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1. INTRODUCTION. STATE OF CONTENTION 

All statisticians, and many practitioners, have some knowledge of the existence, 
and contraposition, of several approaches – and corresponding techniques – in 
making inference from random samples to populations or random variables; and 
also that such contraposition is especially concerned with the two main streams 
of statistical inference: (a) the “sampling-based inference”, following the works 
and legacy of Fisher and Neyman-Pearson, and (b) the Bayesian inference, foun-
ded on a preliminary assessment of a probability distribution over the possible 
hypotheses. A large subset of the above set of statisticians and practitioners is al-
so aware of the strange asymmetry existing between the direction of criticisms 
coming from one field toward the other: there are several papers and books, writ-
ten by Bayesian scholars, pointing to the presumed inadequacy of the opposite 
field (some major contributions will be commented on in the sequel), while the 
other kind of criticism is almost a curiosity (see Efron, 1986). Actually, most 
Non-Bayesians simply neglect, or simply do not worry, about the methodological 
criticisms arising from the Bayesian field; I feel very sympathetic with this view-
point – and perhaps it is the wisest one – but I also think that sometimes it can 
be useful – for the sake of clarification – to cope with these criticisms and display 
their fundamental weakness. 

The answer to Efron’s question (Efron, 1986) “Why Isn’t Everyone a Bayes-
ian?”, is even too simple: many people wish to treat a constant like a constant, not as a 
random variable. If I know that a box contains tokens of two kinds A and B, and 
I have no idea of the (random?) process leading to filling up the box with the to-
kens, the proportion θ of A tokens is a constant, relative just to the given box. 
Now, if such information is of my personal use, nobody can prevent me from 
contriving a more ore less (for me) reliable evaluation of the possible values of θ. 
However, if my inference (usually based on a random sample of the tokens drawn 
from the box, if a complete census is excluded) is directed towards other people, 
who – in case of scientific communication – is the world scientific community, 
the following alternative is called for: (a) either we treat the proportion θ like a 
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constant, or (b) we propose a prior distribution demonstrably acceptable for the gi-
ven purpose. In the first case, I see no other possibility than making use of the 
(sole) information provided by the random sample drawn from the population of 
tokens. In the second case, I should choose a prior distribution (often of im-
proper kind, just a means to an end), such that it has an acknowledged property 
of being minimally affecting the posterior distribution, given the data and the 
sampling process. This last approach has gained ever more approval and useful 
results, since its starting with a famous paper by Bernardo (1979), however in the 
stream of forerunner contributions by Jeffreys (1939/1948), Jaynes (1968, 1976), 
and many followers, among which Berger has made the most significant ad-
vancements (for important survey papers see Bayarri and Berger, 2004; Bernardo, 
2005; Berger, 2006). Moreover, it must be recognized that the Bayesian approach 
is usually easier and more direct to implement than the classical approach, thus it 
could be adopted by any orthodox statistician, just to achieve a valid operative 
proposal. 

Now, if the state of affairs is the one just sketched, what is the use of discuss-
ing old counter-examples (contrived by Bayesians just to show the unsuitableness 
or even the incoherency of classical proposals)? I think it is time to sweep away 
all the junk that some Bayesians have devised to discredit classical inference, 
while looking for a peaceful living together. 

A warning is perhaps expedient before entering the debate. It is well known 
that some frequentist procedures, commented on in the sequel, could be dealt 
with by conditioning on a suitable ancillary statistic, thus leading to a new proce-
dure – always in the frequentist domain – exactly or practically overlapping a 
standard Bayesian procedure. Three classical examples are the following: (a) con-
ditioning on the experiment actually performed, chosen at random in the first 
stage of a two-stage experiment (Cox, 1958, p. 360; Cox-Hinkley, 1974, pp. 32, 
38; Berger-Wolpert, 1988, p. 6; Frosini, 1991, p. 559); (b) conditioning on the 
marginal frequencies of a 2×2 contingency table, leading to Fisher’s exact test 
(Fisher, 1935; Lindgren, 1962, p. 338); (c) conditioning on the configuration of a 
sample (vector of differences between successive order statistics), when the infer-
ence concerns the location parameter θ in a location family with density f (x - θ) 
(Fisher, 1934; Cox-Hinkley, 1974, pp. 34, 221). 

While conditioning to ancillary in case (a) would probably be followed by most 
people, my feeling is that a decreasing proportion is likely to be encountered 
when passing to (b) and (c) cases. I think I can confirm an opinion already ex-
pressed: “... the choice of the reference set within a frequentist decisional approach 
cannot be left to the researcher imagination; on the contrary, such a choice must 
be bound with the decision problem concretely defined, and with the actual or 
theoretical possibility of repeating the random experiment – under homogeneity 
conditions – for a sufficiently large or simply unbounded number of times (Fro- 
sini, 1999, pp. 166-7; see also Cox-Hinkley, 1974, p. 116). 

Having said that, it must be stressed that the counter-examples in the sequel 
will be just countered on the basis of logical arguments, with the aim of showing that 
they are logically unacceptable. Pointing to conditional procedures as alternative 
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frequentist solutions could obscure the essential fact that the counter-examples 
themselves are untenable. Other non-Bayesian approaches (e.g. conditioning, 
empirical Bayes) could be examined all the same for possible alternative solutions, 
but they are beyond the scope of this paper. 

