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BERNSTEIN-TYPE APPROXIMATION USING 
THE BETA-BINOMIAL DISTRIBUTION 

Andrea Pallini 

1. INTRODUCTION 

The Bernstein polynomials are generally regarded as the most basic tools for 
the uniform approximation in the sense of Weierstrass of a continuous and real-
valued function g  on the closed interval [0,1] . The Bernstein polynomials are 
elegant linear positive operators. The Bernstein polynomials of order m  are de-
fined by the binomial distribution ( ; )mp k t , for 0,1, ,k m= … , where [0,1]t ∈  is 
the domain of g . The convergence of the Bernstein polynomials to g  is uni-
form, as m →∞ . Multivariate versions of the Bernstein polynomials can be de-
fined by products of independent binomial distributions. See Korovkin (1960), 
chapter 1, Davis (1963), chapter 7, Feller (1968), chapter 6, Feller (1971), chapter 
7, Rivlin (1981), chapter 1, Cheney (1982), chapters 1 to 4, Lorentz (1986), 
DeVore and Lorentz (1993), chapter 10, Phillips (2003), chapter 7. 

The Bernstein-type approximations of order m  in Pallini (2005) consider a 
convenient approximation coefficient in linear kernels and improve on the degree 
of approximation of the Bernstein polynomials. The convergence of these Bern-
stein-type approximations is uniform, as m →∞ . 

Here, following Pallini (2005), we study the Bernstein-type approximation of 
order m  that can be defined by using the beta-binomial distribution. We obtain 
integral operators that approximate to a continuous and real-valued function g  

on any closed interval 1D R⊆ . We also obtain their multivariate versions for a 
continuous and real-valued function g  on any closed interval D qR⊆ . The con-
vergence of these Bernstein-type approximations is uniform, as m →∞ . 

In section 2, we overview the univariate and the multivariate Bernstein poly-
nomials. In section 3, we present some basic notions for the use of the beta-
binomial distribution in approximation. In section 4, we propose the univariate 
and multivariate Bernstein-type approximations that can be obtained by the beta-
binomial distribution. We study the uniform convergence and the degree of ap-
proximation. We also compare these Bernstein-type approximations with the 
Bernstein polynomials. In section 5, we study the Bernstein-type estimators for 
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smooth functions of the population means. In section 6, we discuss the results of 
a simulation study on some examples of smooth functions of means. Finally, in 
section 7, we conclude the contribution with comments and remarks. 

We refer to Barndorff-Nielsen and Cox (1989), chapter 4, and Sen and Singer 
(1993), chapter 3, for more details on the smooth functions of means and their 
application to classical inferential problems. 

2. BERNSTEIN POLYNOMIALS 

Let g  be a bounded and real-valued function defined on the closed interval 
[0,1] . The Bernstein polynomial ( ; )mB g x  of order m  for the function g  is de-
fined as 
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where m  is a positive integer number, and [0,1]x ∈ . If ( )g x  is continuous on 
[0,1]x ∈ , then we have that ( ; ) ( )mB g x g x→ , as m →∞ , uniformly, at any 

point [0,1]x ∈ . 
Let g  be a bounded and real-valued function defined on the closed q -

dimensional cube [0,1]q . We let 1x ( , , )T
qx x= … , where qx [0,1]∈ . The multi-

variate Bernstein polynomial m ( ; x)B g  for the function g  is defined as 
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where 1m ( , , )T
qm m= …  are positive integer numbers, and qx [0,1]∈ . The multi-

variate Bernstein polynomial m ( ; x)B g  is of order m , where 
1

q

i
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m m
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=∑ , and 

x [0,1]q∈ . The multivariate Bernstein polynomial ( ; )mB g x  converges to (x)g  

uniformly, at any q -dimensional point of continuity x [0,1]q∈ , as im →∞ , 
where 1, ,i q= … . 
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3. THE BETA-BINOMIAL DISTRIBUTION 

More accurate versions of the Bernstein polynomials ( ; )mB g x  and m ( ; x)B g , 

defined by (1) and (2), where [0,1]x ∈  and qx [0,1]∈ , can be obtained by the 
beta-binomial distribution, that is reviewed and studied in Wilcox (1981) and 
Johnson, Kemp and Kotz (2005), chapter 6. 

