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A COMBINATORIAL PROCEDURE FOR CONSTRUCTING 
D-OPTIMAL EXACT DESIGNS 

I.B. Onukogu, M.P. Iwundu 

1. INTRODUCTORY REMARKS 

The subject of constructing optimal N-point exact designs for response sur-
faces is one that has received research attention over the last half century. For 
some polynomial and trigonometric response functions defined in regular geo-
metric spaces, it is possible to determine optimal designs algebraically; see, e.g. 
Federov (1972, ch. 3), Pazman (1986; ch. V, VI). In 2n central composite factorial 
experiments, optimal designs can be obtained analytically for second order re-
sponse surfaces; see, Box and Draper (1951), Onukogu (1997; ch. 4). 

However, in more general settings, analytical solutions become intractable and 
iterative methods come into consideration; see the variance – exchange algorithm 
in Mitchell (1974), Atkinson and Donev (1992, ch. 13), and Pazman (1986). Un-
fortunately, many iterative methods are not guaranteed to reach the global opti-
mum or they reach it rather slowly. 

Under the present procedure the support points that make up the space X  
are grouped into H concentric balls, 
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such that, 

hkx , a constant for all k=1, 2,..., nh (1) 

hkx  is an n-component vector of support points in ,X  h = 1, 2, ..., H; k = 1, 2, 

..., nh and d1>d2...>dH; 
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n N=∑  is the total number of support points in .X  
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At any point j in the sequence, a set of design measures Nξ  is specified by an 
H-tuple, 1 2( ,  ,  ...,  )j j Hjr r r ; where hjr  is the number of support points to be taken 
from ball h; 
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Therefore, each design measure Nξ  is a composite of the sub-measures from the 
different balls; 
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Also, the number of available designs at the jth step is 1 2 ...j j j Hja a a a= ⋅ ⋅ ⋅ ; 

where  hja  is the number of available designs from the hth ball. These numbers 
can be easily computed; for example, if selection of support points from the hth all 
is without replacement, 
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The combinatorial procedure strives to reach the D-optimal design by 
1) minimizing the number of determinantal evaluations needed to be made in the 
set of aj available designs, and  
2) minimizing the number of steps required to convergence. 

2. EQUIVALENCE OF DESIGNS 

Let 1( )M ξ  and 2( )M ξ  be two non-singular p p×  information matrices, then: 

1 2det( ( ))  det( ( ))M Mξ ξ>  ⇒ 1ξ  is better than 2ξ . 

1 2det( ( ))  det( ( ))M Mξ ξ=  ⇒ 1ξ  is equivalent to 2ξ . 

For more discussions on the equivalence of designs see, for example Pazman 
(1986), Onukogu (1997). 

One of the characteristics of these composite designs is that they can be 
grouped into sets of equal size such that designs belonging to the same set have 
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equal diagonal elements in their information matrices. This means for instance 
that if 11 12 1,  ,  ...,  pξ ξ ξ  and 21 22 2,  ,  ...,  qξ ξ ξ  are the sub-design measures from 
balls one and two respectively, then the N-points composite designs; namely, 
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can be grouped into q sets:  
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Notice that each set contains p N-point designs and it is shown in theorem 1 
that the corresponding diagonal elements of the information matrices of the de-
signs in a set are equal. 
 

Theorem 1. 

Let 
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 be an N-point H-tuple composite design; where Hξ  has ha  

available designs, h = 1, 2, ... H. Then, the 1 2  ...  Ha a a× × ×  available designs 
can be grouped into 2 3    ...  Ha a a× × ×  sets, each set containing 1a  designs, 
such that for any two N-point designs 1ξ  and 2ξ  in a set, the corresponding  
diagonal elements of their information matrices are equal; i.e. 

1 2( )  ( ),    1,  2,  ...,  ii iim m i pξ ξ= = . 
 

Proof. The composition of the designs in each set differs only in the support 
points selected from ball 1 whereas from each of the other balls the support 
points remain exactly the same. Hence from equation (1) the theorem follows. 
 

Theorem 2. Let 1 1( ) ( ( ))ijM mξ ξ=  and 2 2( )   ( ( ))ijM mξ ξ=  be p p×  non singular 

information matrices such that 1 2( )  ( ),ii iim mξ ξ=  ∀  1,  2,  ...,  i p= . 
Then, 1( )M ξ  ≥ 2 ( )M ξ  if  

a) 1 2( )    ( ) ,   ij ijm m i jξ ξ≤ ≠ , where .  denotes absolute value. 
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b) 2
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1 2 1 2 ( ,  ,  ...,  ),    ( ,  ,  ...,  )p pu u u u v v v v= =  are  

two non-zero vectors, such that / /
1 2( )  ,  ( )  M D uu M D vvξ ξ= + = + ; 

11 22  { ,  ,  ...,  }ppD diag m m m=  are the diagonal elements of 1( )M ξ  and 2 ( )M ξ . 
 