2. OBJECTIVE BAYESIAN INTERVALS AND FAILURE OF BAYESIAN INFERENCE 

The topic commented on in this Section is the only one of the paper which is 
not a counter-counter-example, but only a counter-example: it is so fundamental 
and plainly true that it is hardly touched on explicitly even by opponents of 
Bayesianism; its comprehension is best ensured in the ideal case of Bayesian rea-
soning, i.e. when an effective random distribution for the parameter θ exists (the 
case of a constant θ – with probability one – is included as a limiting case). The 
“objectivity” thus assumed lies in the existence – and knowledge – of a two-stage ex-
periment: the first stage yields a random value for the parameter θ, depending on a 
density f(θ), θ ∈ Θ; the second stage yields a random value x ∈ Ω of a variable X, 
depending on a density (likelihood) g(x | θ) (for the sake of simplicity, we main-
tain the term “density” for any kind of random variable) (Frosini, 2005, pp. 437-
438).  

When some wrong distribution is introduced over the set of hypotheses, it can 
usually lead – but not necessarily – to more or less gross mistakes in the inferential 
process. The most unfortunate case is perhaps when θ is not random at all; thus 
the “random” variable θ is actually degenerate in a constant θ = θ0, taken with 
probability one. In such a case all objective evaluations of an interval I – hopefully 
comprising θ0 – are of the following kind (being T any statistic): 

P(θ ∈ I | T = t) = 1 if θ0 ∈ I 
 = 0 if θ0 ∉ I 

as the degenerate θ is independent of any random variable T. Of course, if θ is 
the object of inference, θ0 is unknown, and we can confidently obtain an interval I 
endowed with coverage probability one only if we equate I with (a superset of) Θ, 
the set of all possible θ values (assuming that Θ is chosen sufficiently large as to 
include θ0). 

With this example we have begun to answer a question of the kind raised by 
Jaynes (1976, p. 207) and many other scholars of the Bayesian School: “To the 
best of my knowledge, nobody has ever produced an example where the Bayesian 
method fails to yield a reasonable result”, however replacing reasonable with correct, 
or right. An explanation is called for. 

It is quite obvious that, putting together all the (estimated) relevant informa-
tion for a given inferential problem, and applying generally approved rules of de-
duction and induction, I can be sufficiently satisfied: I have made the best of the 
available information and of my personal expertise. However, excepting perhaps 
a solipsist Bayesian, who asks no more than this, practically all people consider 
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such an elaboration only as a means to an end: what really matters is to achieve a 
correct, or right, result. The mere coherency of the implemented procedure is un-
able to ensure a correct result. Coherency, in itself, is worthless. This is the reason 
of the above replacement: instead of “reasonable result”, which can be referred 
only to the elaboration stage, it matters to speak of “correct result”, which can be 
recognized only by a comparison of the performed inference and the state of the 
world (to which the inference is directed – see Cox, 1986, p. 125; Frosini, 1989, p. 
225). In this sense I wholeheartedly subscribe Jaynes statement: “The merits of any 
statistical method are determined by the results it gives when applied to specific problems” (ital-
ics in the original) (Jaynes, 1976, p. 178). 

With this clarification, we can briefly quote two other kinds of controls re-
ported by Frosini (2005). The first kind of control considers the classical case of 
normal prior for the mean λ of a normal distribution, and normal likelihood; in 
the quoted paper the contrived normal prior N(λ1,σ12) for λ is flanked by the real 
normal prior N(λ0,σ02). By giving λ1 ≠ λ0 and/or σ1 ≠ σ0, the coverage probability 
(computed by assuming the wrong prior) of the correct 95% Bayesian interval 
(computed on the true prior distribution) can easily yield values much smaller than 
the nominal 95%; thus, the result obtained by applying a Bayesian procedure can 
be totally wrong. A similar inquiry, however aimed at showing an increase of the 
expected squared error risk of the Bayes estimator of λ, was made by Efron and 
Morris (1971). Another kind of application has been examined by Frosini (2005), 
where the likelihood remains normal, however with a prior for the mean which is 
uniform over a finite interval. Also in this case, maintaining the same kind of 
prior distribution but changing the interval, the coverage probabilities (assuming 
the wrong prior) of the correct 95% Bayesian interval (derived from the true prior 
distribution) have been computed, and some appalling results have been observed. 
In all the cases, of course, the classical confidence intervals do their duty: the true 
unknown parameter is always included in the confidence interval 95% of the 
time. 

3. FLAT LIKELIHOOD AND UNBIASED LINEAR ESTIMATORS IN SAMPLING FROM FINITE 
POPULATIONS 

A curious result by Godambe (1955, 1965), which has been generally misap-
prehended in the literature, regards the so-called flat likelihood in survey sampling; 
it seems to support the Bayesians’ claim that the sampling plans are irrelevant (in 
order to make inferences from the sample). This result is possible if we start cor-
rectly with the definition of a sampling plan p as the collection of all the admissi-
ble samples s – containing one or more objects of the population – together with 
their probabilities P(s). If the N objects or units in the population are identified 
by the labels 1, 2, ..., N, and the study variable X (usually multidimensional) takes 
the corresponding values X1, X2, ... , XN, the vector X = (X1, ... , XN) is defined as 
the parameter of the population. Letting xi be the observed value of Xi, and calling  
xs = {xi : i ∈ s} the set of variate values pertaining to the units drawn from the 
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population, by sample data we intend the couple (s,xs) ≡ {(i,xi) : i ∈ s}. By resuming 
the exposition in Frosini (1996a, pp. 218-221), being P{(s,xs)} = P(s), the likelihood 
of the sample s, as a function of the parameter X, is defined as 

L{X |(s,xs)} ∝ P(s) for X ∈ RN(xi : i ∈ s) (1) 
 = 0 otherwise 

where RN(xi : i ∈ s) is the subset of the euclidean space RN such that, for the co-
ordinates Xi, i ∈ s, Xi = xi holds (in other words, it is the set of parameter points 
X that are consistent with the sample data xs) (Godambe, 1969, p. 249). There-
fore, such a likelihood is flat on the entire parametric space RN(xi : i ∈ s) consistent 
with the sample. 

