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A MODIFIED BESSEL DISTRIBUTION OF THE SECOND KIND 

Saralees Nadarajah 

1. INTRODUCTION 

Univariate Bessel function distributions are rapidly becoming distributions of 
first choice whenever “something” with heavier than Gaussian tails is observed in 
the data. They have been used to model: signal output processed by a radar re-
ceiver under various sets of conditions (McNolty, 1967) and vibrational ampli-
tude on the surfaces of ultrasonic transducers (Kielczynski and Pajewski, 1993; 
Kielczynski et al., 1993). They have also been used for modeling problems in ap-
plied physics (Salingaros, 1991). 

The two standard Bessel function distributions are the Bessel function distri-
bution of the first kind and the Bessel function distribution of the second kind. 
The latter has the probability density function (pdf) given by 
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is the modified Bessel function of the second kind. Many generalizations of (1) 
have been proposed in the literature. See Harris and Soms (1974), Thabane and 
Kibria (1999), Anh et al. (2005), Gupta and Nadarajah (2006) and Srivastava and 
Nadarajah (2006). However, most of these generalizations are motivated by 
mathematical arguments, and not by statistical or physical needs. For example, 
the pdf of the distribution proposed in Srivastava and Nadarajah (2006) takes the 
form | | ( | |) ( | |)m nC x K c x K d xα  which has attractive mathematical properties. 

The aim of this note is to introduce a modification of (1) that has real statistical 
motivation and to study its mathematical properties. Particularly, the new distri-
bution is motivated by a Bayesian inference of an inverse Gaussian sample. An 
inverse Gaussian distribution is given by the pdf 
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for x>0, λ>0 and µ>0, where λ is a reciprocal measure of dispersion and µ is a 
measure of location. Sometimes, it is more convenient to rewrite (2) as 
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where φ = λ/µ. The parameter φ determines the shape of the distribution and the 
pdf is highly skewed for moderate values of φ. As φ increases the inverse Gaus-
sian tends towards the normal law. 

The inverse Gaussian distribution is one of the most applied in the sciences. 
Areas of application include: actuarial science, analysis of reciprocals, demogra-
phy, histomorphometry, electric networks, hydrology, life tests, management sci-
ence, meteorology, mental health, physiology, remote sensing, traffic noise inten-
sity, market research, regression, slug lengths in pipelines, ecology, entomology, 
small area estimation, CUSUM, and plutonium estimation. For details on the the-
ory and applications of the distribution, we refer the reader to Chhikara and Folks 
(1989) and Seshadri (1998). 

Suppose now we have a random sample x = (x1,...,xm) from (3) with parame-
ters (λ, φ). We wish to make inferences about the value of φ, e.g. H0 : φ  =c versus 
H1 : φ  ≠c. The joint pdf of x is 
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Consider the prior pdf 
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a diffuse prior in terms of λ and a normal in terms of φ. We obtain the joint pos-
terior pdf as 
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Integrating out λ using equation (2.3.16.1) in Prudnikov et al. (1986, volume 1), we 
obtain the marginal posterior pdf of φ as 
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Thus, given the joint density (4) and the prior (5), the marginal posterior density 
of φ  takes the form of 
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for −∞<φ <∞, b>0, p>0 and m>1, where C denotes the normalizing constant. 
Application of equation (2.16.8.5) in Prudnikov et al. (1986, volume 2) shows that 
one can determine C as 
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where Γ(⋅,⋅) denotes the complementary incomplete gamma function defined by 
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Hence, by studying the mathematical properties of (7) one can make Bayesian in-
ferences about φ . 

The rest of this note is organized as follows: various expressions for particular 
forms of (7) and its moments are derived in Sections 2 and 3, respectively; estima-
tion procedures are considered in Section 4; and, an application is discussed in 
Section 5. 

2. PARTICULAR CASES 

When m takes half-integer values one can reduce (7) to elementary forms. Us-
ing the results in Appendix A, several particular forms of (7) can be obtained for 
half-integer values of m. For example, if m = 3/2 then (7) reduces to  
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with C given by 
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where erfc(⋅) denotes the complementary error function defined by 
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If m = 5/2 then (7) reduces to 
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with C given by 
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Figure 1 – Plots of the pdf (7) for b = 1, p = 1 and m = 1.5, 2, 3, 5 (top); and, b = 1, p = 2 and 
m = 1.5, 2, 3, 5 (bottom). The four curves in each plot are: the solid curve (m = 1.5), the curve of 
lines (m = 2), the curve of dots (m = 3), and the curve of lines and dots (m = 5). 
 

