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THE JOINT CALIBRATION MODEL IN PROBABILISTIC WEATHER 
FORECASTING: SOME PRELIMINARY ISSUES 

P. Agati, D.G. Calò, L. Stracqualursi 

1. INTRODUCTION 

Weather forecasting has been traditionally viewed as a deterministic task: given 
a set of input data, a single prediction is generated by sophisticated numerical 
models of the atmosphere. Indeed, several uncertainty sources are involved in 
environmental prediction (for instance, initial conditions, model formulations, 
unrepresented feedbacks) and only a probabilistic framework can convey these 
uncertainties in the prediction. Such a perspective is offered by Ensemble Predic-
tion Systems, introduced in weather forecasting in the last decade (Gneiting and 
Raftery, 2005). 

In this paper, we show how the Joint Calibration Model (Agati et al., 2007) can 
provide a solution to the problem of information combining in probabilistic fore-
casting of weather variables. 

The paper is organized as follows. An overview on ensembles and their role in 
weather prediction is presented in section 2. Section 3 briefly describes the Joint 
Calibration Model and presents a pseudocode of the procedure. In section 4 a 
case study on sea-level pressure data is discussed. 

2. WEATHER FORECASTING AND ENSEMBLES 

The atmosphere is a fluid. Information regarding the current state of a fluid 
can be used as input into mathematical models, which exploit dynamics and 
thermodynamics equations in order to predict the state of the fluid at some time 
in the future. Such models are known as numerical weather prediction (NWP) 
models. 

A fundamental characteristic of a chaotic system such as the atmosphere is its 
sensitive dependence on initial conditions (often referred to as the “butterfly ef-
fect”): i.e., very small differences in the initial state tend to be amplified over time, 
often quite rapidly, so that similar initial conditions may produce large variations 
in the long term behavior of the system, and evolve into quite different final sta-
tes. This means that inevitably – no matter how accurately the current state of the 
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atmosphere (temperature, humidity, etc.) is measured – tiny errors in the meas-
urements are amplified until they make any long-term weather forecast unreliable. 

In order to deal with this uncertainty, operational weather centres worldwide – 
such as the European Centre for Medium-Range Weather Forecasts (ECMWF), 
the British Met Office, the National Centers for Environmental Prediction 
(NCEP), just to mention a few – use multi-initial condition Ensemble Prediction Sys-
tems (EPS). Such an EPS consists of multiple runs of a single NWP model, started 
with slightly different sets of initial conditions, where each set has been generated 
by perturbing the ‘best’ mathematical representation of the current state of the 
atmosphere. The resulting multiple predictions, supported and enhanced by the 
use of adequate statistical post-processing techniques (EMOS, Gneiting et al., 2004; 
BMA, Raftery et al., 2005), are now routinely used to draw a probability distribu-
tion over future events or quantities. This last one represents the most detailed 
and interesting form of predictive information and allows to perform risk-based 
assessments of (severe) weather impacts. In addition, a deterministic-style ensemble 
forecast can be obtained by ‘averaging’ multiple predictions, where ensemble 
spread is informative about the inherent reliability of the final prediction.  

However, it is worth noting that initial condition uncertainty is not the only un-
certainty source in environmental forecasting (Gneiting and Raftery, 2005; 
Collins, 2007). Without claiming to be exhaustive, at least two additional sources 
can be identified: 

– model parameter uncertainty. Any numerical model, designed for weather (or 
climate change) prediction, depends on a number of adjustable, high-impact pa-
rameters. Some of them are physic, measurable quantities, subject to only meas-
urement errors; others are simplified representations of sub-grid scale physical 
processes – i.e., processes occurring in the atmospheric system on spatial scales 
smaller than the NWP model resolution – and, as such, subject to considerable un-
certainty. In any case, different choices of model parameter settings can lead to dif-
ferent numerical predictions regarding the future state of the atmospheric system; 

– model structure uncertainty. It regards choices to be made in designing the 
mathematical model: typically, the choice of the structure of precipitation and 
cloud scheme as well as convective scheme. Obviously, different structures result 
in different numerical predictions. 