This impressive result essentially depends on defining by sample data the couple 
(s,xs), namely by taking into account not only the data xs, but also the n individuals 
sampled. Writes Godambe (1965): “The characteristic difference of the popula-
tions, we come across in sample surveys, from other populations, is this: Here 
apart from the variate values, units having those variate values are identifiable. This fact has 
mostly been overlooked.”. True. However, this possibility of identification, or la-
belling, has been given a meaning wholly unjustified, because the individuals, in-
side the population or the stratum from which they are drawn, are “exchange-
able” 

It is well known that the concept of likelihood considered in traditional infer-
ence is at variance with the one just sketched: given a sample x = (x1, ... ,xn) of 
variate values measured on n objects, having the density g(x,θ) indexed by a pa-
rameter θ belonging to a parameter space Θ, the likelihood of θ given x is defined 
by 

L(θ ; x) ∝ g(x,θ) for θ ∈ Θ (2) 

and – except very special cases – is not constant over Θ. There is no need of 
adopting different approaches for infinite and finite populations: in both cases, 
we are interested in the frequency distribution of a variable X, and we can attack 
the inference by means of the likelihood of the sample data x. This clear position 
was taken by Royall (1968), in his comment on Godambe’s proposal. It is true 
that we are practically never in a position to identify the possible hypotheses for 
the distribution of X in a finite population; thus, the inference for a finite popula-
tion has an elective place in the domain of non-parametric inference. Anyway, if a 
list of such hypotheses were available, a likelihood-based inference is possible, as 
illustrated by Frosini (1996a, pp. 220-223). 

A famous related result by Godambe (1955), usually quoted as a weakness of 
the traditional theory of inference for finite populations, is that an unbiased linear 
estimator with least variance does not exist. Let U (with elements u) be the set of 
units in the study population, and S (with elements s) be the set of all possible 
samples for a given sampling design. Godambe (1955) considers the most general 
linear estimator of the total T =

1
N

iX∑  given by 
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e(s,X) = ( , ) ( )
u s

s u x uβ
∈
∑  (3) 

and shows that in this class of estimators it is not possible to find an estimator with 
minimum variance uniformly in X. It is easily found (Frosini, 1996a, pp. 217, 226-
229) – as Godambe himself surmised – that the result is wholly evident at first 
sight; on the other hand, the same result is recognized void of interest from the 
viewpoint of statistical inference, because it plainly states that, by providing com-
plete information over the N couples (i,xi), it is possible to construct an exact es-
timator of the total ∑ xi. 

4. PROBABILITY INTERVALS VS CONFIDENCE INTERVALS 

The most disturbing feature in reading several criticisms of Bayesians towards 
non-Bayesian approaches to inference is that Non-Bayesians are assumed incapa-
ble of applying the most elementary rules of logic, and even good sense. My ref-
erence is especially concerned with the odd, or foolish behaviour imputed to 
somebody, who deliberately discard a piece of information which is really impor-
tant and influential for a decision to be made. On the contrary, we think that 
Carnap’s requirement of total evidence must be accepted, and implemented in every 
case: “in the application of inductive logic to a given knowledge situation, the to-
tal evidence available must be taken as basis for determining the degree of con-
firmation” (Carnap, 1962, p. 211). And on this point I want to reach the limits of 
obviousness: among the certain facts known to the subject there are also the rules 
of deduction. 

A formal adhesion is required: if some procedure, aimed at gaining insight for 
something unknown, deliberately excludes known and influential facts, is not an 
inferential procedure; it can be, at most, an “exercise”. As we shall see, these exercises 
have usually exploited something resembling a confidence interval; it is thus nec-
essary to make a distinction (and this will be made – for simplicity – with respect 
to a unidimensional parameter θ and a two-sided interval). 

Let X = (X1, ..., Xn) be a random sample from a random variable X whose dis-
tribution depends on a parameter θ belonging to a parameter space Θ, and I(X) = 
[a(X),b(X)], with a(X) ≤ b(X), be a random interval, such that (for simplicity we 
fix an exact probability equality): 

Pθ{θ ∈ I(X)} = Pθ{ a(X) ≤ θ ≤ b(X)} = p for every θ ∈ Θ. (4) 

Given the condition (4), the interval [a(X),b(X)] can be trivially defined a probabil-
ity interval for θ with coverage probability p. No problem until this point. Now we 
could inquire whether the interval [a(X),b(X)], with the associated probability p, 
can be of some value in inferring the subset of Θ which is most likely to include θ 
(the specific parameter value on which the production of the sample X depends 
in the particular instance). The answer is made to depend on the relevant facts, 
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and the deductive relations, alluded to above, which are known before performing 
the random experiment (and we limit ourselves, to be sure, on certain facts and 
relations). In other words, a control is required whether a deductive implication exists 
from the logical conjunction of the sample x = (x1, ... ,xn) and the parameter 
space Θ 

(x, Θ) ⇒ Θ S (5) 

that reduces with certainty the original parameter space Θ to a subset ΘS. When 
such is the case, there remain two major possibilities: (a) the reduction (5) is just 
to a singleton {θ0}, thus we have deductively made our inference beyond all hope, 
and the probability statement (4) is of no inferential value; (b) in general, the in-
tersection 

[a(x),b(x)] ∩ Θ S (6) 

must be performed – one particular case being simply [a(x),b(x)] ∩ Θ - and the 
probability p is transferred to this intersection. 

