related to the GLM framework, the approach we adhere to is similar 
to King et al. (2000) who proposed only two components for a general statistical 
model: 

– a stochastic component which defines the response variables Ri by a discrete 
probability distribution.  

( ; ; ), =1, 2, ,if r i nθ α …  

where the α  parameters may be also constants among subjects;  
– a systematic component which explains the iθ  parameters by means of explana-

tory variables ix  and parameter vector β  that is: 

= ( ),i igθ βx  

where (.)g  is the link function. 
This simplified paradigm is more general than GLM structures since the prob-

ability distribution is not compelled to belong to exponential family and the pa-
rameters are not necessarily related to explanatory variables via the expectation. 
In fact, the link function is a complete general mapping between a real and a pa-
rametric space. However, from an operational point of view, the use of a logistic 
function is sufficient and adequate for the fitting and explanation of several data 
sets. Instead, it should be modified if some asymmetries are suspected in the tails 
of the distributions. 

Suppose we have a sample of ordinal data 1 2= ( , , , )nr r r ′r …  and we collect sev-
eral measurements on the subjects summarized in the Y  and W  matrices, whose 
i-th rows, for =1,2, ,i n… , are defined by:  

0 1 2 0 1 2= ( , , , , ); = ( , , , , ),i i i i ip i i i i iqy y y y w w w wy w… …  

respectively5. For establishing a consistent terminology, we use the acronyms 
CUB(0,0), CUB(p,0), CUB(0,q), CUB(p,q) in order to refer to models without co-
variates, with covariates for π , with covariates for ξ , and with covariates for 

,( )π ξ , respectively. Thus, the parameters to be estimated are denoted by θ  and 
are specified by: ,( )π ξ ′ , ,( )ξ′ ′β , ,( )π ′ ′γ  and ,( )′ ′ ′β γ , respectively. 

                
4 In fact, it is possible to introduce also objects' covariates in CUB models, as in Piccolo and 

D’Elia (2008). 
5 For making the notation more compact, we introduce the variables Y0 and W0 that assume the 

constant value 1 for all the sample units. 
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Then, if we let: 

0 1 0 1= ( , , , ) ; = ( , , , ) ,p qβ β β γ γ γ′ ′β γ… …  

a general CUB  model with a logistic link is defined, for any =1, 2, ,i n… , by the 
following probability distribution6: 

1

1

1 ( )1 1 1( = | , , , )= .
11 (1 )

w ri

i i y w mi i

m ePr R r y w
r m me eβ

γ

γβ γ
− −

− − −

⎡ ⎤−⎛ ⎞
− +⎢ ⎥⎜ ⎟−+ +⎝ ⎠⎢ ⎥⎣ ⎦

 (3) 

Specifically, the log-likelihood function of a CUB model without covari- 
ates, given the observed frequencies rn , that is the absolute frequencies of 
( = , =1, 2, ,R r r m… ), is defined by: 

1

=1
,

1 1log ( )= log (1 ) (1 ) .
1

m
r m r

r
r

m
L n

r m
π ξ π ξ ξ π− −−⎡ ⎤⎛ ⎞

− + −⎢ ⎥⎜ ⎟−⎝ ⎠⎣ ⎦
∑  (4) 

It may be easily generalized when covariates exist. Then, based on this ex-
tended information set, the joint efficient estimation of the parameters may be 
pursued by maximum likelihood (ML) method. Piccolo (2006) adapted the EM 
algorithm to such models and derived the observed information matrix of these 
estimators. Then, the significance of the parameters estimates, the relevance of 
the covariates and several asymptotic tests may be obtained. 

Finally, the comparison among log-likelihoods and difference of deviances for 
the estimated CUB models (without and with covariates) are the common tools 
for checking and validate different models. 

3. DUMMY COVARIATES AND CUB MODELS 

In this section, we specify CUB models for checking significant differences in 
the behaviour of respondents when circumstances are dichotomous. This fre-
quently happens when we compare agreement or satisfaction with respect to 
time, space, environment, gender, classes of age, groups of consumers, and so on. 

In this regard, according to sampling procedures, we should distinguish two 
main cases:  

– there are two different samples and we wish to compare the two observed distri-
butions of the responses via the estimated models, under the constraint that all 
other circumstances are equal. For instance, we compare models estimated on 
two samples generated in different times, spaces, rules, and so on.  
                