The standard beta distribution ( ; , )p t a b , with parameters 0a >  and 0b > ,  

has probability density function (p.d.f.) 1 1 1( ; , ) { ( , )} (1 )a bp t a b B a b t t− − −= − , for 

every (0,1)t ∈ . We also recall that 
1 1 1
0

( , ) (1 )a bB a b t t dt− −= −∫ , where 

1( , ) ( ( )) ( ) ( )B a b a b a b−Γ Γ Γ= + , and 1
0

( ) a ta t e dt
∞ − −Γ = ∫ . See Balakrishnan and 

Nevzorov (2003), chapters 16 and 20. 
The beta-binomial random variable (r.v.) Y , with parameters m , 0a >  and 

0b > , has p.d.f. ( ; , ) Pr[ ]mp k a b Y k= = , that is defined as 
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for every 0,1, ,k m= … . We can rewrite the definition (3) as 
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 is the binomial p.d.f., with parameters m  and 

t , [0,1]t ∈ , for every 0,1, ,k m= … . Moments of the beta-binomial r.v. Y , are 
obtained by integrating the moments of the binomial p.d.f. ( ; )mp k t , [0,1]t ∈ , 

0,1, ,k m= … , that are functions of t , [0,1]t ∈ , through the definition (3) of the 
beta-binomial p.d.f. ( ; , )mp k a b , 0,1, ,k m= … . 

In particular, the first two moments about the origin, ' '
1 1( , )a bλ λ≡  and 

' '
2 2( , )a bλ λ≡ , of the beta p.d.f. ( ; , )p t a b , with values [0,1]t ∈ , are 

' 1
1( , ) ( )a b a b aλ −= + , (4) 

' 1
2( , ) {( )( 1)} ( 1)a b a b a b a aλ −= + + + + , (5) 

and the third moment about the origin '
3λ  is 

' 1
3 {( )( 1)( 2)} ( 1)( 2)a b a b a b a a aλ −= + + + + + + + . (6) 
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See Balakrishnan and Nevzorov (2003), chapters 5 and 16, and Johnson, Kemp 
and Kotz (2005), chapter 3. 

The values of the parameters a  and b , in the moments '
1( , )a bλ  and '

2( , )a bλ , 
given by (4) and (5), respectively, of the beta p.d.f. ( ; , )p t a b , with values 

(0,1)t ∈ , that yield a conveniently small quantity  

1' '
1 2( , ) ( , ) {( )( 1)}a b a b a b a b abλ λ −− = + + + , (7) 

can be regarded as constructive. More precisely, constructive values of a  and b  
in (7) can directly help to improve the numerical performance of the Bernstein-
type approximations that we are going to introduce in section 4. Constructive 
values of a  and b  in (7) can lower their uniform convergence rates, as m →∞ . 

The quantity ' '
1 2( , ) ( , )a b a bλ λ−  given by (7) does not admit a minimizer, for 

0a >  and 0b > . For further details and descriptions, see sections 6 and 7. 

4. BERNSTEIN-TYPE APPROXIMATIONS 

4.1. Bernstein-type approximations 

Let g  be a bounded and real-valued function defined on the closed interval 
1D R⊆ . The Bernstein-type approximation ( )( ; , , )s

mC g x a b  of order m  for the 
function ( )g x  is defined as 
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where 1/2s > −  is fixed, m  is a positive integer number, and x D∈ . Properties 
of the Bernstein-type approximations ( )( ; , , )s

mC g x a b , given by (8), x D∈ , are 
outlined in Appendix 8.1. 

If the function ( )g x  is continuous on x D∈ , where 1/2s > − , then 
( )( ; , , ) ( )s
mC g x a b g x→ , as m →∞ , uniformly at any point x D∈ . In Appendix 

8.2, we provide a proof of this uniform convergence. 
Let g  be a bounded and real-valued function defined on the closed interval 

D qR⊆ . The Bernstein-type approximation ( )
m ( ; x, , )sC g a b  of order m  for the 

function (x)g  is defined as 
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where 1/2s > −  is fixed, 1m ( , , )T
qm m= …  are positive integer numbers, 
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= ∑ , and x D∈ . Properties of the Bernstein-type approximations 

( )
m ( ; x, , )sC g a b , given by (9), x D∈ , are outlined in Appendix 8.1. 
If the function (x)g  is continuous on x D∈ , where 1/2s > − , then 

( )
m ( ; x, , ) (x)sC g a b g→ , as m →∞ , uniformly at any q -dimensional point x D∈ . 