Figure 1 illustrates possible shapes of the pdf (7) for selected values of m and p. 
The four curves in each plot correspond to selected values of m. The effect of the 
parameters is evident. 
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3. MOMENTS 

Suppose X is a random variable with pdf (7). If n is odd then it is obvious that 
( ) 0nE X = . If n is even then one can write 
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By application of equation (2.16.8.4) in Prudnikov et al. (1986, volume 2), the 
above can be calculated as 
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where W denotes the Whittaker function defined by 
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Using special properties of the Whittaker function, one can obtain the simpler form 
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for half integer values of m. The expressions in (8) and (9) can be used to obtain 
Bayes estimators of the parameters of (6). 

4. MAXIMUM LIKELIHOOD ESTIMATION 

The highest posterior density set corresponding to (6) cannot be obtained in 
closed form. However, an approximation method is possible via a normal ap-
proximation of the posterior density. The normal approximation requires finding 
the maximum likelihood estimates of the parameters (b, p, m) in (7). 

 
Suppose X1, X2,,..., Xn is a random sample from (7). Then the log likelihood 
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The derivatives with respect to the three parameters are: 
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The partial derivatives in (10)-(12) can be computed by using the facts that 
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where ψ(z)=∂logΓ(z)/∂z is the digamma function, 
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is the incomplete gamma function, 
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is the modified Bessel function of the first kind, and 
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is the hypergeometric function, where (e)k = e(e + 1) (e + k – 1) denotes  
the ascending factorial. The maximum likelihood estimators of (b,p,m) are  
the simultaneous solutions of the equations log / 0, log / 0L b L p∂ ∂ ∂ ∂= =  and 

log / 0L m∂ ∂ = . 

5. APPLICATION 

We use the data given by Section 5.7 of Chhikara and Folks (1989), reproduced 
in Table 1 below. 

TABLE 1 

Failure data of 23 ball bearings 

17.88 28.92 33.00 41.52 42.12 45.60 48.48 
51.84 51.96 54.12 55.56 67.80 68.64 68.64 
68.88 84.12 93.12 98.64 105.12 105.84 127.92 
128.04 173.40      

 

The data consist of the number of million revolutions before failure for each 
of 23 ball bearings used in a life test. The background details about the data can 
be found in Lieblein and Zelen (1956). Chhikara and Folks (1989) showed by 
means of the Kolmogorov-Smirnov test that the inverse Gaussian distribution in 
(3) provides a good fit to the data in Table 1. If we assume that the parameters 
(λ,φ) have the prior given by (5) with n = 1/2, corresponding to unit standard de-
viation, then the posterior for φ, the shape parameter, is 
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Using the results in Section 3, we obtain the Bayes estimate of φ as 
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This estimate suggests that the data are highly skewed. The earliest and the 
most popular model used to describe failure data is the exponential distribution. 
So, it is of interest to see whether the exponential model provides an adequate fit 
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for the data. Since the exponential and inverse Gaussian distributions are not 
nested, we test the adequacy by comparing the skewness values. It is known that 
the skewness for the two distributions are 2 and 3/ φ , respectively. So, testing 
for adequacy of the exponential model amounts to testing 0 : 2.25H φ =  versus 

1 : 2.25H φ ≠ . Using the likelihood ratio, we obtain: 

2{log (2.25| ) - log (0.006| }=1505.880L L− x x . 

Since 2
1,0.951505.880 > 3.841 χ=  (we have assumed 2

1χ  distribution to be con-
sistent with the classical likelihood inference although it may not hold exactly in 
the case of Bayesian inference), there is overwhelming evidence that the exponen-
tial model cannot provide an adequate fit for the data. This is consistent with 
findings in Lieblein and Zelen (1956). 
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APPENDIX A: PARTICULAR FORMS OF Kν (x) 

Note that 
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More generally, if ν − 1/2≥1 is an integer then 
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SUMMARY 

A modified Bessel distribution of the second kind 

Motivated by a Bayesian inference problem, a modification of the Bessel function dis-
tribution is introduced. Various particular cases, expressions for its moments and estima-
tion procedures are derived. An application is illustrated to failure data. 

 
 
 
 
 
 
 
 
 
 
 
 




