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SPATIAL CORRELATION ESTIMATES BASED ON SATELLITE 
OBSERVATIONS CORRECTED WITH THE PRIOR KNOWLEDGE 
ON SENSOR DEVICES’ TECHNICAL CHARACTERISTICS1

G. Arbia, G. Lafratta 

1. INTRODUCTION

It is common in many empirical studies to estimate ground characteristics on 
the basis of satellite images. For instance, in agricultural analysis inventories are 
often made on the basis of remotely sensed data sometimes corrected with 
ground surveys (Campbell, 1996). Spatial variability and spatial dependency of 
data are also often estimated through satellite images. To restrict again to agricul-
tural examples, spatial variability is employed to estimate standard errors of in-
ventory estimates and spatial correlations are used to identify the distance above 
which dependency is negligible to assist the choice in locating of a systematic grid 
of samples for ground surveys (Arbia, 1993; Arbia and Lafratta, 1997, 2002). 

However, both first and second-order estimates are undermined by the fact 
that our inference is based on satellite data that are only an approximation of the 
ground truth, due to the presence of a series of disturbing factors like (e.g.) light 
scattering, presence of obstacles like clouds, and instrument precision limitations. 
In particular, we can identify two sources of errors (Haining and Arbia, 1993; Ar-
bia et al., 1998, 1999) namely location errors due to the uncertainty we have on the 
position of a pixel with respect to the corresponding ground truth, and the classi-
cal measurement errors (or attribute errors) due to device's limitations and other dis-
turbing factors. It is important to remark that in many empirical cases the user 
can quantify the limits of the instruments in use and therefore can depict a series 
of worst-case scenarios. Neglecting this information in developing any estimation 
procedure would then be extremely unwise and doomed to produce unreliable 
estimates.  

In this paper we introduce a procedure to correct the spatial correlation esti-
mates with the prior knowledge on the satellite sensor's technical characteristics. 
We show that in this way we can derive more reliable estimates. The paper is or-
ganized as follows. In Section 2 we introduce a model for the error corruption 

1The authors wish to acknowledge the partial financial contribution of 40% COFIN 2000 by 
MIUR.
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process, that enables us to take into account both location and attribute errors, 
and we use it to derive the satellite-based spatial correlation as a function of the 
"true" spatial correlation on the ground. Such a relationship is thus inverted to 
derive a better approximation of the "ground-truth" pattern of dependence as a 
function of the satellite-based spatial correlation and of the sensor's (user-
specified) technical characteristics. In Section 3 we show the effects of these cor-
rections by referring to a series of illustrative examples based on theoretical iso-
tropic negative exponential correlograms. Furthermore, in Section 4 we assess the 
efficiency of the proposed correction procedure by simulating a SAR lattice proc-
ess. Section 5 is devoted to some comments and to concluding remarks.

2. CORRECTION OF SPATIAL CORRELATION ESTIMATES INTRODUCING THE KNOWLEDGE 

ON SENSOR'S CHARACTERISTICS

Let us define an XN  by YN  lattice as: 

},,1{},,1{ YX NNP ×= .

In this way, every cell in the lattice will be treated as an ordered pair )( j,i  for 

some },,1{ XNi ∈  and },,1{ YNj ∈ . Let jiS ,  be the random process on P

generating the "ground truth" data and let jiZ , be the process which stochasti-

cally generates the corresponding remotely sensed maps. In addition, let us inter-

pret jiS ,  as a noiseless version of the observed jiZ ,  by assuming that the satellite 

observation corrupts the true scene through location and attribute errors as fol-
lows: (i) measurement failures due to clouds, obstacles and device's imperfections 

can be modelled as realizations of an additive white noise spatial process ji ,ε  on 

P; (ii) the satellite can also dislocate S by erroneously assigning to pixel )( j,i  a 

weighted average of observations related to the neighboring pixels 

),( tt yjxi ++ , with integers ∈tt yx , Z, Tt ,,1= , so that the error corruption 

process is modeled applying the following linear transformation: 