In Appendix 8.2, we provide a proof of this uniform convergence.  

4.2. Degrees of approximation 

Let ( )ω δ  be the modulus of continuity of the real-valued function g , for 
every 0δ > . The modulus of continuity ( )ω δ  of the function ( )g x , where 
x D∈ , is defined as the maximum of 0( ) ( )g x g x− , for 0x x δ− < , where 

0 ,x x D∈ . If the function g  is continuous, then ( ) 0ω δ → , as 0δ → . 

Setting 1/2mδ −= , for every x D∈ , it can be shown that the Bernstein-type 
approximation ( )( ; , , )s

mC g x a b , given by (8), has degree of approximation 

( )( ; , , ) ( )s
mC g x a b g x−  

1 2 1 ' ' 1/2
1 2[ 1 { ( , ) ( , )}] ( )sm m a b a b mλ λ ω− − − −≤ + − , (10) 

where the quantity ' '
1 2( , ) ( , )a b a bλ λ−  is given by (7). See Appendix 8.3. 
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∑ , where x D∈ . The modulus of continuity ( )ω δ  of the 

real-valued function (x)g , x D∈ , for every 0δ > , is defined as the maximum of 

0(x ) (x)g g− , for 0|x -x| δ< , where 0x , x D∈ . If the function g  is continuous, 
then ( ) 0ω δ → , as 0δ → . 
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Setting 1/2mδ −= , for every x D∈ , it can be shown that the multivariate Bern-
stein-type approximation ( )

m ( ; x, , )sC g a b  , given by (9), has degree of approxima-
tion 

( )
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where 
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=∑ , and the quantity ' '
1 2( , ) ( , )a b a bλ λ−  is given by (7). See Appen-

dix 8.3. 

4.3. A comparison 

For a convenient value of the approximation coefficient s , the Bernstein-type 
approximations ( )( ; , , )s

mC g x a b  and ( )
m ( ; x, , )sC g a b , given by (8) and (9), where 

1/2s > − , can typically outperform the Bernstein polynomials ( ; )mB g x  and 

m ( ; x)B g , given by (1) and (2), for any function g  to approximate, for every 
x D∈  and x D∈ , respectively. 

Choosing a value of s , where 1/2s > − , can only modify the coefficients in 
the degrees of approximation (10) and (11), without affecting their modulus of 

continuity 1/2( )mω − , for any fixed 
1

q

i
i

m m
=

=∑ . Large values of s  do not bring 

any advantage, with typical examples of application for the Bernstein-type ap-
proximations ( )( ; , , )s

mC g x a b  and ( )
m ( ; x, , )sC g a b , defined by (8) and (9), respec-

tively, where 1/2s > − , x D∈  and x D∈ . The convergence to unity of the coef-
ficients that distinguish the degrees of approximation (10) and (11) is rather fast, 
as s  increases. 

In Figure 1, we compare the Bernstein polynomial ( ; )mB g x , given by (1), with 

the Bernstein-type approximation ( )( ; , , )s
mC g x a b , given by (8), for the approxima-

tion of the functions 3 2( )g x x x x= + + , and 2( )g x x x= + , [0.25,0.75]x ∈ , 
4m = , 1.5a = , 10b = , 0.1, 0.005,0.05,0.5,1.5s = − − . We also compare the 

Bernstein polynomial m ( ; x)B g , given by (2), with the Bernstein-type approxima-

tion ( )
m ( ; x, , )sC g a b , given by (9), for the approximation of the function 

1
2 1(x) ( 1) ( 1)g x x−= + + , 1 2x ( , )Tx x= , 1 [0.25,0.75]x ∈ , 2 [0.45,0.85]x ∈ , 

