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ON BIVARIATE GEOMETRIC DISTRIBUTION 

K. Jayakumar, D.A. Mundassery 

1. INTRODUCTION 

Probability distributions of random sums of independently and identically dis-
tributed random variables are mainly applied in modeling practical problems that 
deal with certain phenomena in which the respective mathematical models are 
sums of random number of independent random variables. A lot of such situa-
tions arise in actuarial science, queuing theory and nuclear physics. Gnedenko and 
Korolev (1996) gave a number of situations where we usually come across ran-
dom summation, especially geometric summation and describe the modeling of 
such situations with respective physical terminology. 

Kozubowski and Panorska (1999) applied the distribution of geometric sums 
in financial portfolio modeling. Kozubowski and Rachev (1994) used geometric 
sums as an adequate device to model the foreign currency exchange rate data. In 
this paper our aim is to obtain characterizations of bivariate geometric distribu-
tion using geometric compounding. We introduce new bivariate geometric distri-
butions using the geometric sums of independently and identically distributed 
random variables. These bivariate geometric distributions are closed under geo-
metric summation. Therefore the probability distributions introduced in this 
study may be appropriate in modeling bivariate data sets which are closed under 
geometric summation. 

It is well known that bivariate analogues of univariate distributions can be ob-
tained by extending their generating functions appropriately. Consider a sequence 
of independent Bernoulli trials in which the probability of success in each trial is 
p , 0 1p< < . Let X be the number of failures preceding first success. Then X 

follows geometric distribution with probability generating function (pgf) 

1( )
1 (1 )

P s
c s

=
+ −

 where 1 pc
p
−

= . 

A natural extension of ( )P s  gives the following bivariate geometric distribu-
tion. A non negative integer valued bivariate random variable ( , )X Y  has bivari-

ate geometric distribution 2
1 2( ( , , ))BGD c c θ  if its pgf is 
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1 2 2
1 1 2 2 1 2 1 2

1( , )
(1 (1 ))(1 (1 )) (1 )(1 )

s s
c s c s c c s s

π
θ

=
+ − + − − − −

 (1) 

where 1 2, 0c c > , 20 1,θ≤ ≤  1 1s ≤  and 2 1s ≤ . Note that the components of 
( , )X Y  have univariate geometric distribution. 

Phatak and Sreehari (1981) considered a bivariate geometric distribution which 
could be interpreted as a shock model. Assume that two components are affected 
by shocks, with probability 1p , the first component survives, with probability 2p , 
the second component survives and with probability 0p  both components fail. 
Let 1N  and 2N  be the number of shocks to the first and second components 
respectively before the first failure of the system. Then 1 2( , )N N  has the follow-
ing joint probability distribution 

1 21 2
1 1 2 2 1 2 0

1
( , ) n nn n

P N n N n p p p
n
+⎛ ⎞

= = = ⎜ ⎟
⎝ ⎠

, 0 1 2 1p p p+ + = , 1 2, 0, 1, 2, 3,...n n =  

Its pgf is 

1 2
1 2

1 2
0 0

1( , )
1 (1 ) (1 )

s s p ps s
p p

π =
+ − + −

.  

Note that 1 2( , )N N  has 1 2( , ,1)BGD c c  where 
0

1
1 p

p
c =  and 

0

2
2 p

p
c = . 

In order to obtain characterizations of 1 2( , ,1)BGD c c  using geometric com-
pounding, we make use of the operator ' '⊕  defined as follows: 

Let X be random variable with pgf ( )sπ . p X⊕  is defined (in distribution) by 

the pgf (1 )p psπ − +  or 
1

X

j
j

p X Z
=

⊕ =∑  where ( 1) 1 ( 0)j jP Z P Z p= = − = = , all 

random variables jZ  being independent. A bivariate extension of this result is 

considered. If (X, Y) has pgf 1 2( , )s sπ  then the distribution of ( , )p X p Y⊕ ⊕  is 
defined by the pgf 1 2(1 ,1 )p ps p psπ − + − + .  

Let {( , ), 1}i iX Y i ≥ be a sequence of independently and identically distributed 
random variables with pgf 1 2( , )s sπ . Define 

1 2 ...N NU X X X= + + +  

and 

1 2 ...N NV Y Y Y= + + +  (2) 
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where N  is independent of ( , ), 1i iX Y i ≥  and follows geometric distribution 
such that 

1 P(  = ) (1 ) , 1, 2,3,...,nN n p p n−− =   (3) 

Then the pgf of ( , )N NU V  is given by  

1 2 1 2( , ) ( )N NU Vs s E s sη =  

            1 2
1
( ( , )) ( )n

n
s s P N nπ

∞

=

= =∑  

            1 2

1 2

( , )
1 (1 ) ( , )

p s s
p s s

π
π

=
− −

. (4) 