1 1, 0 1 , , ,( )
T Ti j i x j y i x j y i jZ S Sφ φ ε+ + + += + +  (1) 

where ∈R
T  is a dislocation parameter satisfying 

1
1

T

tt
θ

=
=  (2) 

and the pair )( j,i  belongs to a set PP ⊂′ , depending on vectors 

)( 1 Txx=′x  and )( 1 Tyy=′y , whose elements are exactly those 

coordinates in P for which we have enough data to model jiZ , . More thor-
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oughly, if we define, for ∈a R
T , tt am min=a , tt aM max=a , XNN =x  and 

YNN =y , we can write 

},  and  :),({ yyxx UjLUiLPjiP ≤≤≤≤∈=′

where, for yxa ,= ,

] [ [ [ ,)()1)(( ,00, aaaa mImmIL +∞∞− +−=

and

] [ [ [ ,MNMINMIU ,, ))(()( 00 aaaaaa −+= +∞∞−

with AI  standing for the indicator function of the generic set A.

The model set through equations (1) and (2) belongs to the general framework 
usually applied in image restoration analyses, where, as discussed by Cressie 

(1993, p. 499), for the ground truth )( ,1,1 YX NNSS=′S  and the corrupted 

image )( ,, xxyx
Z MMmm ZZ=′  the following is assumed to hold: 

1 21 2
, 1 2 , ,( , )

( ( , ) )i j c c i jc c P
Z H i c j c Sφ ε

∈
= − − ⊕  (3) 

where φ is a any function, H is a blurring matrix corresponding to a point-spread 

function such that 
∈

−−=
Pcc ccjiH ScjciHf

),( ,21,,
21 21

),()(S  is translation-

invariant, ε is a white noise and ⊕  is an invertible operator (Geman and Geman, 
1984). To see how model (1)-(2) can be considered a specialization of (3), we re-

quest linearity for φ and interpret ⊕  as addition. Furthermore, for ∈),( 21 νν Z
2

we define 

1 2*
1 2

if  ( , ) ( , )  for some  {1, , }
( , )

0 otherwise                                                       

t t tx y t T
H

θ ν ν
ν ν

= − − ∈
=  (4) 

and observe that, under condition (2), *H
f is translation invariant as required, 

since * *,, , , ,1
( ) ( ) ( )

t t

T

t i x j yH i j H i jt
f S fδ θ δ δ+ +=

+ = + = +S 1 S  for every real δ.

The explanation of the error propagation on spatial correlation measures needs 
further assumptions in addition to (1) and (2). In particular, we assume, as in Ar-
bia and Haining (1993), the following conditions on spatial drifts and correlation 

functions of jiS ,  and ,i jε .

For every pair ),( ji  in P,
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,E( ) 0i jε =

and

2
,Var( )i j εε σ= .

For every pair of integers (0,0)),( ≠hk  such that Phjki ∈++ ),( , 

, ,Cov( , ) 0.i j i k j hε ε + + =

For every pair ),( ji  in P and ),( hk  such that Phjki ∈++ ),( , 

, ,Cov( , ) 0,i j i k j hSε + + =

,E( )i jS µ= ,

and

2
, ,Cov( , ) ( ( , ) )i j i k j h SS S k hσ ρ+ + = ,

where ( ( , ) ),k hρ  is an isotropic "ground truth" spatial correlation function at 

distance ),( hk .

These assumptions enable us to determine the theoretical spatial correlation 

between pairs of observed, error-corrupted, variates jiZ ,  and hjkiZ ++ ,  in cases 

when Pji ′∈),(  and the pair ),( hk  is such that the related pair ),( hjki ++  also 

belongs to the lattice P′ . More thoroughly, our view is that there are two sources 
of spatial dependence among neighboring pixels. The first source can be attrib-
uted to the intrinsic continuity of phenomena in space, which we take into ac-

count by defining jiS ,  as a spatially autocorrelated process. The second one, due 

to a displacement error for which the recording sensor assigns a reflectance value 
to a pixel by averaging the values corresponding to its neighborhood, is assessed 

in our context by using the weighting scheme 
1 1, ,( )

T Ti x j y i x j yS S+ + + +  in 

model (3). Our aim is to identify the "ground truth" spatial correlations, i.e. those 

characterizing jiS , , from the sample correlation estimates based on jiZ , , which 

nevertheless convey information from both the dependency sources we deal with. 