1 2 4m m= = , 1.5a = , 10b = , 0.1, 0.005,0.05,0.5,1.5s = − − . The values 4m =  
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Figure 1 – Differences ( ; ) ( )mB g x g x− , (hatched line), and ( )( ; , , ) ( )s

mC g x a b g x− , (solid line), for 
the smooth function 3 2( )g x x x x= + + , where [0.25,0.75]x ∈ , where 4m = , 1.5a = , and 

10b = , with 0.1s = −  (the worst performance), 0.005,0.05,0.5s = − , and 1.5s =  (the best per-
formance) (panel (i)). Differences ( ; ) ( )mB g x g x− , (hatched line), and ( )( ; , , ) ( )s

mC g x a b g x− , (solid 
line), for 2( )g x x x= + , where [0.25,0.75]x ∈ , where 4m = , 1.5a =  and 10b = , with 0.1s = −  
(the worst performance), 0.005,0.05,0.5s = − , and 1.5s =  (the best performance) (panel (ii)).  
The difference m( ; x) (x)B g g− , (hatched line), and ( )

m ( ; x, , ) (x)sC g a b g− , (solid line), for 
1

2 1(x) ( 1) ( 1)g x x−= + + , where 1 [0.25,0.75]x ∈ , 2 [0.45,0.85]x ∈ , where 1 2 4m m= = , 1.5a = , 
and 10b = , with 0.1s = −  (the worst performance), 0.005,0.05,0.5s = − , and 1.5s =  (the best 
performance) (panel (iii)).  
 
 
and 1 2 4m m= =  are very small, computationally. In any case, the numerical per-

formances of the Bernstein-type approximations ( )( ; , , )s
mC g x a b , [0.25,0.75]x ∈ , 

and ( )
m ( ; x, , )sC g a b , 1 2x ( , )Tx x= , 1 [0.25,0.75]x ∈ , 2 [0.45,0.85]x ∈ , are always 

very effective.  
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5. ESTIMATION OF SMOOTH FUNCTIONS OF MEANS 

5.1. Bernstein-type estimators 

The Bernstein-type approximations ( )( ; , , )s
mC g x a b  and (s)

m ( ; x, , )C g a b , given by 

(8) and (9), where 1x D R∈ ⊆  and qx D R∈ ⊆ , can be used for estimating 
smooth functions of the population means in the statistical inference on a ran-
dom sample of n  independent and identically distributed (i.i.d.) observations. 

Let X  be a univariate random variable with values x D∈ , distribution func-
tion F , and finite mean [ ]E Xµ = . We want to estimate a population character-

istic ( )gθ µ= , where g is a smooth function 1:g D R→ . The natural estimator 

of θ  is ˆ ( )g xθ = , where 1

1

n

j
j

x n X−

=

= ∑  is the sample mean, calculated on a ran-

dom sample of n  i.i.d. observations jX , 1, ,j n= … , of X. An alternative estima-

tor of ( )gθ µ=  is the Bernstein-type estimator ( )( ; , , )s
mC g x a b , 
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where 1/2s > −  is fixed. The Bernstein-type estimator (12) follows from the 
definition (8) of ( )( ; , , )s

mC g x a b , 1/2s > − , by substituting x D∈  with the sample 
mean x , where x  ranges in D . 

Let X  be a q -variate random variable with values x D∈ , where 

1X ( , , )T
qX X= … , with distribution function F , and finite q -variate mean 

[X]Eµ = , 1( , , )T
qµ µ µ= … . We want to estimate ( )gθ µ= , where 1: Dg R→ . 

Its natural estimator is ˆ ( x )gθ = , where 1x ( , , )T
qx x= …  is the sample mean on a 

random sample of n  i.i.d. q -variate observations iX , 1, ,i n= … , of X , 

1

1

n

i ij
j

x n X−

=

= ∑ , 1, ,i q= … . An alternative estimator of ( )gθ µ=  is the multi-

variate Bernstein-type estimator ( )
m ( ; x, , )sC g a b , 
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where 1/2s > −  is fixed. The multivariate Bernstein-type estimator (13) follows 
the definition (9) of ( )

m ( ; x, , )sC g a b , 1/2s > − , by substituting x D∈  with the 
sample mean x , where x  ranges in D . 