Block (1977) considered a compounding scheme using bivariate geometric dis-
tribution. A random variable 1 2( , )N N  has bivariate geometric distribution with 
parameters 00 10 01, ,p p p  and 11p  if its survival function is 

1 2 1 1 2 2( , ) ( , )F n n P N n N n= > >  

              
1 2 1

2 1 2

11 01 11 1 2

11 10 11 2 1

( )

( )

n n n

n n n

p p p if n n

p p p if n n

−

−

⎧ + ≤⎪= ⎨
+ ≤⎪⎩

 (5) 

where 00 10 01 11 1p p p p+ + + = , 10 11 1p p+ < , 01 11 1p p+ <  and 1 2,n n =  1, 2, 
3, ... . 

Consider a sequence of independently and identically distributed random vari-
ables {( , ), 1}i iX Y i ≥  which is also independent of 1 2( , )N N  where 1 2( , )N N  
follows the bivariate geometric distribution in (5). Define 

1 2

1 2
1 1

 and 
N N

N i N i
i i

U X V Y
= =

= =∑ ∑  (6) 

Block (1977) obtained the Laplace transform of 
1 2

( , ).N NU V  Its discrete analogue 
is 

1 2 1 2 00 10 1 01 2 11 1 2( , ) ( , )( ( ,1) (1, ) ( , ))s s s s p p s p s p s sη π η η η= + + + . (7) 

From (7) we get, 

00 01 1
1

10 11 1

( ) ( ,1)( ,1)
1 ( ) ( ,1)

p p ss
p p s

π
η

π
+

=
− +
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and 

00 10 2
2

01 11 2

( ) (1, )(1, )
1 ( ) (1, )

p p ss
p p s

π
η

π
+

=
− +

 (8) 

Using geometric compounding, in section 2 we obtain characterizations of 
BGD 1 2( , ,1).c c  In section 3, autoregressive models with BGD 1 2( , ,1)c c  marginals 
are developed. Different bivariate geometric distributions are introduced in sec-
tion 4 using bivariate geometric compounding. 

2. CHARACTERIZATION OF BIVARIATE GEOMETRIC DISTRIBUTION 

The following theorem gives a characterization of BGD 1 2( , ,1)c c . 
Theorem 2.1. Let {( , ), 1}i iX Y i ≥  be a sequence of independently and identically 
distributed random variables and N  be independent of ( , ), 1.i iX Y i ≥  Suppose 
that N  follows the geometric distribution in (3) and, NU  and NV  are as defined 
in (2). Then ( , )N Np U p V⊕ ⊕  and ( , ), 1i iX Y i ≥  are identically distributed if 
and only if ( , ), 1i iX Y i ≥  follow BGD 1 2( , ,1)c c .  
Proof. Let 1 2( , )s sπ  be the pgf of ( , ), 1i iX Y i ≥ . Using (4), the pgf of 
( , )N Np U p V⊕ ⊕  is 

1 2
1 2

1 2

(1 ,1 )( , )
1 (1 ) (1 ,1 )

p p ps p pss s
p p ps p ps

π
η

π
− + − +

=
− − − + − +

 (9) 

Assuming that ( , ), 1i iX Y i ≥  follow BGD 1 2( , ,1).c c  Substituting 1 2( , )s sπ  in (9) 

and simplifying, we get 1 2
1 1 2 2

1( , )
1 (1 ) (1 )

s s
c s c s

η =
+ − + −

. 

Conversely, assume that ( , )N Np U p V⊕ ⊕  follows BGD 1 2( , ,1)c c . Then from 
(9) we have 

1 2

1 1 2 2 1 2

(1 ,1 )1
1 (1 ) (1 ) 1 (1 ) (1 ,1 )

p p ps p ps
c s c s p p ps p ps

π
π
− + − +

=
+ − + − − − − + − +

. 

Solving we get, 

1 2
1 1 2 2

1( , )
1 (1 ) (1 )

s s
c s c s

π =
+ − + −

. 

Now we obtain 2
1 2BGD( , , )c c θ  as a geometric compound of independently 

and identically distributed random variables. 
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Theorem 2.2. Consider a sequence {( , ), 1}i iX Y i ≥  of independently and identically 
distributed random variables, also independent of N  which has the geometric 
distribution in (3). Let NU  and NV  be as defined in (2). Then 
( , )N Np U p V⊕ ⊕  follows BGD 1 2( , , )c c q  where q = 1- p if and only if 
( , ), 1i iX Y i ≥  have BGD 1 2( , , 0)c c . 
Proof. Suppose that ( , ), 1i iX Y i ≥  have pgf 

1 2
1 1 2 2

1( , )
(1 (1 ))(1 (1 ))

s s
c s c s

π =
+ − + −

. 