That (6) is actually a confidence interval, or – more generally – that I(X) ∩ Θ S 
is a confidence set, derives from the trivial equality 

Pθ{(θ ∈ I(X)) ∩ (θ ∈ ΘS)} = Pθ{θ ∈ I(X)} = p (6bis) 

being (θ ∈ Θ S) a certain event, and as such independent on any random event; an 
example of this kind will be commented on concerning formula (10). 

Although not really necessary, the special case of intervals could be formalized 
as follows. From (4), let 

(A): a(X) ≤ θ ≤ b(X) a probability interval with probability p, 
(B): c(X) ≤ θ ≤ d(X) an interval including θ with probability one (a sub-case is c 
and d constant, for example from a preliminary information on physical con-
straints), 
(C): max[a(X), c(X)] ≤ θ ≤ min[b(X), d(X)]. 
Possible cases (dropping the reference to the sample X for simplicity): 
(I) (A): a ≤ θ ≤ b is true; as a consequence, also (C) is true, for any relation be-
tween a and c, b and d; 
(II) (A): a ≤ θ ≤ b is false. In order to get an interval including θ, one has to di-
minish a or to increase b. If θ < a, from (B) it must be c < a, hence max(a, c) = a, 
and for any relation between b and d also the interval (C) does not include θ. If  
θ > b, from (B) it must be d > b, hence min(b, d) = b, and for any relation be-
tween a and c also the interval (C) does not include θ. 

For the easiness of disposing of an appropriate denomination, the intersection 
(6) can be called confidence set, or, more traditionally, confidence interval when it results 
in an interval (possibly degenerate, thus including case (a)). Of course, when there 
is no implication that is able to reduce Θ, (4) already defines the confidence inter-
val. 
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As we shall see in Section 6, many counter-examples devised by Bayesians ex-
ploit a support (of the random variable under study) that depends on the un-
known parameter θ (for example, θ ≥ θ0). While the Bayesian approach takes ac-
count of this fact just in assessing the prior distribution of θ, a probability interval 
usually does not take into account the structure or the restrictions for the parame-
ter space Θ; thus in these cases, if we want to make use of a probability interval as 
a confidence interval, such kind of constraints must be expressly introduced. 

The above procedure cannot exclude that the intersection considered in for-
mula (6) or (6 bis) is empty. Example 4 in Section 6 provides a case of this kind, 
where the parameter θ is the mean µ of a normal distribution, with constraints  
µ0 ≤ µ ≤ µ1, and the probability interval is based on the probability distribution of 
the sample mean. Unlikely as they can be, probability intervals I(X) completely 
below or beyond the interval [µ0 , µ1] are nonetheless possible; in these cases the 
intersection [µ0 , µ1] ∩ I(X) is empty. If one wishes – all the same – that a confi-
dence interval (or set) must not be empty, a suitable definition could be adopted, 
leading – for example – to confidence intervals comprising only µ0 or only µ1 (cf 
Cox-Hinkley, 1974, pp. 224-228); this choice, however, implies an overcoverage 
(> p) of such confidence intervals when µ = µ0 or µ = µ1. Of course, especially 
when p is rather large, an empty set for the intersection (6) could suggest reason-
able doubts about the correctness of the model (in particular, concerning the re-
striction on the parameter space). On this point, the interested reader is referred 
to Mandelkern (2002) (with an interesting discussion by G. Casella, L.J. Gleser, L. 
Wasserman, D.A. van Dyk, M. Woodroofe and T. Zhang). 

5. ON THE INDUCTIVE MEANING OF REALIZED CONFIDENCE INTERVALS 

Before going on, it is expedient to sweep the field of an old diatribe, that 
should disappear from the debate concerning inferential procedures. Let us as-
sume for simplicity that the interval I(X) = [a(X),b(X)] in formula (4) is actually a 
confidence interval with coverage probability (or coefficient) p; a sample x is ob-
tained, and the realized confidence interval I(x) = [a(x),b(x)] is computed. What 
sense can we attach to the statement that 

a(x) ≤ θ ≤ b(x) with confidence p? (7) 

Of course, an objective probability for this statement (θ is a fixed, although un-
known, value) can only be 0 or 1. Thus we can only wonder whether p may be 
assumed as a reasonable subjective probability, objectively based. That a subjective 
probability can be assigned to the statement a(x) ≤ θ ≤ b(x) – an uncertain event 
– is doubtless (cf. for example Lindley, 1985, chap. 2). Jaynes (1976, p. 209) ex-
presses the concept very clearly: “Indeed, isn’t a matter of the most elementary 
common sense to recognize that, in the specific problem at hand, θ is just an un-
known constant?”. We’ll see that the confidence coefficient p is just the better 
choice. 
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Most Bayesian textbooks deal with this topic; as an example, we shall quote the 
following passage from Bernardo and Smith (1994), as it expresses the position 
with great clarity: “... if we define a statistical procedure to consist of producing 
the interval x ± 1.96/ n  whenever a random sample of size n from N(x|µ,1) is 
obtained, we are producing an interval which will include the true value of the pa-
rameter 95% of the time, in the long run. Note that this says nothing about the prob-
ability that µ belongs to the interval for any given sample” (p. 453). Further on, we 
read of an analogous interpretation of the upper confidence limit for a parameter 
θ with confidence coefficient 1 – α, given αθ (x): “Whether or not the particular 

αθ (x) which corresponds to the observed data x is smaller or greater than θ is 
entirely uncertain” (p. 466). 

Now, let us fix the attention to the first interval I(X), just quoted, with coeffi-
cient 95%. Before the sample is drawn, we can say that our subjective probability 
– coinciding with the objective probability – that the interval obtained covers θ is 
0.95; after the interval is read – for example, as [0.98,1.35], no supplementary informa-
tion on the ability of this interval of covering θ has been gained; thus our degree of 
belief that θ ∈ I(X) cannot be changed after the sample has been observed. In 
other words, we attach the subjective probability 0.95 to the belief that an event 
having objective probability 0.95 has occurred. 