6 Notice that we use different notations for the variables explaining the uncertainty and feeling 
of respondents, respectively. However, the previous definition is completely general since the Y 's 
variables (or a subset of them) may also coincide with the W 's variables (or a subset of them), as it 
will happen in some applications we will discuss in section 5. 
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– there is a unique sample and we wish to test if there is a significant effect on 
the behaviour of groups characterized by dichotomous situations. For instance, 
we compare the effect of gender, age classes, job, education in the same popula-
tion. 

The logical consequences and the statistical interpretation of the previous cases 
are different but, from a formal point of view, we may address them in a similar 
way. For easiness of notation, we will discuss the case of a CUB model where 
only a dummy variable is relevant. 

Thus, we begin with a dichotomous situation where the sample is characterized 
by two groups G0 and G1, respectively (for instance, males and females, young 
and elderly, etc.). Denote by iD  a variable assuming values 0  and 1  when the  
i -th subject iS , for =1,2, ,i n…  belongs to one of the groups G0 and G1, re-
spectively. Formally, 

0

1

0, if G ;
= =1, 2, , .

1, if G ;
i

i
i

S
D i n

S
∈⎧

⎨ ∈⎩
…  

If we suppose that this membership is relevant for explaining a different effect 
of the uncertainty and/or the feeling components, we specify a CUB model 
where the corresponding parameters are function of the dummy covariate, that is:  

( ) ( )0 0

1 1= ; = , =1, 2, , .
1 1

i iD Di i
i n

e eβ ψφ γπ ξ− + − ++ +
…  

This implies that uncertainty and feeling parameters in the two groups are:  

0 0 1 1 ( )0 0

1 1( | )= = ; ( | )= = ;
1 1

i i i iS S
e eβ β φπ π π π− − +∈ ∈

+ +
G G  

0 0 1 1 ( )0 0

1 1( | )= = ; ( | )= = ;
1 1

i i i iS S
e e ψγ γξ ξ ξ ξ− − +∈ ∈

+ +
G G  

A simple algebra shows that:  

1 0 1 0> > 0; > > 0.π π φ ξ ξ ψ⇔ ⇔  

Now, the uncertainty is inversely related to the parameter π ; instead, the ξ  
parameter supports different interpretations according to the nature of the ordi-
nal variable. More precisely, if we are working on ranking data (where =1r  de-
notes the maximum of preference/liking/concern towards the objects/services/ 
items while =r m  denotes the minimum), then the parameter ξ  is a direct meas-
ure of feeling. On the contrary, if we are working on rating data (and we score the 
items by giving =1r  and =r m  to the minimum and maximum satisfaction, re-
spectively), then the parameter that measures the feeling is (1 )ξ− . 
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The following scheme summarizes this discussion and offers an immediate in-
terpretation of the relationships among the parameters of the dummy covariate 
and the components of the CUB model7. 

TABLE 1 

Interpretation of model components 

Dummy coefficients Interpretation in terms of model components CUB parameters 
 Uncertainty (G0) > Uncertainty (G1) π1 > π0 
 Ranking: Feeling (G0)< Feeling (G1) ξ1 > ξ0 

 Rating : Feeling (G0)> Feeling (G1)  

 
It is also interesting to relate the parameters 0β  or 0γ  of the CUB  models to 

the uncertainty or feeling components of the groups. In fact, by a similar algebra, 
we obtain:  

0 0
0 0

0 0

= log ; = log .
1 1
π ξ

β γ
π ξ

⎛ ⎞ ⎛ ⎞
⎜ ⎟ ⎜ ⎟− −⎝ ⎠ ⎝ ⎠

 

Is is evident that the constants are only related to uncertainty and feeling of the 
G0 group, which acts as a sort of reference group. 

Similar expressions may be obtained for the parameters φ  and ψ , respectively: 

01

1 0

= log log ;
1 1

ππ
φ

π π

⎛ ⎞⎛ ⎞
− ⎜ ⎟⎜ ⎟− −⎝ ⎠ ⎝ ⎠

 

01

1 0

= log log .
1 1

ξξ
ψ

ξ ξ

⎛ ⎞⎛ ⎞
− ⎜ ⎟⎜ ⎟− −⎝ ⎠ ⎝ ⎠

 

Then, we discuss the relationships among the conditional expectations of the 
response and the parameters, when one of them is fixed: this situation happens 
when only π  or ξ  is significantly explained by the dummy covariate. 

Suppose that we are comparing the expected response for a given π . From the 
formula: 

1 1E( | = )= ( 1) , =1, 2,
2 2 j

mR D j m jπ ξ
+ ⎛ ⎞+ − −⎜ ⎟

⎝ ⎠
 (5) 

we obtain:  

0 1
E( | =1) E( | = 0) = .