From (9), the pgf of ( , )N Np U p V⊕ ⊕  is 

1 2
1 1 2 2

( , )
(1 (1 ))(1 (1 )) 1

ps s
c s c s p

η =
+ − + − − +

 

            
1 1 2 2 1 2 1 1

1
1 (1 ) (1 ) (1 )(1 )c s c s pc c s s

=
+ − + − + − −

. 

Comparing with (1), we get 2 qθ = . Hence ( , )N Np U p V⊕ ⊕  follows 
BGD 1 2( , , )c c q .  

To prove the converse of the theorem, substituting the pgf of 
( , )N Np U p V⊕ ⊕  in (9), we get 

1 2

1 1 2 2 1 2 1 2 1 2

(1 ,1 )1 .
1 (1 ) (1 ) (1 )(1 ) 1 (1 ) (1 ,1 )

p p ps p ps
c s c s pc c s s p p ps p ps

π
π
− + − +

=
+ − + − + − − − − − + − +

 

Solving, we obtain 

1 2
1 1 2 2

1( , )
(1 (1 ))(1 (1 ))

s s
c s c s

π =
+ − + −

. 

A characterization of geometric distribution is obtained in the following theo-
rem. 
 
Theorem 2.3. Suppose that {( , ), 1}i iX Y i ≥  is a sequence of independently and 
identically distributed random variables according to BGD 1 2( , ,1)c c . Then 
( , )N Np U p V⊕ ⊕  and ( , ), 1i iX Y i ≥  are identically distributed if and only if N  
is geometric where NU  and NV  are as defined in (2). 
Proof. The ‘if” part of the theorem is proved in theorem 2.1. In order to prove the 
‘only if’ part, assume that ( , ), 1i iX Y i ≥  and ( , )N Np U p V⊕ ⊕  are identically 
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distributed as BGD 1 2( , ,1)c c . Without loss of generality, taking 1 2 1.c c= =  The 
pgf of ( , )N Np U p V⊕ ⊕  is 

1 2 1 2
1

( , ) ( (1 ,1 )) ( )n

n
s s p ps p ps P N nη π

∞

=

= − + − + =∑ . 

From the assumption, we get  

1
1 2

1 1 2

1 ( )=(1 (1 ) (1 ))
1 (1 ) (1 )

n

n
P N n s s

p s p s

∞
−

=

⎛ ⎞
= + − + −⎜ ⎟+ − + −⎝ ⎠

∑ . 

Expanding with respect to n and comparing the coefficients of 

1 2((1 ) (1 )) js s− + − , we get 

1
( 1)( 2)...( 1) ( )

n
n n n n j P N n

∞

=

+ + + − =∑  = !
j

j
p

, for j = 1,2,3,... 

Consider 

(1 ) NE t −−  = 
2 3

1 ( ) ( ( 1)) ( ( 1)( 2)) ...
1! 2! 3!
t t tE N E N N E N N N+ + + + + + +  

                  = p
p t−

 

                  = 1

1
(1 ) (1 )n n

n
p t p

∞
− −

=

− −∑ . 

But (1 ) NE t −−  = 
1
(1 ) ( )n

n
t P N n

∞
−

=

− =∑ . 

Therefore, 

P(N = n) = 1(1 )np p−− , for n = 1, 2, 3,...  

Theorem 2.4. Let 1N  and 2N  be two independent random variables following 
geometric distribution given in (3) with parameters a and b respectively  
and {( , ), 1}i iX Y i ≥  be a sequence of independently and identically distrib- 
uted random variables which are also independent of 1N  and 2N . Let 

1 2 ...
i iN NU X X X= + + +  and 1 2 ... ,

i iN NV Y Y Y= + + + for i =1,2. Then 
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1 1
( , )N Na U a V⊕ ⊕  and 

2 2
( , )N Nb U b V⊕ ⊕  are identically distributed if 

( , ), 1i iX Y i ≥  have BGD 1 2( , ,1)c c . 
Proof. Suppose that ( , ), 1i iX Y i ≥  have BGD 1 2( , ,1)c c . Therefore from (9)  

we obtain the pgf of 
1 1

( , )N Na U a V⊕ ⊕  as 1 2( , )s sη =
1 1 2 2

1
1 (1 ) (1 )c s c s+ − + −

. 

Similarly, we can show that 
2 2

( , )N Nb U b V⊕ ⊕  has also the same pgf. Hence the 
proof. 

In the next theorem we obtain characterization of BGD 2
1 2( , , )c c θ  using bivari-

ate geometric compounding. 
 