In recent years, several tools have been suggested and implemented to address 
model uncertainty (Collins and Knight, 2007). In perturbed-physics ensemble sys-
tems, multiple runs are performed by varying physical parameters of a NWP 
model within their physically acceptable range (Collins et al., 2006; Rougier and 
Sexton, 2007; Annan and Hargreaves, 2007). Multi-model ensemble systems consist 
of different NWP models, characterized by different dynamical and mathematical 
formulations, physical parameterizations, horizontal and vertical resolution 
(Krishnamurti et al., 1999, 2000; Vitart, 2006; Tebaldi and Knutty, 2007). A sto-
chastic representation of parameterized physical processes which are unresolved 
by traditional deterministic parameterization is implemented in stochastic physics en-
sembles, where randomness is introduced into the model run itself (Buizza et al., 
1999; Lin and Neelin, 2002).  
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Ensemble systems play today a fundamental role in weather prediction. They 
can represent and measure forecasting uncertainty, thereby acquiring scientific, 
socioeconomic and ethical value. Specifically, ensembles allow probabilistic – i.e., 
distributional – forecasting (National Research Council, 2006) as well as determi-
nistic-style forecasts, which have been established to be generally more accurate 
than the predictions from the individual ensemble members (Gneiting and 
Raftery, 2005; Raftery et al., 2005).  

The next step in the evolution of predictive systems is the development of 
multi-model multi-initial ensembles (the so-called ensembles of ensembles, also known as 
grand ensembles; Graham, 2001), which should be able to deal with uncertainty aris-
ing from different sources as well as with interactions among them. In this 
framework, advanced statistical post-processing techniques are needed: here we 
present a promising approach to information combining, which is able to cope 
with multi-initial EPS and, above all, is fit for treating multi-model EPS and grand 
ensembles. 

3. THE JOINT CALIBRATION MODEL 

In this section, a brief illustration of the Joint Calibration Model (JCM) is given; 
for more details, see Agati et al. (2007). After introducing the basic ideas underly-
ing the method, we describe the proposed combining procedure using a pseu-
docode, in order to provide a compact and environment-independent description 
of the key principles of the algorithm. 

3.1. Basic ideas 

Let’s suppose that an unknown quantity y has to be forecast on the basis of the 
forecasts 1, ..., , ...,k Kf f f  provided by K ensemble members 1M ,..., kM ,..., KM . 
We will use the following notation: 

– let (  )k k kg g y f=  be the predictive probability density function (pdf) asso-
ciated with kf  (k = 1, 2, ..., K). For the sake of simplicity, we assume that kg  is 
parameterized by a location parameter, coinciding with kf , and a scale parameter 

kv : for example, kg  denotes the pdf of a Gaussian random variable N ( ,  )k kf v ; 

– let ( )L ⋅  be the likelihood function of the data 1,2,...,[ ]k k Kf =′=f  and  

v 1,2,...,[ ]k k Kv =′= ; 
– let ( )p y  be a prior predictive pdf (which may also be uninformative). 
By recasting Morris’ information combining algorithm (Morris, 1977) in a pre-

dictive context, the ensemble final pdf can be thought of as the posterior pdf 
1(  ,  ..., ,  ..., )k Kp y g g g  and written, via Bayes’ theorem, under the assumption 

( ) ( )L y L=v v , as follows: 
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(  , )p y f v  ∝ (  , ) ( )L y p y⋅f v  (1) 

As the likelihood function in (1) can be shown to be proportional to the prod-
uct of the individual pdfs, adjusted by a joint “calibration function” ( )C y , JCM 
takes the following form:  

(  , )p y f v  ∝ 
1

( ) ( , )
K

k k k
k

C y g y f v
=

⋅∏ ( )p y⋅  (2) 

According to the Maximum A Posteriori (MAP) principle, we suggest to take 
the value JCMŷ  maximizing (2) as the final deterministic forecast for y: 

ˆ JCMy = (  , )yarg max p y f v  (3) 

It is worth noting that, unlike most standard combining methods (Cooke, 
1991), JCM neither attaches a weight to each individual predictive pdf nor yields 
the ensemble predictive pdf as a weighted average of individual pdfs. It works by 
means of the overall calibration function ( )C y , which models the predictive per-
formance of the ensemble members by taking into account bias, variability and 
mutual dependence in their assessments of y.  

The functional form of ( )C ⋅  is derived through a parametric modelization, in 
order to allow its assessment by means of a relatively small number of parame-
ters. This proposal is briefly sketched in the following, after a few notes which 
explain the structure of ( )C y . 