It must be stressed that one thing is to tell a probability for a sentence like 
«0.98 ≤ θ ≤ 1.35» (a purely subjective probability is admitted), and a totally differ-
ent thing is to tell a probability for the sentence «0.98 ≤ θ ≤ 1.35, being such in-
terval obtained by a random experiment which yields intervals covering θ with 
probability 0.95»; in this case, the probability is still – and inevitably – of the sub-
jective kind, but it can hardly be at variance with the objective probability related 
to the random interval I(X) (cf. Frosini, 1989 and 1996b). Such viewpoint is per-
fectly coherent with the usual elicitation of subjective probabilities, suggested by 
the Bayesian School, in terms of odds of a wager: if I am willing to bet 95 dollars 
against 5 that a random interval includes the unknown θ, I do not see any reason 
why to change the terms of the bet once the random experiment has been ef-
fected and the interval computed, as the knowledge of the experimental results 
does not minimally alter the information available before the experiment was 
made. 

6. SOME COUNTER-COUNTER-EXAMPLES 

Example 1 – (Berger-Wolpert, 1988, p. 5): “Suppose X1 and X2 are independent 
and 

Pθ(Xi = θ – 1) = Pθ(Xi = θ + 1) = 1/2     i = 1,2 

[-∞ < θ < ∞] ... A 75% confidence set of smallest size for θ is 
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C(X1,X2) = the point (X1 + X2)/2 if X1 ≠ X2 
 = the point X1 – 1 if X1 = X2 

Notice, however, that when x1 ≠ x2 it is absolutely certain that θ = (x1 + x2)/2 ... 
Thus, from a post-experimental viewpoint, one would say that C(x1,x2) contains θ 
with “confidence” 100% when x1 ≠ x2, but only with “confidence” 50% when  
x1 = x2 ... Does it make sense to report a pre-experimental measure when it is 
known to be misleading after seeing the data?” 

Here, what is misleading is the use of a correct model probability for inferen-
tial purposes, in the presence of a piece of information which deductively condi-
tions the inference. In fact, it is known before the performance of the experiment – 
and not after seeing the data - that, if X1 ≠ X2, we get θ = (X1 + X2)/2 by means of de-
duction; as a consequence, the above “confidence set” cannot be used in inference, 
as it ignores – by gross negligence – an important piece of information. The cor-
rect way of expressing an inference (from a frequentist viewpoint) can only be in 
the following terms: (a) if X1 ≠ X2, then θ = (X1 + X2)/2 by deduction; (b) if  
X1 = X2, then {θ = X1 – 1} and {θ = X1 + 1} are both (conditional) confidence 
sets, each one including only one point, with confidence coefficient 0.50 (com-
ment resumed from Frosini, 1993a, p. 371). 
 
Example 2 – (Berger, 1980, p. 19). If X1, ..., Xn are i.i.d. with uniform density in  
(θ – 1/2, θ + 1/2), calling T = (X(1) + X(n))/2, with X(1) = min{Xi} and X(n) = 
max{Xi}, a confidence interval with confidence coefficient 1-α is 

I(X) : 1 1,
2 2 2 2

n n
T Tα α⎛ ⎞
+ − − +⎜ ⎟

⎝ ⎠
 (8) 

If α = 0.05, n = 25, x(1) = 3 and x(25) = 3.96, the 95% confidence interval gives: 
3.424 < θ < 3.536. However, it is certain that θ is included in the following inter-
val: 

Θ S : (X(n) – 1/2 ≤ θ ≤ X(1) + 1/2); (9) 

in the case at hand this means that 3.46 ≤ θ ≤ 3.50, i.e. θ certainly belongs to a 
subinterval of the above 95% confidence interval. Berger (1980, p. 19) says that 
the conclusion of the classical procedure “seems ridiculous, in light of our certain 
knowledge that θ is in the smaller interval”. 

Berger is perfectly right in his judgment of the above statement; but such 
statement does not belong to “classical statistics”, and is not ascribable to any re-
asonable person. Like the previous example, a model probability is used without 
making allowance for an important piece of information, which deductively 
changes the probability interval (8). In fact, the inequality (9), obtained by deduc-
tion, is known before the performance of the experiment, and any sensible infer-
ence procedure must take it into account. One way of doing this is to consider 
the intersection of (8) and (9) (cf. formula (6 bis)), namely the interval 
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max ( )
1 1,

2 2 2

n

nT Xα⎛ ⎞
+ − −⎜ ⎟

⎝ ⎠
 ≤ θ ≤ min (1)

1 1,
2 2 2

n
T Xα⎛ ⎞
− + +⎜ ⎟

⎝ ⎠
 (10) 

which is again a (1 – α) probability interval, now a real confidence interval suit-
able for inferential purposes. This confidence interval is correct, in that the infor-
mation yielded cannot be improved by means of deduction; on the contrary, (8) is 
a probability interval having an abstract validity as a mathematical probability in 
the model, but incorrect if used for inferential purposes (comment resumed from 
Frosini, 1993a, p. 372). 

For the case n = 2 this example was introduced by Welch (1939) in a famous 
paper, which “has been a warning for generations of statisticians against the use of 
conditional inference, in that it shows that a reasonable conditional inference, 
based on a highly informative ancillary statistic (the sample range X(2) – X(1)), is 
beaten by an apparently less informative procedure, which completely disregards 
the information provided by the ancillary statistic” (Frosini, 1993b, pp. 42, 44). 