Theorem 2.5. Let {( , ), 1}i iX Y i ≥  be a sequence of independently and identically 
distributed random variables. Suppose that 1 2( , )N N  has bivariate geometric dis-
tribution given in (5) and independent of ( , ), 1i iX Y i ≥ . Take 

00 01 1 10 20, ,p p pµ µ= = =  and 11 1 21 ( )p µ µ= − + . Then 
1 2

( , )N NU V  follows 

BGD 1 2

1 2

, ,0c c
µ µ

⎛ ⎞
⎜ ⎟
⎝ ⎠

 if and only if ( , ), 1i iX Y i ≥  follow BGD 1 2( , ,1)c c  where 
1NU  

and 
2NV  are as given in (6). 

Proof. Assume that ( , ), 1i iX Y i ≥  follow BGD 1 2( , ,1)c c . Substituting its pgf and 
the values of 00 10 01 11, , ,p p p p  in (7). The pgf of 

1 2
( , )N NU V  is 

1 2
1 1 2 2

1( , )
1 (1 ) (1 )

s s
c s c s

η =
+ − + −

  

1 1
1 1 2 2

2 1 1 2 1 2
1 2

(1 ) (1 )1 1 (1 ) ( , )c s c s s sµ µ µ µ η
µ µ

− −⎛ ⎞⎛ ⎞ ⎛ ⎞− −⎜ ⎟+ + + + − −⎜ ⎟ ⎜ ⎟⎜ ⎟⎝ ⎠ ⎝ ⎠⎝ ⎠
. 

Solving we get, 

1 2
1 1 2 2

1 2

1( , )
(1 ) (1 )1 1

s s
c s c s

η

µ µ

=
⎛ ⎞⎛ ⎞− −
+ +⎜ ⎟⎜ ⎟

⎝ ⎠⎝ ⎠

. 

Conversely, assume that 

1 2
1 1 2 2

1 2

1( , )
(1 ) (1 )1 1

s s
c s c s

η

µ µ

=
⎛ ⎞⎛ ⎞− −
+ +⎜ ⎟⎜ ⎟

⎝ ⎠⎝ ⎠

. 
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Therefore from (7) 

1 1 2 2

1 2

1
(1 ) (1 )1 1c s c s
µ µ

⎛ ⎞⎛ ⎞− −
+ +⎜ ⎟⎜ ⎟

⎝ ⎠⎝ ⎠

= 1 2( , )s sπ  

00 10 01 11
1 1 2 2 1 1 2 2

1 2 1 2

1 1 1
(1 ) (1 ) (1 ) (1 )1 1 1 1

p p p p
c s c s c s c s

µ µ µ µ

⎛ ⎞
⎜ ⎟
⎜ ⎟+ + +⎜ ⎟⎛ ⎞ ⎛ ⎞ ⎛ ⎞⎛ ⎞− − − −

+ + + +⎜ ⎟⎜ ⎟ ⎜ ⎟ ⎜ ⎟⎜ ⎟⎜ ⎟⎝ ⎠ ⎝ ⎠ ⎝ ⎠⎝ ⎠⎝ ⎠

 

Substituting the values of 00 10 01, ,p p p  and 11p  we get 

1 2
1 1 2 2

1( , )
1 (1 ) (1 )

s s
c s c s

π =
+ − + −

. 

Theorem 2.6. Consider a sequence of independently and identically distributed ran-
dom variables {( , ), 1}i iX Y i ≥ . Suppose that 1 2( , )N N  is independent of 
( , ), 1i iX Y i ≥  and follows the bivariate geometric distribution in (5) such that 

11 10 11 1 01 11 2, ,p p p p p p p p= + = + =  and 00 0p = . Then 
1 21 2( , )N Nq U q V⊕ ⊕  

has BGD 1 2( , , 0)c c  if and only if ( , ), 1i iX Y i ≥  have BGD 1 2( , ,1)c c  where 

ii pq −= 1 .  
Proof. Using (7) the pgf of 

1 21 2( , )N Nq U q V⊕ ⊕  is 

10 00 01 1 01 00 10 2
1 2

10 11 1 01 11 2
1 2

11 1 2

( ) ( ,1) ( ) (1, )( , )
1 ( ) ( ,1) 1 ( ) (1, )

( , )
1 ( , )

p p p s p p p ss s
p p s p p s

s s
p s s

π π
π

π π
η

π

⎛ ⎞+ +
+⎜ ⎟− + − +⎝ ⎠=

−
 

where 1 2( , )s sπ  is the pgf of ( , ), 1i iX Y i ≥ . Assume that ( , ), 1i iX Y i ≥  have 
BGD 1 2( , ,1).c c  Then we get 

1 2
1 2

1 1 1 2 2 2
( , )

1 (1 ) (1 )
q qs s

c q s c q s p
η =

+ − + − −  

1 1 1 1 2 2 2 2

1 1
1 (1 ) 1 (1 )c q s p c q s p
⎛ ⎞

+⎜ ⎟+ − − + − −⎝ ⎠
. 