Let’s denote by kτ  the performance indicator associated with kg . It is nothing but 
the Probability Integral Transform (PIT) value (Pearson, 1933; Rosenblatt, 1952), 
i.e. the value 0 ≤ kτ ≤ 1 that the predictive cumulative distribution function (cdf) 

( , )k k kG f v⋅  attains at the verification 0y  of y: 

0( , , )k k k kf v yτ τ= 0

0( , )     ( , )
y

k k k k k kg y f v dy G y f v
−∞

= =∫  (4) 

The PIT value has received much attention in the literature as a key diagnostic 
tool (in the form of PIT histogram) for evaluating the predictive performance of 
forecasts when they take the form of probability distributions whereas the obser-
vations are real-valued quantities (Dawid, 1984; Diebold et al., 1998; Gneiting et 
al., 2007). In JCM, the PIT value is used in the combining process itself, as a cali- 
bration tool. Specifically, the calibration function ( )C y  is obtained by defining  
a joint performance function (  )ϕ vτ  as a conditional density on the vector  

τ 1,2,...,[ ]k k Kτ =′= = 1,2,...,[ ( )] ( )k k KG y y=′ = G  given v, and viewing it as a function of 
y (for fixed f ). It attaches an admissibility degree to any y value considered as the 
realization of the K-dimensional vector τ : 
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( )C y = [ ( ) ]yϕ G v  = (  )ϕ vτ  (5) 

Under the assumption of normality of the K-dimensional vector of the per-
formance log-odds τ = 1,...,[ ]k k Kτ =′ , with kτ ln[ /(1 )]k kτ τ= − ℜ∈ , the calibration 
function ( )C y  depends on the mean vector t  and the covariance matrix S  of 
τ , and can be written as follows: 

( )C y = [ ( ) ]yϕ G v  ∝  

∝ 1

=1

1 1 exp ( ( ) )  ( ( ) )
( ) [1 ( )] 2

K

k k k
y y

G y G y
−⎡ ⎤′⋅ − − −⎢ ⎥⋅ − ⎣ ⎦

∏ G S Gt t  (6) 

where ( )yG [ ]kG ′= [ln( /(1 ))]k kG G ′= − . The parameters t  and S  can be esti-
mated by least squares on a training set consisting of n verifying observations 

1{ ,  ..., ,  ..., }i ny y y  and the corresponding forecasts from the ensemble members 

1{ ,  ..., ,  ..., }k ik nkf f f  for k = 1, 2, ..., K. In other words, the estimates are the solu-
tions of the following minimization problem,  

2

, ,  1
( ) ˆ ,   ( )

n

i i
i

min min y y
=

Ψ = −∑
t S t S

t S  (7) 

where ˆ iy  is obtained according to equation (3). 

3.2. A pseudocode of the procedure 

The input information consists of the following datasets:  
a) the dataset containing the verifying observations 1{ ,..., , ..., }i ny y y  and the 

corresponding forecasts from the ensemble members 1{ ,..., , ..., }k ik nkf f f  for  
k = 1, 2, ..., K. In the following, it will be referred to as training dataset; 

b) the dataset containing the values of the scale parameter kv  associated to the 
forecasts 1{ ,..., , ..., }k ik nkf f f  for k=1, 2, ..., K. As shown in equation (5), the cali-
bration function ( )C y  is defined conditionally on vector v, hence the elements in 
v must be assessed before fitting JCM.1 

The multiparameter θ, indexing the Joint Calibration Model and representing 
the variables of the objective-function Ψ  in (7), varies in the set: 

{ ( , ):   ,   }K
K Kθ +

×Θ ℜ= = ∈ ∈t S t S M  (8) 

                
1 In the study illustrated in section 4, a common value kv  has been associated to all forecasts. It 

has been assessed by simple linear regression of kf  on y (on the training dataset) as the mean of 
squared residuals.  
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where K K
+

×M  is the set of (strictly) positive definite K K×  matrices. The number 
of variables in the minimization problem is equal to ( 1) 2K K K+ + . 

The following sketch of the procedure refers to a situation where a non-
informative prior in (2) is adopted, so that maximizing the posterior pdf 

( , )p y f v  is equivalent to maximizing the likelihood function ( , )L yf v , a prob-
lem which is simplified by resorting to the logarithmic transformation.  
 