( 1)
R D R D

m π
ξ ξ−

−
−

 (6) 

                
7 Of course, for real data sets, we need to substitute the dummy coefficients with the correspon-

ding estimated parameters. 

0>φ
0>ψ
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Thus, an increase in the expectation of R (that is, a reduction of the agreement 
expressed by ranking the items) is strictly proportional to the corresponding de-
crease in the feeling parameters. The result confirms that - for a fixed π - feeling 
and expectation are inversely related. 

Then, suppose that we are comparing the expected response for a given ξ , 
and only the uncertainty parameter is conditioned by the dummy covariate. In 
this case, we get:  

1 0
E( | =1) E( | = 0) = .

1( 1)
2

R D R D

m
π π

ξ

−
−

⎛ ⎞− −⎜ ⎟
⎝ ⎠

  (7) 

Thus, if we remember that the uncertainty share is (1 )/mπ− , the result shows 
that, for a given ξ , an increase in the expectation of R corresponds to a propor-
tional reduction in the uncertainty component of the mixture when < 0.5ξ , and 
vice versa when > 0.5ξ . 

Both results might be expressed as displacements of points on the parametric 
space ,( )π ξΩ . In the first situation, when 1 0<ξ ξ , if we move vertically down 
from the point 0( , )π ξ  to the point 1( , )π ξ  we get a proportional increase from 
E( | =1)R D  to E( | = 0)R D . Instead, in the second situation, when we move 
horizontally up from the point 0( , )π ξ  to the point 1( , )π ξ , the expectation 
E( | =1)R D  increases with respect to E( | = 0)R D  if < 0.5ξ , and decreases if 

> 0.5ξ . Thus, the variation in the corresponding expectations depends also on 

the sign of 1
2

ξ⎛ ⎞−⎜ ⎟
⎝ ⎠

. 

The previous discussion may be also pursued with reference to the shape of 
the distribution since, as noticed by Piccolo (2003), the expectation of R increases 
(decreases) as long as the asymmetry moves towards negative (positive) values. In 
this regard, we observe that this random variable is perfectly symmetric if and 
only if =1/2ξ , and the sign of the asymmetry is the same of ( 1/2)ξ − . Thus, 
the expected preference of the raters towards a fixed object increases (decreases) 
with respect to the mid-range together with the negative (positive) value of the 
asymmetry measure. Then, a positive (negative) asymmetry is associated with a 
preference (adversity) towards the object. 

As a consequence, it is immediate to derive that 0γ  is a measure of symmetry 
of the probability distribution of the choices for the reference group G0. 

More precisely,  

0 0γ < ⇔ Left skewness; 

0 0γ = ⇔ Null skewness; 

0 0γ > ⇔ Right skewness. 
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On the contrary, the G1 group distribution is symmetric if and only if 
0 = 0γ ψ+ , and thus: 

0 0γ ψ+ < ⇔ Right skewness; 

0 0γ ψ+ = ⇔ Null skewness; 

0 0γ ψ+ > ⇔ Left skewness. 

These results may be summarized as follows: 

Skewness 0

0

= 0,    if = 0;1= 0 =
= ,   if =1.2

i

i

D
D

γ
ξ

γ ψ
⎧

⇒ ⇒ ⎨ −⎩
 

It is worth to notice that all the results about the interpretation of the dummy 
variable parameters are still valid when several covariates are present in CUB 
models. In these cases, one should add the standard convention (as in multiple 
regression modelling) that the effects of the covariates are consistently explained 
ceteris paribus, that is all other variables being constant. 

4. DISCRIMINATING POWER OF DUMMY VARIABLES IN CUB MODELS 

In this section a simulation study is pursued to assess the discriminating power 
of CUB models with regard to the presence of two sub-populations. Although 
the experiment cannot be considered exhaustive, it strongly supports the useful-
ness of dummy covariates for discriminating purposes. 

To set up the simulation design, we let = 9m  and suppose that two independ-
ent random samples of size 0n  and 1n , respectively, are generated by CUB  
model where the parameters ,( )π ξ  are specified as in Table 2. In this way, we  
are comparing two groups with a constant uncertainty share (measured by 
(1 )/ 0.028mπ− = ) and a shifting in feeling, measured by τ . 