On simplification, we get 
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1 2
1 1 2 2

1( , )
(1 (1 ))(1 (1 ))

s s
c s c s

η =
+ − + −

. 

Conversely suppose that 
1 21 2( , )N Nq U q V⊕ ⊕  follows BGD 1 2( , , 0)c c . Then from 

(7) we have 

1 1 1 2 2 2

1 1 2 2 1 1 1 2 2 2

(1 ,1 )1
(1 (1 ))(1 (1 )) 1 (1 ,1 )

q q s q q s
c s c s p q q s q q s

π
π
− + − +

=
+ − + − − − + − +

 

2 1

1 1 2 21 (1 ) 1 (1 )
q q

c s c s
⎛ ⎞

+⎜ ⎟+ − + −⎝ ⎠
. 

Solving, we get 

1 2
1 1 2 2

1( , )
1 (1 ) (1 )

s s
c s c s

π =
+ − + −

.  

Theorem 2.7. Let {( , ), 1}i iX Y i ≥ be a sequence of independently and identically 
distributed random variables. Suppose that 1 2( , )N N  is independent of 
( , ), 1i iX Y i ≥  and has bivariate geometric distribution, as stated in theorem 2.6. 
Then 

1 2
( , )N Nq U q V⊕ ⊕  has pgf BGD ( , , 0)q q  if and only if ( , ), 1i iX Y i ≥  have 

pgf BGD 1 2( , ,1)q q  where q = 1 - p. 
Proof . Suppose that ( , ), 1i iX Y i ≥  have BGD 1 2( , ,1)q q . Substituting in (7), we get 
the pgf of 

1 2
( , )N Nq U q V⊕ ⊕  as 

1 2
1 2

1 1 2 2 1 1 1 2 2 2

1 1( , )
1 (1 ) (1 ) 1 (1 ) 1 (1 )

q qs s
q q s q q s p q q s p q q s p

η
⎛ ⎞

= +⎜ ⎟− − + − − + − − + − −⎝ ⎠  
On simplification we get 

1 2
1 2

1( , )
(1 (1 ))(1 (1 ))

s s
q s q s

η =
+ − + −

.  

Conversely, take that 
1 2

( , )N Nq U q V⊕ ⊕  follows BGD ( , , 0)q q . From (9), we 
have 

1 2

1
(1 (1 ))(1 (1 ))q s q s

=
+ − + −

 

1 2 2 1

1 2 1 2

(1 ,1 )
1 (1 ,1 ) 1 (1 ) 1 (1 )

q qs q qs q q
p q qs q qs q s q s

π
π

⎛ ⎞− + − +
+⎜ ⎟− − + − + + − + −⎝ ⎠

. 



 K. Jayakumar, D.A. Mundassery 398 

Simplifying, we get 

1 2
1 1 2 2

1( , )
1 (1 ) (1 )

s s
q s q s

π =
+ − + −

. 

3. BIVARIATE AUTOREGRESSIVE GEOMETRIC PROCESS 

There are many situations in which discrete time series arise, often as counts of 
events, objects or individuals in consecutive intervals. For example, number of 
road accidents that occur on national highways of a country on a day, number of 
customers waiting in a ticket booking counter that recorded in every one hour 
duration, number of calls received in a fire rescue centre in a week, etc. Moreover 
such data can also be obtained by discretization of continuous variate time series. 
Recently, much focus is given on developing integer valued stationary autoregres-
sive processes. (see, Jayakumar (1995)). Here we develop first order autoregres-
sive process with marginals as bivariate geometric distribution. 
Consider an autoregressive process ( , ), , 1n nX Y n ≥  with structure 

0 0 1 1( , ) ( , )X Y d U V  and for n=1, 2, 3, 

1 1( , ) ( , )n n n n n nX Y X U Y Vρ ρ− −= ⊕ + ⊕ + , 0 1ρ< <  (10) 

where ( , ), 1n nU V n ≥  are independently and identically distributed random vari-
ables satisfying ( , ) ( , )n n n n n nU V d I Iε ψ . { , 1}nI n ≥  and {( , ), 1}n n nε ψ ≥  are two in-
dependent sequences of independently and identically distributed random vari-
ables and ( , 1)nI n ≥  have Bernoulli distribution with ( 0) 1 ( 1)n nP I P I ρ= = − = = . 
The following theorem gives a necessary and sufficient condition for a stationary 
autoregressive process to have BGD 1 2( , ,1)c c  marginals. 
 