The above exposition has been a bit lengthy, owing to the remembrance of a 
knowledgeable American statistician who kindly informed me that interval (10) 
“is not reasonable” as a confidence interval. 
 
Example 3 – (Jaynes, 1976, pp. 196-200). Jaynes exposes an example, similar to the 
above two in that it uses a support of the random variable depending on θ, how-
ever much more realistic. The problem is to estimate a location parameter θ, from 
the sample values {x1, ... ,xn} distributed according to the density 

f(x | θ) = exp(θ – x) for x > θ 
 = 0 for x < 0. 

First of all, Jaynes considers a (putative) confidence interval based on the distri-
bution of the sample mean X  (as X - 1 is an unbiased estimator of θ), and 
shows, for a particular case of three observations, that the numerical 90% interval 
for θ, thus obtained, “lies entirely in the region θ > x1, [with x1 = the least value ob-
served] where it is obviously impossible for θ to be!”. Quite to the contrary, a reasonable 
Bayesian solution takes expressly into account the above restriction on the sup-
port, and is a function of the least value x1, so that the posterior density for θ is 
positive for θ < x1, and equal to zero for θ > x1. The author, while assuming the 
above probability interval as a valid confidence interval for inference purposes (a 
gratuitous assumption), admits that it is a poor confidence interval, and acknowl-
edges that a better choice, leading to the same Bayesian interval, is the confidence in-
terval based on the least observation x1, which is a sufficient statistic for θ (p. 
199). 

Jaynes, developing some general considerations from the above case, observes 
that “whenever the confidence interval is not based on a sufficient statistic, it is 
possible to find a ‘bad’ subclass of samples, recognizable from the sample, in which 
use of the confidence interval would lead us to an incorrect statement more fre-
quently than is indicated by the confidence level; and also a recognizable ‘good’ 
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subclass in which the confidence interval is wider than it needs to be for the 
stated confidence level”. Owing to the inductive and optimal properties shared by 
sufficient statistics, this warning by Jaynes, towards a preferred use of sufficient 
statistics, is worthy of complete approval. Anyway, his viewpoint is too optimis-
tic; recourse to sufficient statistics does not exempt us from checking possible 
deductive implications of the (5) kind, as the next example will show. 
 

Example 4 – This “counter-example”, with ensuing “counter” comment, is not 
taken from other authors, and it seems realistic at least as the preceding Jaynes’ 
example; formally, it could be included in the general topic of confidence sets 
with restricted parameter space (Cox-Hinkley, 1974, pp. 224-228). Its rationale 
comes from the same field of quality control of industrial devices, where the rele-
vant random variable is of the normal type N(µ,σ2), however with parameters sub-
ject to physical constraints; for simplicity, we’ll comment only on the simple – 
though realistic – case of µ0 ≤ µ ≤ µ1 and σ2 known (of course, µ0, µ1 and σ2 are 
practically fixed to some degree of approximation, they can never be considered 
as exact real numbers). Now, if a random sample of size n is obtained from X ~ 
N(µ,σ2), the realization of the usual probability interval based on the sufficient statis-
tic X  ~ N(µ,σ2/n) is [ x - zp σ/ n , x + zp σ/ n ] = [ x - cp, x + cp], where zp is 
the p-th percentile of the standard normal N(0,1), if we want a coverage probabil-
ity of (2p – 1). Now, for any µ0 ≤ µ ≤ µ1, the probability statement 

P(- cp ≤ X - µ ≤ cp) = 2p – 1 

is perfectly valid, and is also valid – as deductively equivalent – the probability 
statement 

P( X - cp ≤ µ ≤ X + cp) = 2p – 1. 

If we pass from a probabilistic statement to an inductive statement, all the certain 
facts to our knowledge must be taken into account, thus a confidence (subjective 
probability) of 2p – 1 is attached to the interval of µ values 

max( x - cp , µ0) ≤ µ ≤ min( x + cp, µ1) 

showing that, not taking account of prior knowledge about the parameter space, 
we could determine an interval which includes (practically) impossible µ values. 
 

Example 5 – (Howson and Urbach, 1993, p. 208). This example envisages a con-
signment of tulip-bulbs; for simplicity, only two hypotheses are considered: 40% 
red-flowering as the null hypothesis h1, 60% red-flowering as the alternative hy-
pothesis h2. The following is an abridged table from Table VIII in Howson and 
Urbach (p. 208); the “minimum proportion” is the minimum proportion of red 
tulips in the sample, needed to reach h1 at the 5% level. 
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 Sample size n minimum proportion power against h2 
     10 0.70 0.37 
     20 0.60 0.50 
     50 0.50 0.93 
   100 0.48 0.99 
 1000 0.426 1.0 
 
Howson and Urbach write: “It will be noticed that as n increases, the critical pro-
portion of red tulips that would reject h1 at the 0.05 level approaches more closely 
to 40 per cent, that is, to the proportion which h1 asserts is contained in the con-
signment. Bearing in mind that the only alternative to h1 that is admitted in this 
simple example is that the consignment contains red tulips in the proportion of 
60 per cent, an unprejudiced consideration of these data would, it seems to us, 
lead to the conclusion that as n increases, these so-called critical values support h1 
more and more”. 

Leaving aside this last affirmation (Neyman-Pearson tests are not conceived to 
give support to any hypothesis, but to help choose between the hypotheses, given 
a comparison of the consequences of the possible errors), this analysis is formally 
correct, but it assumes the existence of a Non-Bayesian statistician who is so in-
sane as to maintain a standard value α = 0.05 irrespective of the sample size and 
the power of the test. It is well known (since the first works by Neyman and 
Pearson) that the respective values of the error probabilities α and β must be 
carefully determined according to the possible consequences of the errors; the 
ratio α/β is usually fixed in advance, and possibly fulfilled (approximately), com-
patibly with a sample size not too small. As far as two scientific hypotheses are 
concerned (not the bulb case), the best choice seems generally to put both hy-
potheses on the same footing, thus α = β (or approximately so), irrespective of n. 
 