To do so, let us define, for Pji ∈),(  and ∈),( hk N
2  such that 

Pyhjxki tt ∈++++ ),(  for all Tt ,,1= , the vectors 

)(),( ,,, 11 TT yjxiyjxihk SSji ++++=′s .
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Furthermore, let B be the matrix 
1

1

1 0

0 1

φ

φ

′

′

′

′

0

0
 and ),(, jihkg  the vector 

0,0 , , ,( ( , ) ( , ) )i j k h i k j hi j i jε ε + +′ ′ ′s s .

In this way, the variates jiZ ,  and hjkiZ ++ ,  can be written as 

),(,
0

0

,

,
ji

Z

Z
hk

hjki

ji
Bg+=

++ φ

φ
,

and, correspondingly, their covariance matrix admits the expression  

BgB ′=
++

)),(Cov(Cov
,

,
ji

Z

Z
k,h

hjki

ji
. (5) 

If we now consider the function :R Z× Z → R
{ }2,,1 T  defined as follows 

2 1 2 1 1 1

1 2 1 2 2 2

1 1 2 2

, , ,

, , ,

, , ,

( , )

T T

T T

T T T T

k h k x x h y y k x x h y y

k x x h y y k h k x x h y y

k x x h y y k x x h y y k h

k h

ρ ρ ρ

ρ ρ ρ

ρ ρ ρ

+ − + − + − + −

+ − + − + − + −

+ − + − + − + −

=R ,

with " ,k hρ " the short for " ( ( , ) )k hρ ", we are able to derive: 

1

2

1

(0,0) ( , )

0
Cov( ( , ))

( , ) (0,0)

0

k,h S

k h

snr
i j

k h

snr

σ

−

−

′ ′
=

′ ′

R 0 R 0

0 0
g

R 0 R 0

0 0

, (6) 

where, in addition to the previous notation, 2 2/Ssnr εσ σ=  is the signal-to-noise 

ratio (see Campbell, 1996). Finally, using (5) and (6), after some algebra the (ob-
served) spatial covariances can be expressed as: 

( ) ( )

( ) ( )

2 1 2
, 1 12

2 2 1
, 1 1

0,0 ,

, 0,0

i j

S
i k j h

Z snr k h
Cov

Z k h snr

φ φ
σ

φ φ

−

−
+ +

′

′ ′

′ +
=

+

R R

R R
. (7) 

Equation (7) relates second order moments of the corrupted process Z to the 
correlation structure, represented by the R function, of the "ground truth" proc-
ess S. Such relationship is parametric with respect to the technical characteristics 
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of the sensor's device, and can be explicitly exploited to correct spatial correlation 
estimates based on Z's observations whenever enough knowledge on the location 

error (parameters θ and φ1) and of the measurement error (parameter snr) is avail-
able. To illustrate how the correction can be executed, let us assume that a vector 

of correlation estimates )()( ,0,1
′= mmrrmr  is obtained from the observed 

map Z for spatial lags ),( hk  in the set  

m

k
khhkmQ

1
},,0 :),({)(

=
== ,

with 1>m , and define set }),(,,),({
||||11

*
** QQ

hkhkQ =  as the largest subset of 

)(mQ  for which if lag )(k,h  is in *Q  then every correlation 
1 2,c cρ  in ),( hkR  is 

such that )(),( 21 mQcc ∈ . In addition, we require that every component ρ of 

(0,0)R  also corresponds to a lag in )(mQ , and define the system 

1 1

* *
* *| | | |

2 2 1
, 1 1 1 1

2 2 1
, 1 1| | | |

( , ) /( (0,0) )

( , ) /( (0,0) )
Q Q

k h

k h Q Q

r k h snr

r k h snr

φ φ

φ φ

−

−

′ ′

′ ′

= +

= +

R R

R R

 (8) 

whose equations are deduced applying formula (7) for every lag in *Q .