Theorem 3.1. Let ( , ), 1n nX Y n ≥  be a first order bivariate autoregressive process 
with structure in (10). The process is stationary with BGD 1 2( , ,1)c c  marginals if 
and only if ( , ), 1n n nε ψ ≥  follow BGD 1 2( , ,1)c c  
Proof. The pgf of (10) is 

1 1, 1 2 , 1 2 , 1 2( , ) (1 ,1 ) ( , )
n n n n n nX Y X Ys s s s s sε ψπ π ρ ρ ρ ρ π

− −
= − + − + . (11) 

Suppose that the process is stationary with BGD 1 2( , ,1)c c  marginals, then we have 

, 1 2
1 1 2 2 1 1 2 2

1 1 ( , )
1 (1 ) (1 ) 1 (1 ) (1 ) U V s s

c s c s c s c s
π

ρ ρ
=

+ − + − + − + −
. 
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Solving we get, 

, 1 2
1 1 2 2

1( , )
1 (1 ) (1 )U V s s

c s c s
ρ

π ρ
−

= +
+ − + −

. 

To prove the converse assume that ( , , 1)n n nε ψ ≥  follow BGD 1 2( , ,1)c c . Taking 
1n =  in (11), we get 

1 1 0 0 1 1, 1 2 , 1 2 , 1 2( , ) (1 ,1 ) ( , )X Y X Y U Vs s s s s sπ π ρ ρ ρ ρ π= − + − + . 

Under the assumption, 

1 1, 1 2
1 1 2 2 1 1 2 2

1 1( , )
1 (1 ) (1 ) 1 (1 ) (1 )X Y s s

c s c s c s c s
ρ

π ρ
ρ ρ

⎛ ⎞−
= +⎜ ⎟+ − + − + − + −⎝ ⎠

 

                   
1 1 2 2

1
1 (1 ) (1 )c s c s

=
+ − + −

. 

Hence the process is stationary with marginals follow BGD 1 2( , ,1)c c . 
Now consider a first order random coefficient autoregressive model with fol-

lowing structure. 

0 0 0 0( , ) ( , )X Y d ψε  

1 1( , ) ( , )n n n n n n n n n nX Y V X V V Y Vε ψ− −= ⊕ + ⊕ ⊕ + ⊕ , 1n ≥  (12) 

where {( , , 1)}n n nε ψ ≥  and { , 1}nV n ≥  are two independent sequences of inde-
pendently and identically distributed random variables such that , 1nV n ≥  have 
uniform distribution on (0, 1). The following theorem gives a necessary and suffi-
cient condition for the process in (12) to be stationary. 
 
Theorem 3.2. Consider an autoregressive process ( , ), 1n nX Y n ≥  given in (12). It is 
a stationary first order autoregressive process with BGD 1 2( , ,1)c c  marginals if and 
only if 0 0( , )dε ψ  BGD 1 2( , ,1)c c . 
Proof. The pgf of (12) is  

1 1
, 1 2 1 2( , ) ( )n n n n n n n n

n n

V X V V Y V
X Y s s E s sε ψπ − −⊕ + ⊕ ⊕ + ⊕=  

1 1

1

, 1 2 , 1 2
0

(1 ,1 ) (1 ,1 ) .
n n n nX Y n n n n n n n nv v s v v s v v s v v s dvε ψπ π
− −

= − + − + − + − +∫  

If ( , ), 1n nX Y n ≥  is stationary, we have 
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, 1 2( , )X Y s sπ =
1

2
, 1 2

0

(1 ,1 )X Y v vs v vs dvπ − + − +∫ . 

Let , 1 2 , 1 2(1 ,1 ) ( , )X Y X Ys s s sπ γ− − = . Then we get 

1
2

, 1 2 , 1 2
0

( , ) ( , )X Y X Ys s vs vs dvγ γ= ∫ . (13) 

Taking j js sδ=  for j = 1, 2. 

1
2

, 1 2 , 1 2
0

(( , ) ) (( , ) )X Y X Ys sv dvγ δ δ γ δ δ= ∫ . 

If sv = t, then 2
, 1 2 , 1 2

0

(( , ) ) (( , ) )
s

X Y X Ys s t dtγ δ δ γ δ δ= ∫ . 

Differentiating with respect to s and then dividing by 2
, 1 2(( , ) )X Y sγ δ δ , we get 

'
, 1 2

2
, 1 2, 1 2

(( , ) ) 1 1
(( , ) )(( , ) )

X Y

X YX Y

s s
ss

γ δ δ

γ δ δγ δ δ
+ = . 

Writing , 1 2
1 2

1(( , ) )
1 (( , ) )X Y s

s
γ δ δ

ω δ δ
=

+
 , we get  

1 2(( , ) )s sω δ δ µ∗=  where µ∗  is a function of 1 2( , )δ δ  

That is, 

, 1 2
1(( , ) )

1X Y s
s

γ δ δ
µ∗=

+
 

                       = 
1 1 2 2

1
1 c s c s+ +

. 