5.2. Orders of error in probability of the Bernstein-type estimators 

We know that 1/2( )px O nµ −= + , as n →∞ . We also know that  

1/2( ) ( ) ( )pg x g O nµ −= + , 

as n →∞ . It is shown that the Bernstein-type estimator ( )( ; , , )s
mC g x a b , given by 

(12), for 1/2s > − , is a consistent estimator of ( )g µ , as m →∞  and n →∞ . In 
particular, it is shown that 

( ) 2 1 1/2( ; , , ) ( ) ( ) ( )s s
m pC g x a b g O m O nµ − − −= + + , (14) 

for 1/2s > − , as m →∞  and n →∞ . See Appendix 8.4. 
We know that 1/2

px O ( )nµ −= + , where 1/2( )i i px O nµ −= + , 1, ,i q= … , as 
n →∞ . We also know that 

1/2( x ) ( ) ( )pg g O nµ −= + , 

as n →∞ . It is shown that the multivariate Bernstein-type estimator 
( )
m ( ; x, , )sC g a b , given by (13), where 1m ( , , )T

qm m= … , for 1/2s > − , is a consis-

tent estimator of ( )g µ , as im →∞ , 1, ,i q= … , and n →∞ . In particular, it is 
shown that 

( ) 2 1 1/2
m

1
( ; x, , ) ( ) ( ) ( )

q
s s

i p
i

C g a b g O m O nµ − − −

=

= + +∑ , (15) 

for 1/2s > − , as im →∞ , 1, ,i q= … , and n →∞ . See Appendix 8.4. 
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5.3. Asymptotic normality of Bernstein-type estimators 

The Bernstein-type estimator ( )( ; , , )s
mC g x a b  is defined by (12), where 

1/2s > − . We denote by 2σ  the asymptotic variance of 1/2 ( )n g x , as n →∞ . 
That is, 

22 2{ '( )} [( ) ]g E Xσ µ µ= − , 

where 1'( ) ( ) ( )g x dx dg x−= , and x D∈ . The distribution of the Bernstein-type 

estimator ( )( ; , , )s
mC g x a b  is asymptotically normal,  

1/2 ( ) 2{ ( ; , , ) ( )} (0, )ds
mn C g x a b g Nµ σ− ⎯⎯→ , (16) 

for 1/2s > − , as m →∞  and n →∞ . See Appendix 8.5. 
The Bernstein-type estimator ( )

m ( ; x, , )sC g a b  is defined by (13), where 

1/2s > − . We denote by 2σ  the asymptotic variance of 1/2 ( x )n g , as n →∞ . 
That is, 

12
1 x

1 1
( ) ( , , , , )

q q

i i q
i j

x g x x x
µ

σ −

=
= =

∂ ∂=∑∑ … …  

1
1 x

( ) ( , , , , ) ( )( )j j q i i j jx g x x x E X X
µ

µ µ−

=
∂ ∂ ⎡ ⎤⋅ − −⎣ ⎦… …  

The distribution of the Bernstein-type estimator ( )
m ( ; x, , )sC g a b  is asymptoti-

cally normal, 

1/2 ( ) 2
m{ ( ; x, , ) ( )} (0, )dsn C g a b g Nµ σ− ⎯⎯→ , (17) 

for 1/2s > − , as im →∞ , 1, ,i q= … , and n →∞ . See Appendix 8.5. 

6. SIMULATION STUDY 

Following subsection 4.3, we report on a small Monte Carlo experiment con-
cerning with the empirical behaviour of the Bernstein-type estimators 

( )( ; , , )s
mC g x a b  and ( )

m ( ; x, , )sC g a b , given by (12) and (13). 

We applied the Bernstein-type estimators ( )( ; , , )s
mC g x a b  and ( )

m ( ; x, , )sC g a b , 
given by (12) and (13), to the approximation of the smooth functions of  

means 3 2( )g x x x x= + + , 2( )g x x x= + , where 1

1

n

j
j

x n X−

=

= ∑ , and 
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1
2 1( x ) ( 1) ( 1)g x x−= + + , where 1 2x ( , )Tx x= , 1

1

n

i ij
j

x n X−

=

= ∑ , 1, 2i = . Random 

samples of different size n , of i.i.d. observations, were always drawn from the 
univariate folded normal distribution (0,1)N  and from the bivariate folded 

normal distribution with independent marginals (0,1)N . We always considered 
the values 1.5a =  and 10b = . 