System (8) can be interpreted as a set of || *Q  nonlinear constraints which are 

imposed to a vector *  of say n variables which are given by all those correlation 

measures which correspond to distinct entries in matrices )0,0(R , ),( 11 hkR , ..., 

),(
|||| ** QQ

hkR . To correct the error introduced by the remote data acquisition, we 

henceforth propose to solve the system numerically using the corresponding vec-

tor of correlation estimates *r  as the starting solution to (8).  
Although the procedure can be executed for every value of φ1, θ, x, y and snr, in 

the sequel we will focus on Landsat characteristics (Welsh et al., 1985) by setting 

0 10, 1, ( 0 1 0 1), ( 0 0 1 1),φ φ ′ ′= = = =x y  (9) 

and constraining the parameters' vector θ by imposing  

2
2 3 1 1 4 1, (1 )θ θ θ θ θ θ= = − = − , (10) 

so that equation (2) holds true and the location error is taken into account by us-
ing just a single parameter, θ1, that increases when location error diminishes: 

2
, 1 , 1 1 1, , 1 1 1, 1 ,( )( ) (1 )i j i j i j i j i j i jZ S S S Sθ θ θ θ ε+ + + += + − + + − +  (11) 
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Under condition (9), system (8) is formed by |)1(| −mQ  relations on |)(| mQ

variables with *
1,0 ,( )'m mρ ρ=  and )(* mrr = , where 

,0,
2

3
|)(| >

+
= m

m
mmQ

or, recursively, 

,1|)1(||)(| ++−= mmQmQ

since we can write 

))()1(()( ,0,
′′−= mmm rrmm rr .

As previously observed, we need to specify the amount of location and meas-
urement error typical of the sensor device employed to acquire the data. In order 
to represent real world empirical circumstances, we henceforth decide to imple-
ment the procedure focusing on typical quantifications of the location and meas-
urement errors. In particular, when using Landsat data the location error has been 

quantified by Welsh et al. (1985) to the value 1 0.5θ = , even if new sensors used 

on more recent satellite programs dramatically improve location precision (see 
Landsat, 2000). Dealing with measurement errors, a detailed list of the snr's asso-
ciated with various last generation sensor devices can also be found in Landsat 
(2000). Notwithstanding, Short (1999) quantifies the noise of the sensors of the 

most recent satellites (ETM+ sensor) to a value of 05.01 =−snr . For these reasons 
in the following sections we will analyze the correcting procedure by emphasizing 

its behavior under the hypotheses 1 0.5θ =  and 05.01 =−snr .

3. THEORETICAL EXAMPLE: CORRECTING THE NEGATIVE EXPONENTIAL CORRELOGRAM

In this section we discuss the effects of the proposed correction technique us-
ing the negative exponential function to model the ground truth correlogram 
(Matern, 1986). Explicitly, at lag ),( hk  we have 

( ( , ) ) exp( ( , ) )k h k hρ β= −  (12) 

with β the parameter that controls for decay ( 0β > ). More thoroughly, our illus-

trative examples deal with two correlation functions defined by setting in (12) 

β = 0.15 and β = 0.75, which respectively represent strong and weak spatial de-
pendency cases. Under parametrization (10) we can give, for model (11), a more 

explicit, scalar expression to )Var( , jiZ  and ),Cov( ,, hjkiji ZZ ++ , since, by defin-

ing 2 4 2
1 1 1 1(1 ) 2( )A θ θ θ θ= + − + − , 2

1 1 1 14( (1 ) )( )B θ θ θ θ= + − −  and 

2
1 14 (1 )C θ θ= − , we can write, using (7), 
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1
, 0,1 1,1Var( )i jZ A B C snrρ ρ −= + + + , (13) 

and

, , , 1, 1, , 1 , 1

1, 1 1, 1 1, 1 1, 1

Cov( , ) ( /4)( )

( /4)( ),

i j i k j h k h k h k h k h k h

k h k h k h k h

Z Z A B

C

ρ ρ ρ ρ ρ

ρ ρ ρ ρ

+ + + − + −

+ + − − − + + −

= + + + +

+ + + +
 (14) 

where 2
Sσ  is conventionally assumed equal to 1. 