Proof: (a) Applying the Gaussian elimination method on the 1 ( 1)
2

p p −  off-

diagonal elements of 1( )M ξ  and 2( )M ξ  we get upper triangular matrices, with 
respective diagonal elements 1( )iit ξ  and 2( )iit ξ , 1 2( )  ( )ii iit tξ ξ≥ ; see, for exam-
ple Onukogu (1997), 
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These two theorems provide ways for comparing designs and to reduce to a 
great extent the number of determinants to be computed; see, the numerical ex-
ample in section 4, where at j = 0, the number of determinants to compute was 
reduced from 16 to just 2. In addition, the condition that N ≥ p and 

0 for 1,  2,  ...,  ijr i H> =  for non-singular designs, have the effect of eliminating 
several steps in the sequence. In the numerical example, the 3-tuple (5, 1, 0) gives 
singular designs only and can therefore be skipped in the sequence. 

3. A SYSTEMATIC SEARCH TECHNIQUE 

The algorithm converges to an N-point design measure *
Nξ  such that, 

*det( ( ))  max{det( ( ))},   ( )   where p p p p
N N Nx X

M M M S Sξ ξ ξ × ×

∈
= ∀ ∈  is the set of 

all non-singular p p×  information matrices. The sequence of steps is given for 
different values of H beginning with H =2, 
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TABLE 3.1 

The S2 Search when H = 2 

H-tuple 
Step j 

r1j r2j 

Maximum 
Determinant 

dHj 
0 
1 

 
k 

k + 1 

r10 

r10 + 1 

 
r10 + k 

r10 + k + 1 

r20 
r20 – 1 

 
r20 – k 

r20 – k – 1 

d20 
d21 

 
d2k 

d2k+1 
k + 2 

 
t 

t + 1 

r10 – 1 

 
r10 – t 

r10 – t –1 

r20 + 1 

 
r10 + t 

r20 + t +1 

d2k + 2 

 
d2t 

d2t+1 

 

The above table is set up as follows: 
i. Start at j = 0 with guessed values of r10 and r20; r10 + r20 = N; r10, r20 ≥  0. 
ii. Arrange the n10 n20 available designs at j = 0 into n20 sets, each set containing 

n10 designs that satisfy theorem 1. 
iii. Apply theorem 2 to compare the designs and so obtain the best determinant 

value in each set and let these be d1, d2, ..., dn20, 
iv. Set d20 = max{di}; i = 1, 2, ..., n20 
v. Repeat (i) – (iv) at j = 1, 2, ..., t+1 and thus obtain d2k and d2t;  

d21 < d22 < ... < d2k > d2k + 1; d2k+ 2 < d2k + 3 < ... <d2t > d2t + 1. 
vi. Set d2* = max{d20, d2k, d2t} and the corresponding design *

Nξ  as the  
D-optimal design. 

 

S3 Search for H = 3 

1. Begin at j = 0 with guessed values of a 3-tuple (r10, r20, r30); where r10, r20, r30 
are respectively the number of support points from balls 1, 2, 3 and N = r10 
+ r20 + r30; r10, r20, r30 ≥  0. 

2. Holding, for example, r10 fixed, perform the S2 (H = 2) search at j = 0 be-
tween balls 2 and 3 to obtain the maximum determinant value d30(1), showing 
that this value is obtained at fixed value (r10) of ball 1. 

3. Repeat the S2 search at other values of r10; namely, r10 + 1, r10 + 2, ..., r10 + k 
+1, r10 – 1, r10 – 2, ..., r10 – t – 1. Hence, obtain d3k(1) and d3t(1). 

4. Define *
3d  = max{d30(1), d3k(1), d3t(1)} to be the global value of the determinant 

of the information matrices and the corresponding *
Nξ  as the D-optimal de-

sign. 
 

General case of SH search 

One can infer from the above that the SH search requires a progressive applica-
tion of S2, S3, ... . 
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1. Begin at j = 0 with guessed values of the H-tuple, 10 20 0( ,  ,  ..., );Hr r r  

i0 i0
=1

 = ,   0
H

i
N r r ≥∑ . 

2. The first H – 2 values, i.e. r10, ..., rH – 2,0 are held fixed and an S2 search is per-
formed on balls H – 1 and H to obtain dH0(1, 2, ..., H – 2). 

3. An S3 search is now performed on the last three balls; namely, H – 2, H – 1, 
and H to obtain dH0(1, 2, ..., H – 3). 

4. In a similar way an S4 search, gives a dH0(1, 2, ..., H – 4) and so on to SH that yields 
dH0. 

5. Set dH0 = max{dH0(1, ..., H -2), ......., dH0(1)}. 
6. Finally, searching at other values of r10; namely at r10 + 1, r10 + 2, ..., r10 + k, 

r10+ k + 1, r10 – 1, r10 – 2, ..., r10 – t, r10 – t – 1,we obtain dHk and dHt. 
7. Set *

Hd  = max{dH0, dHk, dHt} and the corresponding *
Nξ  as the D-optimal ex-

act design. 
 
As stated in section 2, theorems 1 and 2 have the effect of reducing the num-

ber of determinantal calculations and thus speeding up the rate of convergence of 
the algorithm. Further increases in the rate of convergence come as a result of the 
occurrence of singular designs as well as the fact that some rij’s quickly become 
zero. 
 