Thus , 1 2( , )X Y s sπ = 
1 1 2 2

1
1 (1 ) (1 )c s c s+ − + −

 and hence we obtain 

0 0( , )dε ψ  BGD 1 2( , ,1)c c . 

Conversely, suppose that 0 0 0 0( , ) ( , )X Y d ε ψ  and 0 0( , )ε ψ  has BGD 1 2( , ,1)c c . 
From (13), we have 
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1 1 0 0

1
2

, 1 2 , 1 2
0

( , ) ( , )X Y s s vs vs dvε ψγ γ= ∫  

                    = 
1 1 2 2

1
1 c s c s+ +

. 

Therefore, 

1 1, 1 2( , )X Y s sπ =
1 1 2 2

1
1 (1 ) (1 )c s c s+ − + −

. 

Thus 1 1( , )X Y  is distributed as bivariate geometric distribution. By induction we 
get ( , ), 1n nX Y n ≥  follow BGD 1 2( , ,1)c c . Hence the process is stationary. 

4. BIVARIATE GEOMETRIC DISTRIBUTION 

In this section we construct various bivariate geometric distributions using the 
bivariate geometric compounding. We discuss the discrete analogues of many im-
portant bivariate exponential distributions like, Marshall-Olkin’s (1967) bivariate 
exponential, Downton’s (1970) bivariate exponential and Hawkes’ (1972) bivari-
ate exponential. 
 
Theorem 4.1. Let {( , ), 1}i iX Y i ≥  be a sequence of independently and identically 
distributed random variables according to BGD 1 2( , ,1)c c  and 1 2( , )N N  follow, 
independent of ( , ), 1,i iX Y i ≥  the bivariate geometric distribution given in (5). 
Choose 00 12 10 2 01 1, ,p p pµ µ µ= = =  11 1p µ= −  and 1 2 12µ µ µ µ= + + . Define 

1NU  and 
2NV  as given in (6). Then 

1 2
( , )N NU V  follows bivariate geometric dis-

tribution which is the discrete analogue of Marshall-Olkin’s bivariate exponential.  
Proof. Let ( , ), 1i iX Y i ≥  have pgf 1 2( , )s sπ . Substituting the values of 

00 10 01 11, , ,p p p p  and 1 2( , )s sπ  in (7), we get 

1 2 12 2 1 1 2 1 2
1 1 2 2

1( , ) ( ( ,1) (1, ) (1 ) ( , ))
1 (1 ) (1 )

s s s s s s
c s c s

η µ µ η µη µ η= + + + −
+ − + −

. 

(14) 

Solving for 1( ,1)sη  and 2(1, )sη , we get 

2 12
1

2 12 1 1

( ,1)
(1 )

s
c s

µ µ
η

µ µ
+

=
+ + −

 and 1 12
2

1 12 2 2

(1, )
(1 )

s
c s

µ µ
η

µ µ
+

=
+ + −

. 
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Substituting 1( ,1)sη  and 2(1, )sη  in (14), we get 

1 2
1 1 2 2

1( , )
1 (1 ) (1 )

s s
c s c s

η =
+ − + −

 

1 2 12 2 1 12
12 1 2

2 12 1 1 1 12 2 2

( ) ( ) (1 ) ( , )
(1 ) (1 )

s s
c s c s

µ µ µ µ µ µ
µ µ η

µ µ µ µ

⎛ ⎞+ +
+ + + −⎜ ⎟+ + − + + −⎝ ⎠

 

On simplification, 

1 1
1 1 2 2

1 2 12 1 2
1 1 2 2 1 2

(1 ) (1 )1( , ) 1 1
(1 ) (1 ) 1 1

c s c ss s
c s c s

η µ µ µ
µ µ µ

− −⎛ ⎞⎛ ⎞ ⎛ ⎞− −⎜ ⎟= + + + +⎜ ⎟ ⎜ ⎟⎜ ⎟+ − + − − −⎝ ⎠ ⎝ ⎠⎝ ⎠
 

In the next theorem, we give the bivariate geometric distribution which is ana-
logues to Downton’s bivariate exponential distribution. 
 
Theorem 4.2. Suppose that ( , ), 1i iX Y i ≥  are independently and identically 
distributed random variables with pgf 

1 1
1 1 2 2

1 2
(1 ) (1 )( , ) 1 1 ,
1 1

c s c ss sπ
µ µ

− −
− −⎛ ⎞ ⎛ ⎞

= + +⎜ ⎟ ⎜ ⎟+ +⎝ ⎠ ⎝ ⎠
0µ >  and independent of 

1 2( , )N N  where 1 2( , )N N  follows the bivariate geometric distribution given in 

(5). Taking 1
00 (1 )p µ −= + , 10 01 0p p= =  and 1

11 (1 )p µ µ −= + . Then
1 2

( , )N NU V  
has bivariate geometric distribution which is the discrete analogue of Downton’s 
bivariate exponential distribution where 

1NU  and 
2NV  are as defined in (6). 