If the ground truth correlation structure is assumed as known, then the per-
formance of the procedure can be investigated from a theoretical point of view as 
follows. At a first step we calculate the RHS of Formulae (13) and (14) for given 

values of 1θ  and snr, thus obtaining the covariance function of the corrupted map 

Z. Figures 1 and 2 show how location and attribute errors distort the spatial cor-
relogram up to lag (3,3)  under model (11), respectively for β = 0.15 (strong 

dependency) and β = 0.75 (weak dependency), when 1 {0.3,0.5}θ ∈  and 

}10.0,05.0,01.0{1 ∈−snr . It can be noted that the observed correlations generally 

increase for increasing location errors and decreasing measurement errors, i.e. 

when 1−snr  or 1θ  decrease. Furthermore, the effects of attribute errors are rela-

tively greater than those due to location errors. For highly correlated data (see 
Figure 1), errors tends to be constant and the correlation measures obtained using 
the corrupted map Z overestimate the ground truth correlations except in the 

case when 1 0.5θ =  and 10.01 =−snr . In contrast, if data are weakly correlated 

(see Figure 2), errors tend to vanish for increasing spatial lags, especially when 

2),( >hk , and the observed correlations always overestimate the corresponding 

ground truth measures. 
The correlation functions obtained in the previous step can now be interpreted 

as the "observed" correlograms, which can henceforth be used as the starting 
point of the correction process described in Section 2. Figures 3 and 4 show 
how location and attribute errors can be corrected under model (11), respectively 
for β = 0.15 (strong dependency), and β = 0.75 (weak dependency), when 

1 {0.3,0.5}θ ∈  and }10.0,05.0,01.0{1 ∈−snr . It can be seen that the procedure 

achieves a perfect rectification in plot B of Figure 4, i.e. when the true spatial cor-
relation is weak and rapidly declining (β = 0.75), and a good rectification in plot 

A (moderately declining spatial correlation) only if, in addition, 10.01 =−snr . In 
contrast, the procedure does not achieve a satisfactory correction in cases when 
data are highly correlated (see Figure 3) or, for the weak dependency case, when a 

high location error occurs ( 1 0.3θ = ) and, furthermore, 1001 .snr >− .
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Figure 1 – Spatial correlation distortions in the remotely acquired images for various values of loca-

tion and attribute error parameters (θ1 and snr ), under model (11), for the strong dependency case 
(β = 0.15 in equation (12)). Error-corrupted correlations are reported in the graph for spatial lags 

(k,h), k,h = 0, ..., 3, when snr -1=0.01, 0.05, 0.1, θ1 = 0.3 (Plot A), and θ1 = 0.5 (Plot B). 

4. ASSESSING CORRECTION EFFICIENCY VIA MONTE CARLO SIMULATION OF SAR MAPS

In this section we investigate the efficiency of the error-corrected correlation 
measures with respect to those ones based on the application of the Method-of-

Moments estimator to maps corrupted following model (11), with 1 0.5θ =  and 

05.01 =−snr , by designing a Monte Carlo experiment to generate images on a grid 
of 30x30 pixels from an isotropic SAR process (see - e.g. - Cressie, 1993), which, 
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Figure 2 – Spatial correlation distortions in the remotely acquired images for various values of lo- 

ation and attribute error parameters (θ1 and snr ), under model (11), for the weak dependency case 
(β = 0.75 in equation (12)). Error-corrupted correlations are reported in the graph for spatial lags 

(k,h), k,h = 0, ..., 3, when snr -1=0.01, 0.05, 0.1, θ1 = 0.3 (Plot A), and θ1 = 0.5 (Plot B).  

as discussed by Benedetti and Espa (1993), is simulated by filtering a Gaussian 
white noise laid on the selected lattice. 

As in Section 3, we consider again two degrees of spatial dependency for the 
"ground truth" by selecting different convolution kernels in SAR simulations (see 
Arbia et al., 1999), namely we define "strong" dependency when the weights of 
the mask filter are set as follows:  

}5,,1{,)5.1exp(8849.0 ,, ∈−= jidw jiji
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Figure 3 – Corrected correlation estimates for various values of location and attribute error parame-

ters (θ1 and snr ), under model (11), for the strong dependency case (β = 0.15 in equation (12)). Cor-

relations are reported in the graph for spatial lags (k,h), k,h = 0, ..., 3, when snr –1=0.01, 0.05, 0.1, θ1

= 0.3 (Plot A), and θ1 = 0.5 (Plot B). 

and "weak" dependency by setting 

}5,,1{,)5.0exp(4438.0 ,, ∈−= jidw jiji ,

where jid ,  is the distance between the pixel at the centre of the filter and the 

pixel in position i,j in the filter. 
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Figure 4 – Corrected correlation estimates for various values of location and attribute error parame-

ters (θ1 and snr ), under model (11), for the weak dependency case (β = 0.75 in equation (12)). Cor-

relations are reported in the graph for spatial lags (k,h), k,h = 0, ..., 3, when snr –1=0.01, 0.05, 0.1, θ1

= 0.3 (Plot A), and θ1 = 0.5 (Plot B).  