From the definition (12) of ( )( ; , , )s
mC g x a b , we have the Bernstein-type estima-

tor 

( ) 3 2 3 2( ; , , )s
mC x x x x a b x x x+ + = + +  

2 1 ' '
1 2(3 1){ ( , ) ( , )}sm x a b a bλ λ− −+ + −  

3 2 ' ' '
3 2 1{2 3 ( , ) ( , )}sm a b a bλ λ λ− −+ − + , 

where 1/2s > − , and the moments '
1( , )a bλ , '

2 ( , )a bλ , and '
3λ  are given by (4), (5), 

and (6), respectively. 
In Figure 2, we compare the Monte Carlo variances of 3 2( )g x x x x= + +   

and ( ) 3 2( ; , , )s
mC x x x x a b+ + , for 0.5, 2s = , 4,5m = , and the sample sizes 

2,4,6, , 28,30n = … . The Monte Carlo variances were based on 10000  inde-
pendent replications from the folded normal distribution. The empirical results 
were equivalent. 

From the definition (12) of ( )( ; , , )s
mC g x a b , we have the Bernstein-type estima-

tor 

( ) 2 2 2 1 ' '
1 2( ; , , ) { ( , ) ( , )}s s

mC x x x a b x x m a b a bλ λ− −+ = + + − , 

where 1/2s > − , and the quantity ' '
1 2( , ) ( , )a b a bλ λ−  is given by (7). 

We have a constant difference ( ) 2 2( ; , , )s
mC x x x a b x x+ − − . We had the value 

( ) 2 2( ; , , )s
mC x x x a b x x+ − − 0.006522= , for 0.5s = , 4m = , and 6n = , 
( ) 2 2( ; , , )s
mC x x x a b x x+ − −  0.000339= , for 2s = , 5m = , and 16n = . 

From the definition (13) of ( )
m ( ; x, , )sC g a b , in order to approximate the integral 

in the Bernstein-type estimator ( ) 1
m 2 1(( 1) ( 1); x, , )sC x x a b−+ + , we obtained 

( ) 1
m 2 1(( 1) ( 1); x, , )sC x x a b−+ +� , 
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Figure 2 – Monte Carlo variances of 3 2( )g x x x x= + + , ( )D , and ( ) 3 2( ; , , )s

mC x x x x a b+ + , ( )+ , 
where 1.5a =  and 10b = , for random samples of size 2,4,6, , 28,30n = … , from the folded nor-
mal distribution; 0.5s =  and 4m = , in panel (i), 2s =  and 5m = , in panel (ii). Monte Carlo vari-
ances of 1

2 1(x) ( 1) ( 1)g x x−= + + , ( )D , and ( ) 1
m 2 1(( 1) ( 1); x, , )sC x x a b−+ +� , ( )+ , where 1.5a =  and 

10b = , for random samples of size 2,4,6, , 28,30n = … , from the bivariate folded normal distribu-
tion; 0.5s =  and 1 2 4m m= = , in panel (iii), 2s =  and 1 2 5m m= = , in panel (iv). 
 
 

( ) 1 1
m 2 1 2 1(( 1) ( 1); x, , ) ( 1) ( 1)sC x x a b x x− −+ + = + +�  

2 1 3
2 2 1( 1) ( 1)sm x x− − −+ + +  

' '
1 2{ ( , ) ( , )}a b a bλ λ⋅ − , 

where 1/2s > − , and the quantity ' '
1 2( , ) ( , )a b a bλ λ−  is given by (7). We have 

( ) 1 ( ) 1
m 2 1 m 2 1(( 1) ( 1); x, , ) (( 1) ( 1); x, , )s sC x x a b C x x a b− −+ + = + +�  

          3 2
2( )sO m− −+ , 

1/2s > − , as 1m →∞  and 2m →∞ . The approximate Bernstein-type estimator 
( ) 1
m 2 1(( 1) ( 1); x, , )sC x x a b−+ +�  was obtained by calculating the integral in 
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( ) 1
m 2 1(( 1) ( 1); x, , )sC x x a b−+ +  with the denominator of the function that was re-

placed by its three-term Taylor expansion around 2 1x + . See Wong (2001), chap-
ter 5, for further details about this procedure. 