Phase 1. Initialization: 

Choose a starting point:  0( , )      θ θ= ←t S    
Phase 2. Optimization: 

Do until convergence 
For i = 1, ..., n 

ˆ   iy ←  arg max y ln{  (  , )}i iL yf v  

where 

ln{ ( , )}i iL yf v
1
ln [ ( ) (1 ( ))]

K

i i
k

G y G y
=

= − ⋅ − +∑  

2
1

1

( )  0.5 ( ( ) ) ( ( ) )   
K

i ik
i i

k ik

y f y y
v

−

=

⎡ ⎤− ′− ⋅ + − −⎢ ⎥
⎣ ⎦
∑ G t S G t  

Endfor 

Evaluate the objective-function 2

1

ˆ( ) ( )
n

i i
i

y yθ
=

Ψ = −∑  

Update θ according to the optimization algorithm 
Endo 
 
In the empirical study described in section 4, the optimization problem is ad-

dressed by the L-BFGS method (Byrd et al., 1995). As L-BFGS procedure is unable 
to guarantee convergence to global solutions, a multi-start strategy has been a-
dopted.  

4. A CASE STUDY: SEA LEVEL PRESSURE DATA 

In this section we compare the performance of our method (JCM) with that of 
Bayesian Model Averaging (BMA) by Raftery et al., 2005. Our combining proce-
dure has been implemented in Fortran95; Raftery’s one is implemented in the R 
package ensembleBMA.  

The comparison is carried out on the sea level pressure dataset (SLP, available 
at http://www.stat.washington.edu.MURI), used by Raftery in his paper. The 
dataset contains 48-hour sea-level pressure forecasts and observations (in milli-
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bars) in Pacific Northwest for the period from January 12, 2000 to June 30, 2000 
at 00.00 hours UTC. Forecasts are provided by the University of Washington 
mesoscale short-range ensemble system. It is a five-member multianalysis single-
model ensemble2, driven by initial and lateral boundary conditions obtained from 
major operational weather centers worldwide: the ensemble members are denoted 
as AVN, ETA, NGM, GEM and NOGAPS. 

The results of our study are presented in two subsections: the former deals 
with a single test day, with the aim of illustrating an example where correlation 
between ensemble members’ performance is high; in the latter, the predictive per-
formance of the Joint Calibration Model is compared with that of Bayesian 
Model Averaging on all 39 test days considered by Raftery et al. in their study.  

4.1 Some critical notes 

For each test day considered in Raftery et al. (2005), a preliminary exploratory 
analysis has been carried out on the training datasets corresponding to different 
training period lengths. In fact, as Raftery points out, there is a trade-off when 
choosing how many days should be used in the sliding-window training period: 
weather patterns change over time and thus a short training period should be 
preferable in order to adapt rapidly to seasonally varying model biases, changes in 
the performance of the ensemble member models and changes in environmental 
conditions; on the other hand, the longer the training period, the better the pa-
rameters are estimated. 

This preliminary analysis has shown that all the training datasets are character-
ized by two main features: 

a) performance indicators of any two members are moderately correlated, ex-
cept for the pair NGM, GEM (whose Pearson correlation coefficient ranges from 
0.85 to 0.89); 

b) estimated variances kv  of the forecasts provided by the single members are 
similar: that is, the ratio between any two estimates is around 1. This feature is 
coeherent with the nature of the data, arising from a single-model ensemble, and 
makes the data ideal for BMA, since this method assumes that all the predictive 
pdfs from the members share a common scale parameter. 

Since JCM seems to take advantage from high values of positive correlation be-
tween the performance of the ensemble members (as illustrated in Agati et al., 
2007), we have focused our attention on the pair NGM, GEM. In addition, we have 
looked for the instance where they differ most in terms of forecast variability: the 
test day selected according to this criterion is May 1st, and the corresponding 
training dataset consists of April 17th, 24th, 29th , that is the most recent 3 days in 
the dataset. It is worth noting that the selected example is interesting also because 
it may represent situations where the size of the training data is small. 

Both JCM and BMA have been carried out and their final deterministic-style 

                
2 It is known as MM5, acronym of the fifth-generation Pennsylvania State University-National 

Center of Atmospheric Research Mesoscale Model. 
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forecasts have been compared with observed data in terms of root mean square 
error (RMSE). JCM is 15% better than BMA (RMSE = 3.50 and RMSE = 4.12 for JCM 
and BMA, respectively). We have observed that BMA attaches an approximately 
null weight to one of the members: this means that BMA discards one of the 
members, which is deemed as redundant. On the contrary, JCM is able to exploit 
information from correlated performance indicators (since it is designed for 
modelling such indicators, as shown in section 3.1), so that both the members are 
useful.  