For each of the two correlation structures defined above, to obtain reliable 
Monte Carlo estimates we generate - as suggested by Haining and Arbia (1993) - a 

number of 300 images, say jim S , , 300,,1=m . For every m, the SAR map Sm

is thus corrupted in order to obtain the corresponding "observed" map Zm , and, 

relying on such Zm 's, spatial correlations are estimated up to lag (5,5)  by making 

use of a classical Method-of-Moments covariogram estimator (MM) (see, for ex-
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ample, Cressie, 1993, eq. 2.4.4), say obtaining measures ,
ˆ

m k hρ  for (5)),( Qhk ∈ .

Such estimates were henceforth corrected up to lag (4,4)  as described in Section 

2 by setting , ,
ˆ

k h m k hr ρ=  in the LHS of (8) and using vector 1,0 5,5
ˆ ˆ( )m mρ ρ

in the RHS as the starting point of the optimizer, whose solution at convergence 

is here indicated for the m-th map as ,m k hρ  and referred to as the Corrected 

Method-of-Moments estimator (CMM).  
We measure the efficiency of the ρ 's and the ρ̂ 's estimates on a lag by lag ba-

sis by estimating the corresponding Root Mean Square Errors as follows 

300 2
Est , , Est , , ,1

1
RMSE( ) ( )

300
k h m k h k hm

ρ ρ ρ
=

= −  (15) 

where ,k hρ  are the "true" correlations induced by the applied filters and Est , ,k hρ  is 

,
ˆ

k hρ  or ,k hρ . Furthermore, the efficiency of the ρ  estimator is compared to that 

of the ρ̂  estimator by means of the following index: 

,

,
ˆ

RMSE( )
RelEff( , ) 100

RMSE( )

k h

k h

k h
ρ

ρ
= . (16) 

Table 1 shows the results we obtain applying Formulae (15) and (16) for the 
strong dependency case. It can be noted that the procedure is inefficient except-
ing for corrections corresponding to high lags. In Table 2 are reported efficiency 
evaluations executed for the weak dependency case. We observe that, under this 
assumption, the procedure is very efficient at all lags excluding lag (3,3) . 

TABLE 1 

Root mean square errors for the classical (MM) and the corrected (CMM) method-of-moments estimators of spatial 
correlations at lags (1,0), ..., (4,4) under the strong dependency case. 

The relative efficiency between the considered estimators is reported using the RelEff statistic (see eq. (16)) 

                                                       Spatial lag 

     1,0     1,1     2,0     2,1   2,2     3,0     3,1 

CMM Estimator     0.0675     0.0748     0.0497     0.0691   0.0616     0.0996     0.1152 

MM Estimator     0.0282     0.0334     0.0461     0.0522   0.0661     0.0652     0.0692 

RelEff 239.4218 224.3841 107.8173 132.1804 93.2079 152.7584 166.4253 

                                                         Spatial lag 

     3,2     3,3     4,0     4,1   4,2   4,3     4,4 

CMM Estimator     0.0926     0.1690     0.0926     0.0793   0.0569   0.0320     0.0125 

MM Estimator     0.0756     0.0844     0.0732     0.0741   0.0778   0.0868     0.0928 

RelEff 122.5116 200.3498 126.5013 107.0916 73.1569 36.8585   13.4287 

Figures 5 and 6 show the correlogram estimates - averaged map by map - for 
the cases of strong and weak dependency respectively. When the spatial correla-
tion is strong, Figure 5 shows that there's no point in correcting the MM esti- 
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TABLE 2 

Root mean square errors for the classical (MM) and the corrected (CMM) method-of-moments estimators of spatial 
correlations at lags (1,0), ..., (4,4) under the weak dependency case. 