In Figure 2, we compare the Monte Carlo variances of 1
2 1(x) ( 1) ( 1)g x x−= + +  

and ( ) 1
m 2 1(( 1) ( 1); x, , )sC x x a b−+ +� , for 0.5, 2s = , 4,5m = , and the sample sizes 

2,4,6, , 28,30n = … . The Monte Carlo variances were based on 10000  inde-
pendent replications from the folded normal distribution. The empirical results 
were equivalent. 

7. CONCLUDING REMARKS 

1). The quantity ' '
1 2( , ) ( , )a b a bλ λ− , given by (7), is crucial for the numerical 

performance of the univariate Bernstein-type approximations ( )( ; , , )s
mC g x a b , de-

fined as (8), where 1/2s > − , and 1x D R∈ ⊆ , and for the numerical perform-
ance of the multivariate Bernstein-type approximations ( )

m ( ; x, , )sC g a b , defined as 

(9), where 1/2s > − , and x D qR∈ ⊆ . The function ' '
1 2( , ) ( , )a b a bλ λ− , given by 

(7), does not admit a minimizer, for 0a >  and 0b > . See Chong and Żak (1996), 
chapter 6. Space curves ( ( ), ( ), )a t b t t , where t E∈ , and 1E R⊆ , can be easily 
drawn in order to determine specific degrees of approximation. See Montiel and 
Ros (2005), chapter 1. The degrees (10) and (11) of approximation of the Bern-
stein-type approximations ( )( ; , , )s

mC g x a b  and ( )
m ( ; x, , )sC g a b , given by (8) and (9), 

respectively, where 1/2s > − , 1x D R∈ ⊆ , and x D qR∈ ⊆ , can be better than 
the degrees of approximation of the Bernstein-type approximations, that are pro-
posed in Pallini (2005), for values of a  and b  such that ' '

1 2( , ) ( , ) 1/4a b a bλ λ− < . 

2). More efficient results for the Bernstein-type approximations ( )( ; , , )s
mC g x a b  

and ( )
m ( ; x, , )sC g a b , defined as (8) and (9), respectively, where 1/2s > − , 

1x D R∈ ⊆ , and x D qR∈ ⊆ , can be obtained by over-skewing the beta  
p.d.f. ( , )beta a b , and the moments '

1( , )a bλ  and '
2 ( , )a bλ  of the beta-binomial 

p.d.f., given by (4) and (5). We can over-skew the beta p.d.f. ( , )beta a b , by an ad-
ditional parameter τ , with values 0τ > , by determining the beta p.d.f. 

( , )beta a bτ . The beta p.d.f. ( , )beta a bτ  is negatively skewed, for 1b aτ −< ,  

and is positively skewed, for 1b aτ −> . From the definition (7) of 
' '
1 2( , ) ( , )a b a bλ λ− , under the condition 2 2 2 2 2a a b b a aτ τ τ τ+ + − ≤ + , it is seen 

that ' ' ' '
1 2 1 2( , ) ( , ) ( , ) ( , )a b a b a b a bλ τ λ τ λ λ− ≤ − . 
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3). Rosenberg (1967) studies an application of the multivariate Bernstein poly-
nomial m ( ; x)B g , given by (2), to the Monte Carlo evaluation of an integral.  
The same application can be organized for the multivariate Bernstein-type  
approximation in Pallini (2005) and for the multivariate Bernstein-type ap- 
proximation ( )

m ( ; x, , )sC g a b , given by (9), where 1/2s > − , 1m ( , , )T
qm m= … , and 

x D qR∈ ⊆ . Most importantly, straightforward versions of the Bernstein-type 
approximations ( )( ; , , )s

mC g x a b  and ( )
m ( ; x, , )sC g a b , given by (8) and (9), respec-

tively, where 1/2s > − , x D∈ , x D∈ , are both multivariate approximations for 
functions and approximate multivariate integrals of functions. Focussing on 

( )
m ( ; x, , )sC g a b , given by (9), where 1/2s > − , x D∈ , let us suppose that we are 

interested in the evaluation of an integral 
D

g(x)dx∫ , where D qR⊆ . In particu-

lar, we can start from an approximate integration rule of the form 
( ) ( )
m m( ; x, , )s sC h a b , where 1/2s > − , ( ) 1

m : [0,1] Ds qh R× → , and apply a procedure 
for a more efficient integration rule. See Wong (2001), and Hanselman and Little-
field (2005), chapter 24. 