Example 6 – Jeffreys-Lindley paradox (Jeffreys, 1939, 1948; Berger, 1985, pp. 150-
151). 

This example, so much discussed in the literature, stretches the same problem 
already commented on in the preceding example to the limit. It must be acknowl-
edged that many cook-books – following the Neyman-Pearson approach – do 
not carefully concern the choice and ratio between the error probabilities α and β, 
or – generally speaking – the power function. It is quite possible that some coarse 
practitioners (not statisticians) do not realize that the consistency property of in-
ference procedures implies – when the null hypothesis is a point hypothesis and 
the alternative is a very comprehensive composite hypothesis – that standard levels 
of the error probability α tend to almost always accepting the null hypothesis for 
small n (sample size), and rejecting it for large n. 

Most null hypotheses envisaged in elementary textbooks are point hypotheses; 
for example: (a) the mean of a continuous random variable is equal to 5 (or an-
other exact real number, e.g. π), (b) two or more random variables are independ-
ent, (c) the distribution of a certain characteristic is normal, or Poisson etc. (cf. 
Frosini, 2001, p. 374; 2004, p. 276). The common feature of these hypotheses is 
that they determine a dimensionless point in a space (of reals, of vectors, of func-
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tions etc.); they are model hypotheses, and are necessarily false (at least at a human level) 
if referred to real phenomena. Thus, the above implication of consistency is to-
tally correct: when the collected information increases, recognition of the falsity 
of the null hypothesis becomes easier and easier. All this means that classical tests 
of (point null) hypotheses are practically acceptable only for “small” sample sizes, 
where small is to be deemed according to the precision of the random variables 
involved. When the sample size is small, the sampling variability of the test statis-
tic is generally so large as to dominate the imprecise (being too precise) specification 
of the null hypothesis. As we let the sample size increase, we must acknowledge 
the growing unsuitableness of the test procedure in order to answer the practical 
problem in the real world. Among the possible solutions: (a) avoid applications of 
such tests in case of large samples, and limit the inference to estimation proce-
dures; (b) restate the problem in more acceptable (practical) terms, e.g. by fixing 
intervals for parameters, for example: H0 = θ ∈ [a,b]. 

Now, let us come to the Jeffreys-Lindley paradox. A generally correct Bayesian 
way of dealing with testing two incompatible hypotheses H0 and H1, is to assign 
respective prior probabilities π0 and π1, possibly spread out over the simple hy-
potheses constituting H0 and H1. This is mathematically possible for every conceiv-
able way of specifying the two hypotheses, but loses any justification for the case 
here considered, i.e. H0 being a point hypothesis and H1 the complement with 
respect to the whole space of admissible hypotheses, for the simple fact that the 
only reasonable assignments are P(H0) = 0 and P(H1) = 1. The specific example 
worked out by Bayesians (see e.g. Berger, 1985, pp. 150-151) refers to the usual 
normal distribution with known variance, mean µ = µ0 as the null hypothesis, and 
µ ≠ µ0 for the alternative, with prior such that π0 = 1/2 is assigned to the point µ0, 
and π1 = 1/2 is spread out over the whole real line, excepting µ0. 

Let it be sufficient to comment on the following calculations (Berger, 1985, p. 
151; Frosini, 2004, p. 284): by fixing z = 1.96 for the standardized value of the 
sample mean (P = 0.05) of a sample size n, Berger obtains posterior probabilities 
for H0 increasing from 0.35 when n = 1 to 0.80 when n = 1000; hence he ob-
serves that “classical theory would allow one to reject H0 at level α = 0.05 ... But 
the posterior probability of H0 is quite substantial, ranging from about 1/3 for 
small n to nearly 1 for large n. Thus z = 1.96 actually provides little or no evi-
dence against H0 (for the specific prior)”. In this way, a comparison is made be-
tween an absurd application of the Neyman-Pearson approach (α fixed for every 
n) and an absurd application of the Bayesian approach (a finite and very substan-
tial probability for a point hypothesis): whatever the result of this comparison, I 
cannot see any interest in it. Quite to the contrary, if one starts with a small but 
non-degenerate interval [-b,b] for θ in H0, everything goes well. Although allowing 
different conclusions according to different interval widths and prior distributions 
(which is correct), no «astonishing comparisons» can be obtained, and there are 
reasonable choices of width and prior which ensure sensible agreement between 
Neyman-Pearson and Bayesian approaches (Frosini, 2004, pp. 282-284). For ex-
ample, by the choice of π0 = 0.1 and b = 0.1, one obtains the following values for 
the posterior probabilities: 
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 n 1 10 20 50 100 1000 
 Post. 0.054 0.052 0.058 0.064 0.065 0.064 
 

In this case the posterior probability of H0 is around 0.06 from n = 1 to  
n = 1000, thus ensuring an exceptional agreement with respect to the nominal 
value of the probability α = 0.05, established by the Neyman-Pearson approach 
(perhaps you will not believe, but it is the only case with π0 ≠ 1/2 that I have 
tried). 
 
 
Supplementary Remarks 
 

Two Bayesian scholars, named for convenience A and B, have kindly accepted 
to read the paper and make some observations, hopefully for gaining formal or 
substantial improvements; in any case, I must gratefully thank them for their will-
ingness and sincere (even crude) examination. Perhaps they are not representative 
of the wide population of Bayesians (although I surmise they are); anyway, I must 
peacefully take note of their disagreement about the approach and the whole con-
tents of the paper. A few supplementary remarks may be suitable in a final tenta-
tive of making me understand. 