The relative efficiency between the considered estimators is reported using the RelEff statistic (see eq. (16)) 

                                                      Spatial lag 

   1,0   1,1   2,0   2,1   2,2   3,0     3,1 

CMM Estimator   0.0541   0.0512   0.0416   0.0438   0.0393   0.0580     0.0536 

MM Estimator   0.1633   0.1461   0.0986   0.0838   0.0590   0.0601     0.0529 

RelEff 33.1277 35.0355 42.1487 52.3010 66.5823 96.5418 101.3689 

                                                      Spatial lag 

   3,2     3,3 4,0 4,1 4,2 4,3    4,4 

CMM Estimator   0.0467     0.0789 0.0042 0.0035 0.0021 0.0008    0.0002 

MM Estimator   0.0489     0.0524 0.0506 0.0466 0.0443 0.0497    0.0540 

RelEff 95.5348 150.5376 8.2683 7.5467 4.6992 1.5923    0.3104 
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Figure 5 – Mean correlation measures under the strong dependency case for the classical (MM) and 
the corrected (CMM) Method-of-Moments estimators. 

mates, as they actually coincide, on average, with the corresponding CMM ones. 
On the contrary, for weak correlations the procedure really corrects the MM es-
timates at all lags up to lag (3,3) . 

5. DISCUSSION AND CONCLUDING REMARKS

In this paper we propose a procedure for the error-correction of spatial corre-
lation estimates based on remotely sensed data. The proposed procedure has 
proved to work pretty well in a set of simulated cases in which we allowed loca-
tion error, attribute error and spatial correlation to assume a set of values in a real 
world representative range. The cases where the results are not satisfactory are 
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Figure 6 – Mean correlation measures under the weak dependency case for the classical (MM) and 
the corrected (CMM) Method-of-Moments estimators.  

instead those where the location error is very high ( 1 0.3θ < ) and furthermore the 

true landscape is characterized by strong and slowly declining correlation func-
tion. It should be remarked, however, that the values of the location error that 
dramatically distort the image and disprove the procedure are by far smaller than 
the limits observed by Welsh et al. (1985) for Landsat data. As a consequence, 
these situations appear to be extremely unlikely in empirical cases. In addition, for 
the strong dependency case in which the procedure doesn't work properly, the 
Method-of-Moments estimator simply doesn't need to be corrected, since its es-
timates are actually equal to the corresponding corrected ones, as can be observed 
inspecting Figure under the SAR assumption.  

The procedure proposed here is very general and can be easily adapted to every 
corruption model in the class defined by equation (3). In particular, improve-
ments in the sensor device's measurement characteristics can also be taken into 
account by setting the correct signal-to-noise ratio. It's worth noting that, as 
showed in Figures 1 and 2, a better signal corresponds to a worse distortion in 
the estimated correlations, so that enhancements in the remote sensing technol-
ogy will still emphasize the needs for a careful correction of satellite-based de-
pendency measures. 

Department of Business, Statistical, Technological GIUSEPPE ARBIA

and Environmental Scienes (DASTA) GIOVANNI LAFRATTA

“G. d’Annunzio” University



G. Arbia, G. Lafratta 264

REFERENCES

G. ARBIA, (1993), The use of GIS in spatial statistical survey, “International Statistical Review”, 
61, 2, pp. 339-359.  

G. ARBIA, R. BENEDETTI, G. ESPA, (1999), Contextual classification in image analysis: an assessment of 
accuracy of ICM, “Computational Statistics & Data Analysis”, 30, pp. 443-455.  

G. ARBIA, D. GRIFFITH, R. HAINING, (1998), Error propagation modelling in raster GIS: overlay opera-
tions, “International Journal of Geographical Information Science”, 12, pp. 145-167.  

G. ARBIA, D. GRIFFITH, R. HAINING, (1999), Error propagation modelling in raster GIS: addition and 
ratioing operations, “Cartography & Geographical Information Science”, 26, pp. 297-315.  

G. ARBIA, G. LAFRATTA, (1997), Evaluating and updating the sample design in repeated environmental 
surveys: monitoring air quality in Padua, “Journal of Agricultural, Biological and Environ-
mental Statistics”, 2, 4, pp. 451-466.  

G. ARBIA, G. LAFRATTA, (2002), Anisotropic spatial sampling designs for urban pollution, “Journal of 
the Royal Statistical Society”, C Series, 51, 2, pp. 223-234.  

R. BENEDETTI, G. ESPA, (1993), Alcuni metodi per la generazione di processi aleatori bidimensionali,
“Statistica Applicata”, 5, 3, pp. 217-244.  