TABLE 2 

Design of the simulation experiment 
Groups Parameters Samples sizes 

G0 = 0.75π  0 = 0.10ξ  100 150 200 150 250 

G1 = 0.75π  1 = 0.10ξ τ+  100 150 200 250 150 

 

Then, on the basis of the observed samples, for increasing > 0τ , we test:  

0 1: ( = 0.75, = 0.10) : ( = 0.75, = 0.10 ).H versus Hπ ξ π ξ τ+  

We reject H0 when the log-likelihood 01A  of the estimated CUB(0,1) model with 
a dummy covariate for explaining a difference in feeling (ξ  parameter) in the 
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second sample is significantly greater than the corresponding log-likelihood 00A  
of a CUB(0,0) model fitted to a joint sample. Thus, our asymptotic critical region 
of nominal size = 0.05α  is defined by: 

2
01 00 (0.05,1)2( )> = 3.841.χ−A A  

We simulate 1000 times a couple of samples generated under H0 and H1, re-
spectively, and we estimate the probability of rejecting H0. If = 0τ , this probabil-
ity is an estimate of the nominal size α , while for varying τ  it is an estimate of 
the power function of the test as long as H1 differs from H0. Formally, we define: 

0( )= ( | ).rP reject Hγ τ τ  

For our experiment, we have chosen three balanced and two unbalanced sam-
ple sizes for H0 and H1. 

Table 3 presents the estimated power function for the different sample size 
combinations, and we list the main points derived from these results: 

TABLE 3 

Simulated probability of rejecting H0, given 0τ ≥  

Cases A B C D E 
τ  n0 =100 n0 =150 n0 =200 n0 =150 n0 =250 
 n1 =100 n1 =150 n1 =200 n1 =250 n1 =150 

0.00 0.047 0.038 0.060 0.048 0.055 
0.01 0.076 0.082 0.120 0.100 0.111 
0.02 0.155 0.206 0.266 0.260 0.268 
0.03 0.278 0.410 0.520 0.489 0.468 
0.04 0.460 0.590 0.732 0.690 0.687 
0.05 0.599 0.785 0.902 0.850 0.857 
0.06 0.755 0.903 0.956 0.943 0.948 
0.07 0.869 0.960 0.987 0.979 0.987 
0.08 0.934 0.986 0.999 0.998 0.998 
0.09 0.969 0.996 1.000 0.999 0.998 
0.10 0.985 0.998 1.000 1.000 0.999 
0.11 0.988 1.000 1.000 1.000 1.000 
0.12 0.999 1.000 1.000 1.000 1.000 
0.13 1.000 1.000 1.000 1.000 1.000 

 

These issues are easily conformed by the patterns of power functions shown in 
Figure 1. 

 
1. As expected, power function increases uniformly with sample size; 
2. a small difference in feeling (as measured by = 0.08τ , say) is already de-

tected for moderate sample sizes with a probability always greater than 0.9;  
3. the steep slope of the power function causes some problems with respect to 

the nominal size (for moderate sample size, it results lower than expected);  
4. no serious problems arise when the sample sizes are not balanced, in both 

directions. 
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Figure 1 – Power functions for varying sample size. 

5. SOME EMPIRICAL EVIDENCE 

We will discuss the previous results with reference to some real data sets8 
where CUB models proved to be effective for explaining the behaviour of re-
spondents’ preferences. 

In the first case, we measure the effect of gender as a significant covariate for 
explaining the agreement toward a color (thus, data refers to rankings of the 
items). In the second case, we introduce a dummy covariate to explain the charac-
teristic of two groups attending University Orientation services (thus, data refers 
to ratings of a service). In the third case, we compare the difference in concern 
expressed by respondents with reference to serious problems in a large city dur-
ing 2004 and 2006 surveys, respectively (again, data refers to ranking but we are 
joining two samples). 

Thus, the first two case studies use dummy covariates within a unique sample 
while the last one refers to disjoint samples, collected in different times9. 

                
8 To be precise, we cannot assure that these data sets are realizations of random samples as they 

are collected from people attending University in different circumstances. However, the distribution 
of the relevant covariates is not substantially different with respect to a general population of re-
spondents and we found no a priori reason to invoke a selection bias for our samples; thus, statistical 
inference may be confidently pursued. 

9 For an effective statistical analysis of CUB models one should consider samples of moderate/ 
large sizes. In our data sets, the minimum sample size is = 169n  (in the first instance). This is cau-
sed by the circumstance that if we perform some inference with a smaller data set it is high the pro-
bability to observe no ordinal values for some = 1, 2, ,r m… , and this implies inefficient evaluation 
of the probability distribution. 
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5.1. Preferences towards colors 

This data set has been exploited in several studies on preference and motivated 
many advances in the methods and experiences on ordinal data (see: D’Elia et al., 
2001; D’Elia, 2003); it is concerned with a sample of =169n  University students 
during 1998. We limit the following discussion to compare the ranking of Black 
color with reference to the dummy covariate Smoking (=0 nosmokers, =1 smok-
ers). 