Proof. Supposing that ( , ), 1i iX Y i ≥  have pgf 1 2( , )s sπ . From (7) the pgf of 

1 2
( , )N NU V  is 

1 1
1 11 1 2 2

1 2 1 2
(1 ) (1 )( , ) 1 1 ((1 ) (1 ) ( , ))
1 1

c s c ss s s sη µ µ µ η
µ µ

− −
− −− −⎛ ⎞ ⎛ ⎞

= + + + + +⎜ ⎟ ⎜ ⎟+ +⎝ ⎠ ⎝ ⎠
 

            
1 1 2 2

1
(1 ) (1 )(1 ) 1 1
1 1

c s c s
µ µ

µ µ

=
− −⎛ ⎞⎛ ⎞+ + + −⎜ ⎟⎜ ⎟+ +⎝ ⎠⎝ ⎠

 

            2
1 1 2 2 1 2 1 2

1
(1 ) (1 ) (1 ) (1 ) (1 ) (1 )(1 ) (1 )c s c s c c s s

µ
µ µ µ µ µ

+
=

+ + + − + + − + − − − +
 

            
1 1 2 2 1 2 1 21

1
(1 (1 ))(1 (1 )) (1 )(1 )c s c s c c s sµ

µ+

=
+ − + − − − −

. 
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By comparing with (1), we note that 
1 2

( , )N NU V  follows BGD 2
1 2( , , )c c θ  where 

2

1
µθ
µ

=
+

. 

The bivariate geometric form of Hawkes’ bivariate exponential distribution is 
given in the following theorem. 
 
Theorem 4.3. Let {( , ), 1}i iX Y i ≥  be a sequence of independently and identically 

distributed random variables with pgf is 1 2
1 1 2 2

1( , )
(1 (1 ))(1 (1 ))

s s
s s

π
µ µ

=
+ − + −

. 

Assume that 1 2( , )N N  follow bivariate geometric distribution given in (5) and 
independent of ( , ), 1i iX Y i ≥ . Choose 10 01,p p=  1 01 00p pγ = +  and 

2 10 00p pγ = + . Then the distribution of 
1 2

( , )N NU V  is the bivariate geometric 
form of Hawkes’ bivariate exponential distribution. 
Proof. From (8), we have 

1 1 1 1 1( ,1) ( ,1)( (1 ) ( ,1))s s sη π γ γ π= + − . 

Substituting 1( ,1)sπ  and solving 1( ,1)sη , we get 

1
1 1

1

1( ,1) (1 )1
s sη

µ
γ

=
−

+
. 

Similarly 

2
2 2

2

1(1, ) (1 )1
s sη

µ
γ

=
−

+
. 

Again from (7) 

1 2
1 1 2 2

1( , )
(1 (1 ))(1 (1 ))

s s
s s

η
µ µ

=
+ − + −

 

00 10 01 11 1 2
1 1 2 2

1 2

1 1 ( , )(1 ) (1 )1 1
p p p p s ss s π

µ µ
γ γ

⎛ ⎞
⎜ ⎟
⎜ ⎟+ + +

− −⎜ ⎟+ +⎜ ⎟
⎝ ⎠

 

1 1 2 2 2 1
00 10 2 01 1

1 2 2 1

1 2
1 2 1 1 2 2 11

1 2

(1 ) (1 )1 1 1 (1 ) 1 (1 )

1 (1 ) 1 (1 ) ((1 (1 ))(1 (1 )) )

s sp p s p s

s s s s p

µ µ µ µ
γ γ γ γ

µ µ
µ µ

γ γ

⎛ ⎞⎛ ⎞ ⎛ ⎞ ⎛ ⎞− −
+ + + + − + + −⎜ ⎟⎜ ⎟ ⎜ ⎟ ⎜ ⎟

⎝ ⎠⎝ ⎠ ⎝ ⎠ ⎝ ⎠=
⎛ ⎞⎛ ⎞
+ − + − + − + − −⎜ ⎟⎜ ⎟

⎝ ⎠⎝ ⎠
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Thus 
1 2

( , )N NU V  have the bivariate geometric form of Hawkes’ bivariate ex-
ponential distribution. 
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SUMMARY 

On bivariate geometric distribution 

Characterizations of bivariate geometric distribution using univariate and bivariate 
geometric compounding are obtained. Autoregressive models with marginals as bivariate 
geometric distribution are developed. Various bivariate geometric distributions analogous 
to important bivariate exponential distributions like, Marshall-Olkin’s bivariate exponen-
tial, Downton’s bivariate exponential and Hawkes’ bivariate exponential are presented. 

 