J.B. CAMPBELL, (1996), Introduction to remote sensing, second edition, The Guilford Press, New 
York.  

N.A.C. CRESSIE, (1993), Statistics for spatial data, Wiley, New York.  
S. GEMAN, D. GEMAN, (1984), Stochastic relaxation, Gibbs distributions and the Bayesian restoration of 

images, “IEEE Transactions in Pattern Analysis and Machine Intelligence”, 6, pp. 721-
742.

R. HAINING, G. ARBIA, (1993), Error propagation through map operations, “Technometrics”, 35, 
pp. 293-305.

LANDASAT, (2000), http://eo1.gsfc.nasa.gov/technology/documents/instrumentoverview. 
html.

B. MATERN, (1986), Spatial variation, Second Edition, Lectures Notes in Statistics, 36, 
Springer, New York.  

N.M. SHORT, (1999), Remote sensing tutorial, NASA publications, http://rst.gsfc.nasa.gov/ 
Front/Start.html.

R. WELSCH, T.R. JORDAN, M. EHLERS, (1985), Comparative evaluations of the geodetic accuracy and car-
tographic potential of Landsat-4 and Landsat-5 thematic mapper image data, “Photogrammetric 
engineering and remote sensing”, 51, pp. 1799-1812.  

RIASSUNTO

Stime della correlazione spaziale da osservazioni satellitari corrette sulla base delle caratteristiche tecniche 
del sensore 

In molti studi empirici le misure di correlazione spaziale basate su dati satellitari sono 
utilizzate per identificare la distanza oltre la quale la dipendenza tra fenomeni risulta non 
rilevante, per assistere, ad esempio, nella scelta della localizzazione di griglie sistematiche 
nelle indagini campionarie a terra. Tuttavia, le stime così ottenute sono minate dal fatto 
che l'inferenza si basa su dati che, raccolti via satellite, costituiscono solo un'approssima-
zione della "verità a terra", a causa della presenza di una serie di fattori di disturbo quali, 
ad esempio, la rifrazione ottica, la presenza di ostacoli (quali i corpi nuvolosi) e le limita-
zioni della precisione degli strumenti disponibili. In questo lavoro viene introdotta una 
procedura per correggere la stima della correlazione spaziale utilizzando l'informazione 



Spatial correlation estimates based on satellite observations etc. 265

disponibile a priori circa le caratteristiche tecniche del sensore satellitare, migliorando così 
l'attendibilità delle stime. Si propone un'approssimazione della "reale" correlazione in fun-
zione delle stime basate sul satellite e delle caratteristiche tecniche del sistema satellitare 
stesso. Gli effetti di tali interventi correttivi sono discussi facendo riferimento ad una serie 
di esempi basati su un correlogramma teorico di tipo isotropico negativamente esponen-
ziale. L'efficienza con cui la procedura di correzione opera relativamente allo stimatore del 
metodo dei momenti è stata infine valutata attraverso un esperimento Monte Carlo in cui 
si è ipotizzato un processo SAR per la generazione delle mappe rappresentative della "ve-
rità a terra". 

SUMMARY

Spatial correlation estimates based on satellite observations corrected with the prior knowledge on sensor 
devices' technical characteristics 

In many empirical studies spatial correlations are used to identify the distance above 
which dependency is negligible, to assist the choice in locating a systematic grid of sample 
points in ground surveys. However, estimates are undermined by the fact that our infer-
ence is based on satellite data that are only an approximation of the ground truth, due to 
the presence of a series of disturbing factors like (e.g.) light scattering, presence of obsta-
cles (like clouds), and instrument precision limitations. In this paper we introduce a pro-
cedure to correct spatial correlation estimates using prior knowledge on the satellite sen-
sor's technical characteristics and obtain more reliable estimates. We derive an approxima-
tion of the "ground-truth" pattern of correlation as a function of the satellite-based spatial 
correlation and of the sensor's (user-specified) technical characteristics. We show the ef-
fects of these corrections referring to a series of illustrative examples based on theoretical 
calculations regarding the negative exponential correlogram. The correction efficiency 
relative to the classical Method-of-Moments estimator is also assessed by means of a 
Monte Carlo application to simulated SAR maps. 