Theorem 3. The sequence S2, S3, ..., SH is convergent to the global D-optimal exact 
design. 

 
Proof: Since the sequence S3, ..., SH require progressive repeat of S2, it is sufficient 
to prove that S2 is convergent. The concavity of det(M( ))Nξ ; see, e.g. Pazman 
(1986), means that d2k and d2t are respectively the only local maxima in the in-
creasing and decreasing directions of he search. Therefore, *

2d  is a global opti-
mum. 

4. A NUMERICAL EXAMPLE 

We consider an application of the algorithm to obtain a D-optimal 6-point de-
sign for a bivariate quadratic surface defined on the unit cube i.e. 

2 2
1 2 00 10 1 20 2 12 1 2 11 1 22 2( , ) =  +  +  +  +  +  + f x x a a x a x a x x a x a x e ;  

2
1 2 1 2 = { ,  ;  ,   = -1, 0, 1},   = 1eX x x x x σ . 
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The three balls 1 2 3
1 1 1 1 1 0 1 0 0
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are of sizes n1 = n2 = 4, n3 = 1. The combinatorics for this case of H = 3 are 
given in the table hereunder: 

TABLE 4.1 

An S3 search for 6-point D-optimal design for a quadratic surface defined on a cubic space 

Step j 3-tuple 
r1j     r2j     r3j 

Maximum  
determinant dHj 

Number of  
designs at step j 

Number of  
D-optimal designs 

 
0 
 
1 
 
2 
 
3 
 
4 

 
3      3      0 

 
4      2      0 

 
5      1      0 

 
2      4      0 

 
1      5      0 

 
1.3717 × 10-3 

 
5.4870 × 10-3 

 
singular 

 
1.3717 × 10-3 

 
singular 

 
16 
 
6 
 

16 
 
6 
 

16 

 
 
 
4 

 
5 
 
6 
 
7 
 
8 
 
9 

 
3      2      1 

 
4      1      1 

 
5      0      1 

 
2      3      1 

 
1      4      1 

 
3.0864 × 10-3 

 
5.4870 × 10-3 

 
singular 

 
3.4214 × 10-4 

 
3.4214 × 10-4 

 
24 
 
4 
 
4 
 

24 
 
4 

 
 
 

all 4 

 

At j = 0, for example, the sixteen designs are: 

( ) ( ) ( ) ( ) ( )1 2 4 5 16
6 6 6 6 6 = ,   = ,  ...,  = ;   = ,  ...,  = 

0 0 0 0 0
0 0 0 0 0

0 0 0

ξ ξ ξ ξ ξ

− − − − + − − − − +
+ − − + − + + − + −
− + + + + + − + + +
− − − − −

− − − − +
+ − + − + + +  

The first set of four designs have the corresponding diagonal elements of their 
information matrices equal, then the next set of four, etc. Now applying theorem 
2 on the off-diagonal elements for designs within a set, one can establish the fol-
lowing equalities (inequalities): (M3 = M1) < (M2 = M4); (M7 = M5) < (M6 = M8); 
(M11 = M12) < (M9 = M10); (M15 = M16) < (M13 = M14). Comparing between sets, 
we see that M2 = M9 and M6 = M14. 

Therefore, only two determinant values need be computed. Incidentally, for  
3-tuple (3, 2, 1), only one determinant value need be computed because  
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( ) ( ) ( ) ( )4 11 14 21
6 6 6 6

6 0 0 1 4 4
0 4 1 1 0 1
0 1 4 1 1 0

( )  ( )  ( )  ( )  .
1 1 1 3 1 1

4 0 1 1 4 3
4 1 0 1 3 4

M M M Mξ ξ ξ ξ

−⎛ ⎞
⎜ ⎟−⎜ ⎟
⎜ ⎟−

= = = = ⎜ ⎟
− − −⎜ ⎟
⎜ ⎟−
⎜ ⎟⎜ ⎟−⎝ ⎠

 

The rest are either inferior designs, based on theorem 2, or they are singular de-
signs. 
 

On combinatorial and variance exchange methods 

Using the combinatorial technique, it is easy to determine all the designs that 
are concurrently D-optimal. The experimenter can therefore choose one of these 
designs on the basis of convenience and minimality of cost. 

The variance exchange method works well for approximate designs; i.e. when 
the equivalence between the G- and D-optimality applies. But for exact designs 
the method can fail because the equivalence of the G- and D-optimality criteria 
no longer applies. On the other hand, the combinatorial technique can be applied 
to both exact and approximate designs. 

The phenomenon of cycling which often occurs in a variance exchange tech-
nique; see, Atkinson and Donev (1992), cannot occur in the method of combina-
torics. 
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SUMMARY 

A combinatorial procedure for constructing D-optimal exact designs 

The basic problem considered in this paper may be stated as follows: find an N-point 
exact design measure Nξ  which maximizes the determinant of the information matrix of 
a given response function f(x), where x is an n-component vector of non-stochastic vari-
ables defined in a space of trial X . 

The combinatorial algorithm introduced in the paper reaches the global D-optimal de-
sign quite rapidly and a comparison against the variance exchange algorithm is indicated. 

 
 
 