Black color received a high score (the average rank is 4.248, among a set of 12 
colors) with a sharp mode at =1r  but with a significant uncertainty share of 4.8% 
distributed over all the support; thus, the total amount of uncertainty in the re-
sponses is estimated as 58%. Indeed, a CUB (0,0) model shows a relevant feeling 
( ˆ = 0.948ξ ) but the great uncertainty expressed by respondents shifts the expec-
tation towards values not so extreme. The fitting measure10 = 0.104Diss  of the 
estimated model is acceptable (even the classical Chi-square test is not signifi-
cant). 

A substantial improvement in the model has been obtained by the inclusion of 
the smoking habit as explanatory covariate of the uncertainty parameters, as in 
Table 4. Notice that 34% of respondents declared to smoke. 

TABLE 4 

Estimation of CUB models for Black color preferences 

Models Uncertainty Feeling Log-lik 
CUB(0,0) ˆ = 0.421(0.056)π  ˆ = 0.948 (0.014)ξ  -374.596 

CUB(1,0) 0
ˆ = 0.791(0.305)β −  ˆ = 0.948 (0.014)ξ  -370.135 

 ˆ = 1.313 (0.450)φ    

 

The asymptotic likelihood ratio test, as implied by: 2 10 00( )=−A A 8.922, is 
highly significant to confirm the improvement acquired by the introduction of the 
dummy covariate. 

If we apply the interpretation discussed in section 3, we observe that ˆ > 0φ . 
Thus, when we move from the group G0 (nosmokers) to G1 (smokers) we expect 
an increase in the parameter π , and so a decrease in uncertainty. 

In Table 5, we compare the distribution of respondents of two groups, and  
it seems evident that the responses of smokers are mostly concentrated on the 
first two ranks. This confirms the more limited uncertainty of smokers respon-
dents. 

                
10 The dissimilarity index is a normalized sum of the absolute differences among observed relati-

ve frequencies and estimated probabilities of a given model. It measures the proportion of respon-
dents to move among categories in order to reach a perfect fit. 
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TABLE 5 

Black color preferences with respect to Smoking 

Groups 1 2 3 4 5 6 7 8 9 10 11 12 
G0 (nosmokers) 27 15 11 12 5 4 8 2 7 7 10 3 
G1 (smokers) 23 13 4 5 5 0 1 1 3 2 0 1 

 

The estimated CUB(0,1) accounts for this result by producing the same ξ  es-
timate (for the feeling component) and two π  estimates (as related to uncer-
tainty) expressed, respectively, by: 

0 10.791 0.791 1.313
ˆ ˆ1 1= = 0.312; = = 0.628.

1 1e e
π π −+ +

 

It turns out that the estimated uncertainty parameter expressed by nosmokers 
is about twice than smokers. 

In Table 6, we compare the estimated distributions of CUB (0,0) and CUB(1,0) 
models (given = 0iD  and =1iD , respectively) with the corresponding relative 
frequencies rf  of the two sample groups. Thus, the splitting into two subsets 
produces also a closer fitting within the groups. 

TABLE 6 

Observed and estimated distributions, conditioned by Smoking 

 Sample (n=169) Nosmokers (D=0) Smokers (D=1) 
r fr Pr(R=r) fr Pr(R=r) fr Pr(R=r) 
1 0.29586 0.28155 0.24324 0.23037 0.39655 0.37916 
2 0.16568 0.18990 0.13514 0.16208 0.22414 0.24176 
3 0.08876 0.08733 0.09910 0.08616 0.06897 0.08902 
4 0.10059 0.05470 0.10811 0.06210 0.08621 0.04061 
5 0.05917 0.04893 0.04505 0.05787 0.08621 0.03209 
6 0.02367 0.04827 0.03604 0.05738 0.00000 0.03112 
7 0.05325 0.04822 0.07207 0.05734 0.01724 0.03104 
8 0.01775 0.04822 0.01802 0.05734 0.01724 0.03104 
9 0.05917 0.04822 0.06306 0.05734 0.05172 0.03104 
10 0.05325 0.04822 0.06306 0.05734 0.03448 0.03104 
11 0.05917 0.04822 0.09009 0.05734 0.00000 0.03104 
12 0.02367 0.04822 0.02703 0.05734 0.01724 0.03104 