Unfortunately, Bayesian A did not arise any specific point in support of a gen-
eral and complete disagreement, however clearly expressed; thus no counter-
remarks can be made. Instead, Bayesian B developed some discussion on a few 
points, thus allowing to understand where is the real or presumed reason of dis-
agreement. 

As a first point, Bayesian B clearly states his creed about the Bayesian approach 
to inference: “Bayesians consider the parameter just a device to better deal with 
the representation theorem. The real thing is the posterior predictive distribution 
of the “next observation”. Of course there are situations where the parameter is 
fixed; actually, the very meaning of a model relies on that. However the prior re-
flects the information of the researcher about the possible values of the parame-
ter and this is done via the probability language”. Perfectly said. 

About the comments on finite population sampling, contained in Section 3 of 
the paper, Bayesian B correctly observes that “there is nothing Bayesian in Go-
dambe argument”; however, he continues saying that “the real issue is the conflict 
between the repeated sampling principle and the conditionality principle”. Two 
counter-remarks: (1) Although a reasonable principle in itself, it is not a postulate 
accepted by non-Bayesian statisticians, thus the observation has a limited value 
only inside the Bayesians. (2) Most of all, the above observation has nothing to 
do with my comments, whose aim is clearly – and exclusively – to counter Go-
dambe’s assertions, namely showing (a) the existence of an ordinary and non-flat 
likelihood, and (b) the absurdity of an “estimator” which - to be applied - requires 
the knowledge of the whole population. 

Concerning the basic tenet in Section 4, i.e. that “a confidence interval aimed 
at making inference on the parameter” must take account of “all certain facts and 
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constraints” known to the research worker (from Summary), Bayesian B ob-
serves: “But this is exactly what the likelihood function (not the Bayes theorem) 
does. In Example 2 (Berger, 1980, p. 19, but see also Cifarelli and Muliere, Statis-
tica bayesiana, Iuculano, 1989) the constraints on the parameter are provided by 
the observed sample (that is, by the likelihood function)”.Counter-remarks: (1) 
The exclusion of the Bayes theorem is rather curious: perhaps the prior distribu-
tion (beside the likelihood) does not necessarily include all the assumed knowl-
edge? (2) Perhaps the paper states something to the contrary? The observation of 
Bayesian B has nothing to do with my paper; it seems that he has read another 
paper. 

On this same point, Bayesian B continues: “It is true that one could, in princi-
ple, take into account all the possible sets of constraints induced by all the possi-
ble samples; but then the real coverage of the procedure would be much much 
much more difficult than the “trivial equality” 6 bis!”. This conclusion is simply 
false, in three senses: (1) there are usually no constraints, or they are of a very lim-
ited number and kind. (2) There is no need to forecast “all the possible sets of 
constraints induced by all the possible samples”. (3) If such a requirement would 
be judged really necessary, and the “possible sets of constraints” on the parameter 
should constitute a large set, these same constraints should be considered in es-
tablishing the likelihood function; thus, where is the criticism? 

About the basic tenet of counter-example 6, Bayesian B makes the following 
interesting observations: “The role of point null hypothesis: I believe that Bayes-
ian, frequentist and likelihood people, all agree in dealing with the simple estima-
tion problems considered in this paper. Real concern may only arise in testing 
scenario if the statistician refuses the paramount role of point null hypothesis in 
testing. Even though we formalize problems with the aid of some Greek letter 
like θ, they are almost always physical quantities and their values have a specific 
meaning. In a famous experiment in the 1920’s Eddington compared the Newto-
nian theory and the new (and not yet observed at that time!) Einsteinian relativity 
theory in an indirect way; he measured the distance of a specific body from the 
earth; the two theories would have been imply different distance from the earth 
and few measurements were enough to support the relativity theory. The pres-
ence of significant specific values of the parameter is perhaps one of the main 
reasons why (social and hard) science needs statistics”. Excepting minor points of 
disagreement, which are not worth the effort, Bayesian B has to be congratulated 
for a clear and convincing statement about the usefulness of point null hypothe-
ses. But his observations are wholly unrelated to the content of the paper. Per-
haps the cited astronomical measure was conceived as a precise real number? Of 
course not, it would be ridiculous! Even, it was certainly not expressed in centi-
metres, or inches. And the comparison problem was not conceived as an exact 
Bayesian test, putting a prior finite probability on a fixed measure (which is pre-
cisely the kind of problem examined in counter-example 6). 
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SUMMARY 

On some counter-counter-examples about classical inference 

This paper deals with theoretical concepts and practical examples, aimed at showing 
that non-Bayesian inference is liable to result in mistakes or unacceptable conclusions, 
and proves that they are not justified. Section 2 comments on examples when an objec-
tive prior distribution exists, and shows how widely one can be mistaken in using a prior 
quite distant from the real one. Section 3 comments on two results by Godambe, stress-
ing that – in sampling from finite populations – no flat likelihood exists, while an unbi-
ased linear “estimator” with zero variance does not exist, unless we reach a complete 
knowledge of the population. Section 4 stresses the fundamental difference between a 
“probability interval” for a parameter, and a “confidence interval” aimed at making infer-
ence on the parameter, thus summarizing all certain facts and constraints able to shrink 
such an inferential interval. Section 5 explains why we are justified in attaching an induc-
tive meaning to a realized confidence interval. Finally, Section 6 counters some well 
known counter-examples spread in the Bayesian literature, showing that they are unac-
ceptable from a sound inductive basis. 