Moreover, for a more general comparison, BMA was run for the same test set 
as before with eight different training period lengths. The results are shown in the 
second column of table 1: BMA attains the best predictive performance only if we 
increase the training period up to 10 calendar days.  

Finally, we tested BMA on the five-member ensemble data, for the same test 
day and training period lengths defined above. As shown in the third column of 
table 1, the experiment suggests that including information from additional 
members having favourable characteristcs3 may yield some improvements. How-
ever, the least RMSE value, corresponding to a 30-days training period length, is 
not less than JCM one, obtained with only 2 members and 3 training days.  

TABLE 1 

RMSE for BMA (test day: May 1st) 

Training period length (days) 2 members 5 members 
3 4.12 4.42 
5 4.00 3.86 
10 3.80 3.90 
15 4.15 3.71 
20 4.16 3.61 
25 4.24 3.86 
30 3.88 3.60 
35 4.23 3.69 
40 4.23 3.67 

 
 
4.2 The empirical study 

We have explored JCM predictive effectiveness on the whole dataset according 
to the empirical study described by Raftery et al (2005), being aware that in most 
of SLP training datasets the conditions realizing the full potential of JCM are not 
fulfilled. 

More specifically: all five ensemble members have been taken into account; 39 
test days, ranging from April 24th to June 30th, have been considered; a 25-day 
sliding-window training period has been used. Due to missing data, the number 
of calendar days spanned by the training dataset is sometimes larger than 25. 

For each test day, both JCM and BMA were carried out and their deterministic-
style forecast accuracy was assessed in terms of RMSE. Summary measures are 
given in table 2. 
                

3 That is, low values of correlation between performance indicators and homogeneous forecast 
variability. 



The Joint Calibration Model in probabilistic weather forecasting: some preliminary issues 125 

TABLE 2 

Results of the empirical study: descriptive statistics of RMSE values for 39 test days 

Procedure  
BMA JCM 

Mean 2.59 2.63 
Inter-quartile range 0.85 0.98 
Range 3.93 2.05 

 
 
The analysis shows that JCM can be competitive with BMA: 
– RMSE mean values are similar: BMA has RMSE only 1.7% less (corresponding 

to a difference of just 0.04 millibar) when compared to that of JCM; 
– JCM seems to be more robust: JCM range is about 50% less when compared 

to BMA range. If we consider inter-quartile range, which neglects extreme situa-
tions, the procedures show similar variability in their performance. 

5. CONCLUDING REMARKS 

Our paper addresses the problem of information combining in probabilistic 
weather forecasting. Specifically, we put the Joint Calibration Model (JCM, Agati et 
al., 2007) in the context of Ensemble Prediction Systems. JCM offers a modeliza-
tion of the distribution of the well known Probability Integral Transform (PIT 
value), which is usually adopted as a diagnostic tool in evaluating the predictive 
performance of probabilistic forecasters. A case study is presented, where the po-
tentialities of the method are explored and the accuracy of deterministic-style 
forecasts from JCM is compared with that from Bayesian Model Averaging (BMA, 
Raftery et al., 2005). The empirical analysis shows that JCM can be competitive 
with BMA in terms of RMSE and has a more stable general behavior. 

Improvements could be obtained by further investigations about the optimiza-
tion algorithm and the MAP criterion implementation. 

Moreover, the effectiveness of our proposal should be explored according to 
the diagnostic paradigm of “maximizing the sharpness of the [final] predictive 
distribution subject to calibration” (Gneiting et al, 2007). 

The most promising direction of future research consists in applying JCM to 
combining ensembles from individual ensemble systems, in the context of envi-
ronmental prediction and financial risk management.  
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SUMMARY 

The Joint Calibration Model in probabilistic weather forecasting: some preliminary issues 

Ensemble Prediction Systems play today a fundamental role in weather forecasting. 
They can represent and measure uncertainty, thereby allowing distributional forecasting as 
well as deterministic-style forecasts. In this context, we show how the Joint Calibration 
Model (Agati et al., 2007) – based on a modelization of the Probability Integral Transform 
distribution – can provide a solution to the problem of information combining in prob-
abilistic forecasting of continuous variables. A case study is presented, where the potenti-
alities of the method are explored and the accuracy of deterministic-style forecasts from 
JCM is compared with that from Bayesian Model Averaging (Raftery et al., 2005). 

 
 
 