5.2. Rating of Orientation services 

This data set derives from a survey that has been carried out by University of 
Naples Federico II, at the end of each year, with reference to an extensive Orien-
tation program provided to its students, in order to check the students’ satisfac-
tion. The survey is based on a questionnaire where each student was asked to give 
a score for expressing his/her overall satisfaction towards the Orientation service, 
only if he/she used it during the year. The answers range from 1 (“completely  
unsatisfied”) to 7 (“completely satisfied”) and they concern 5 items: Willingness 
(W) and Competence (C) of the Orientation staff, Clearness of the information 
(I), Adequateness of timetable (T), and a Global evaluation (G). 
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The complete data set consists of =n 2000, 2457, 2975 subjects for the years 
2002, 2003, 2004, respectively11. In the following pages, we limit ourselves to in-
troduce a dummy covariate for explaining the responses to the global evaluation, 
and specifically12 we analyse “Frequency of usage” (=0 if occasionally, =1 if very 
frequent) on the global evaluation of the services during 2003. 

As a matter of fact, the global satisfaction towards the service received high 
scores with a sample average of 5.626 and a mode at ( = 6)R ; moreover, as 
shown in Figure 2, a CUB model is well fitted to the responses. 

 

 

 

 

 

 

 

 

Figure 2 – Observed and estimated distribution for global preference. 
 
 
Table 7 presents CUB models fitted to global preference, for all data and for 

the two subsets characterized by the “Frequency of usage”. For a correct inter-
pretation, one should remember that uncertainty is related to (1 )π−  while the 
positive feeling towards the service is now related to (1 )ξ− , since the response is 
a score whose value increases with a positive evaluation of the service. 

TABLE 7 

CUB models of Global satisfaction for Orientation services 

Parameters Occasionally (=0) Very frequent (=1) Whole sample 
π̂  0.912 (0.014) 0.923 (0.016) 0.904 (0.012) 
ξ̂  0.242 (0.005) 0.129 (0.006) 0.202 (0.004) 
n 1657 800 2457 

Diss 0.037 0.047 0.050 
AIC/n 3.097 2.637 3.030 

                
11 Complete documentation reports and several information about this project are available on 

http://www.dipstat.unina.it/ricerca/progettoVER. Some CUB models for these data sets were also di-
scussed by Iannario and Piccolo (2009) in a work related to Customer Satisfaction analysis. 

12 Here, we will not discuss the open problem of the selection of covariates in CUB models. In 
this case, the choice might be suggested by a substantial difference of the expressed average scores 
between the groups, that is 5.413 and 6.065 when the “Frequency of usage” is 0 and 1, respectively. 
The large sample sizes and the limited standard deviation of the scores ( 1.1/1.2)≅  support the si-
gnificance of such difference. 
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We observe that the groups present the same uncertainty in the response but 
feeling parameter is about doubled when we move from occasional to frequent 
users. This aspect is more evident if we compare the two distributions (Figure 3) 
where different modes and shapes are shown. 
 

          
 
Figure 3 – Global preference: occasional users. Figure 4 – Global preference: frequent users. 
 

The results suggest to include a dummy covariate to model the effect of “Fre-
quency of usage” of the services, and we obtained the CUB(0,1) model estimates 
as in Table 8. 

TABLE 8 

Estimated CUB models for Orientation services 

Models Estimated parameters Log-lik AIC 
CUB(0,0) ˆ = 0.904π  (0.012) -3720.285 7444.570 

 ˆ = 0.202ξ  (0.004)   
    

CUB(0,1) ˆ = 0.917π  (0.011) -3612.769 7231.538 

Frequency of usage 0ˆ = 1.138γ −  (0.027)   

 ˆ = 0.775ψ −  (0.056)   

 

We observe a high significance of parameters and a sensible reduction of log-
likelihood functions caused by the dummy covariate. Moreover, as expected from 
the schemes of section 3, the parameter < 0ψ  suggests that moving from the 
group G0 (=occasional users) to G1 (=very frequent users), we get an increase in 
feeling. In fact, frequent users present a distribution with a sharp mode at (R=7), 
that is the maximum score. 

5.3. Time differences about concern on urban problems 

In this data set a sample of respondents living in Naples ranked the main per-
ceived problems of the city among a list of 9 preselected items13. We classified 
                

13 After a preliminary investigation, the following items were selected as relevant: 1. Political 
patronage and corruption (CORRUP). 2. Organized crime (ORCRIM). 3. Unemployment (UNEMPL). 4. En-
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them as “emergencies” and asked to people to rank them with respect to the de-
gree of worry/anxiety/concern they caused. Thus, in this case study, feeling is in-
deed the degree of concern about an urban problem. 

The survey was submitted for the first time in December 2004 and repeated in 
December 2006 for a similar sample, in a rigorous and homogeneous way14, and 
we get complete answers from n0=354 and n1=419 respondents, respectively. In 
order to have a general idea of the difference of the rankings expressed by re-
spondents in different years, we present in Figure 5 the parametric space where 
the estimated parameters of the CUB (0,0) models are shown. 

 
Figure 5 – Estimated CUB models for 2004 ( )•  and 2006 ( )D  surveys. 

We register a substantial stability about the level of the perception of these 
problems, and the representation15 in the parametric space is a useful tool for 
visualizing the joint dynamics of both concern and uncertainty of respondents. 

First, we register a quite stable ordering of the items between the years16, as 
only few of them register a small variation in concern, as for instance Unemploy-

                
vironmental pollution (ENVPOL). 5. Public health shortcomings (HEALTH). 6. Petty crimes (PECRIM). 7. 
Immigration (IMMIGR). 8. Streets cleanness and waste disposal (WASTED). 9. Traffic and local transport 
(TRAFFI). The list were submitted as indicated, according to Italian alphabetic order. 

14 Gender and age distributions, professions, residences, etc. are quite similar among the sam-
ples. Further analyses about these data sets are discussed by D’Elia and Piccolo (2005b) and Ianna-
rio (2007) for the 2004 and 2006 surveys, respectively. 

15 For a correct interpretation of Figure 5, one should be aware that π scale have been doubled 
to allow a sharper reading of the graph. Thus, vertical displacements are relatively more important 
than horizontal ones. 

16 It seems surprising that different samples of hundredth of people give exactly the same global 
ordering to 9 items after two years; however, this confirms both the robustness of the procedure 
for detecting the real perception of residents and also the general context of the city that does not 
seem to evolve through the years. 
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ment, Political patronage and corruption and Environmental pollution. Thus, it interesting 
to test the ability of dummy covariates approach to detect such small variations. 

Instead, we observe a systematic displacement of almost all the uncertainty pa-
rameter estimates (π) towards the left side17, and often for a substantial amount; 
then, all the 2006 respondents include more uncertainty in their ranking with re-
spect to 2004. Given the constancy of the conditions, we may deduce that people 
feel, as a whole, more uncertain about evaluation of the problems. Specifically, 
they do not change the order of Public health shortcomings, Streets cleanness and waste 
disposal and Immigration18; however, uncertainty towards these items increased by a 
very large amount. As a consequence, we infer that a dummy covariate related to 
Time should be significant in these cases. 

Specifically, we join the two surveys to get a unique sample of n=773 observa-
tions, that are quite homogeneous but Time, and we will study the Environmental 
pollution item that presents a low concern (the average rank is 6.635) and whose 
CUB(0,0) model shows an acceptable fit (Diss=0.102), as confirmed by Figure 6. 

 
Figure 6 – Frequency and probability distributions of ranks. 

Then, in Table 9, we show estimated CUB models for the Environmental pollution 
item: we get a significant improvement in likelihood measures as long as we in-
clude the covariates gender, ln(age)19 and a dummy covariate for Time (=0 for 
2004, =1 for 2006). 

                
17 The only exception to this pattern is given by the TRAFFI variable whose uncertainty parame-

ter moves on the right side of the parameter space. 
18 Notice that the 2006 survey was collected some months before the significant upsurge of the 

“waste disposal” problem in Naples, at the beginning of 2007. 
19 We transform age by logarithm to reduce the variability of this covariate (in our data set, the age 

ranges from 18.0 to 57.8 years). As a consequence, we get a variance-covariance matrix of the estima-
tors about 500 times more stable (as measured by the condition number); this transformation does not 
modify the other parameters values but improved their significance. A similar effect may be obtained if 
we consider the deviations of the age from its average. Instead, we have not found relevant covariates 
for uncertainty: in fact, it spreads over the support by a very limited amount (2%). 
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TABLE 9 

Estimated CUB models for Environmental pollution 

Models π̂  ξ̂  Log-lik AIC 

CUB(0,0) ˆ = 0.796 (0.030)π  ˆ = 0.258 (0.008)ξ  -1483.315 2970.630 

CUB(0,1) ˆ = 0.804 (0.029)π  0ˆ = 0.857 (0.049)γ −  -1465.270 2936.541 

Gender  1̂ = 0.487 (0.083)γ −    
     

CUB(0,2) ˆ = 0.831(0.027)π  0ˆ = 3.163 (0.375)γ −  -1447.139 2902.277 

Gender  1̂ = 0.345 (0.082)γ −    

ln(Age)  2ˆ = 0.710 (0.113)γ    
     

CUB(0,3) ˆ = 0.830 (0.027)π  0ˆ = 3.044 (0.381)γ −  -1445.075 2900.151 

Gender  1ˆ = 0.347 (0.082)γ −    

ln(Age)  2ˆ = 0.697 (0.114)γ    

Time  ˆ = 0.154 (0.076)ψ −    

 

We observe that men are more concerned than women: indeed, moving from 
males (Gender=0) to females (Gender=1) the coefficient of this variable shows a 
decrease in concern; instead, with increasing age, people are more worried about 
this item. 

Finally, the dummy covariate Time seems to show a limited but significant ef-
fect by reducing concern of respondent towards this item. This interpretation is 
consistent with the general analysis of section 3 since the parameter < 0ψ  sug-
gests that, ceteris paribus, moving from 2004 survey (Time=0) to the 2006 survey 
(Time=1) we get a reduction in concern. In this regard, it is worth to observe that 
a standard analysis of the expressed average ranks of 6.531 and 6.732 of concerns 
in 2004 and 2006, respectively, cannot reject the hypothesis of the same expected 
ranks between the years20. 

It is interesting to compare the CUB models (with the same covariates) ob-
tained in separate and aggregate surveys, as reported in Table 10 (where parame-
ters estimates of 1 2, ,γ γ ψ  refers to covariates Gender, ln(Age) and Time, respec-
tively). It turns out that parameters estimates are quite stable within the years and 
thus the dummy variable related to Time adds new information to the statistical 
interpretation. 

                
20 This conclusion is based on a t-test of = 0.054ct − , which is supported by the large sizes of 

the samples we are comparing. 
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TABLE 10 

Comparison of CUB models for separate and aggregate surveys 

Parameters 2004 2006 2004 & 2006 
π̂  0.868 (0.035) 0.792 (0.040) 0.830 (0.027) 

0γ̂  -2.889 (0.542) -3.357 (0.538) -3.044 (0.381) 

1γ̂  -0.325 (0.111) -0.378 (0.124) -0.347 (0.082) 

2γ̂  0.649 (0.163) 0.745 (0.163) 0.697 (0.114) 

ψ̂    -0.154 (0.076) 

Sample size 354 419 773 
AIC/n 3.6861 3.8164 3.7518 

 

If we desire to apply the discussion of section 3, we need to isolate the effect 
of the Gender and Time covariates. However, given the nature of the covariates 
(two of them are dichotomous while Age is continuous), it is possible to plot 
their combined effects both for the ξ  parameter (a direct measure of concern for 
the item) and for the expected rank derived by the estimated models (an inverse 
measure related to a continuous proxy of the peoples’ concern), as shown in Fig-
ures 7 and 8, respectively. 

 

 

Figure 7 – Feeling parameter, given Gender and Time, for varying Age. 
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Figure 8 – Expected rank, given Gender and Time, for varying Age. 

6. CONCLUDING REMARKS 

In this paper, we have discussed interpretations and statistical implications of 
the use of dummy covariates in CUB models by investigating the relationship 
among the parameters, the feeling and uncertainty components and the expected 
response. 

Direct relationships among dummy parameters and location and skewness 
measures of the implied distributions of ordinal variables have been derived. 
These results help the interpretation of estimated CUB models, fitted by one or 
two samples. An extensive simulation to measure the power discrimination 
among sub-populations by using dummy covariates has confirmed a good per-
formance of the approach when the selection of different groups is a relevant is-
sue. 

Finally, for some real data sets, we have shown how a careful discussion about 
the placement of the estimates on the parametric space may be fruitfully exploited 
for the subsequent estimation of a CUB model with a dummy covariate. 
 
Department of Statistical Sciences MARIA IANNARIO 
University of Naples Federico II 
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SUMMARY 

Dummy covariates in CUB models 

In this paper we discuss the use of dummy variables as sensible covariates in a class of 
statistical models which aim at explaining the subjects’ preferences with respect to several 
items. After a brief introduction to CUB models, the work considers statistical interpreta-
tions of dummy covariates. Then, a simulation study is performed to evaluate the power 
discrimination of an asymptotic test among sub-populations. Some empirical evidences 
and concluding remarks end the paper. 