4). In the Bernstein-type approximations ( )( ; , , )s
mC g x a b  and ( )

m ( ; x, , )sC g a b , 
given by (8) and (9), respectively, where 1/2s > − , x D∈  and x D∈ , the lin- 
ear kernels 1( )sm m k t x− − − + , the linear kernels 1( )sm m v x x− − − +  and 

1( )s
i i i i im m v x x− − − +  can be substituted by nonlinear kernels, where 

0,1, ,k m= … , 0,1, ,i ik m= … , 1, ,i q= … , and x D∈ , T
1x ( , , ) Dqx x= ∈… , re-

spectively.  
5). The Bernstein-type approximation ( )

m ( ; x, , )sC g a b , given by (9), where 

1/2s > − , and x D qR∈ ⊆ , can be generalized by using a different approxima-
tion coefficient for each component. That is, we can use 1s ( , , )T

qs s= …  in the 

Bernstein-type approximation (s)
m ( ; x, , )C g a b , where x D qR∈ ⊆ . Another gener-

alization of the Bernstein-type approximation ( )
m ( ; x, , )sC g a b , given by (9), where 

x D qR∈ ⊆ , can be based on q  different beta-binomial p.d.f.’s, ( ; , )m i ip k a b , 
that can be defined from (3), for every 1, ,i q= … . 

6). Following DeVore and Lorentz (1993), chapter 1, it can be shown that  
the Bernstein-type approximation ( )( ; , , )s

mC g x a b , given by (8), is an integral  
operator with uniform convergence, as m →∞ . If we suppose that ( ) 0g x ≠ ,  

for every x D∈ , then we obtain 
1

( )

0

( ; , , ) ( , ) ( )s
m mC g x a b h t x g t dt= ∫ , where 

1 1 1 1 1
0

( , ) { ( )} { ( , )} ( ( ) ) (1 )m s a k b m k
m kh t x g x B a b g m m k t x t t− − − − + − + − −

=
= − + −∑  is the 
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kernel of this integral operator, 1/2s > − , [0,1]t ∈ , and x D∈ . The definition of 
( )( ; , , )s
mC g x a b  by ( , )mh t x , [0,1]t ∈ , is equivalent to the problem of approximat-

ing 2{ ( )}g x  with ( )( ; , , )s
mC g x a b , where x D∈ . Similar results can be obtained 

for the multivariate Bernstein-type approximation ( )
m ( ; x, , )sC g a b , given by (9), as 

im →∞ , 1, ,i q= … . 
7). Variants of the Bernstein polynomials that are discussed and studied in 

DeVore and Lorentz (1993), chapter 10, can also be regarded as extensions to the 
use of the binomial p.d.f. in Bernstein-like approximations. We recall that the 
most special cases of the beta p.d.f. are the arcsine distribution, the power distri-
bution and the unform distribution. See Balakrishnan and Nevzorov (2003), 
chapter 16. Extensions to the beta-binomial p.d.f. ( ; , )mp k a b , given by (3), where 

0,1, ,k m= … , are discussed and studied in Wilcox (1981).  

8. APPENDIX 

8.1. Basic properties of the Bernstein-type approximations (8) and (9) 
The Bernstein-type approximations ( )( ; , , )s

mC g x a b  and (s)
m ( ; x, , )C g a b , given by 

(8) and (9), respectively, where 1/2s > − , x D∈  and x D∈ , respectively, are lin-
ear positive operators. Let 1γ  and 2γ  be finite constants. Let g , 1g , and 2g  be 
functions, ( )g x , 1( )g x , and 2( )g x , x D∈ . We have  

( ) ( )
1 2 1 2( ; , , ) ( ; , , )s s

m mC g x a b C g x a bγ γ γ γ+ = +  

( ) ( ) ( )
1 2 1 2( ; , , ) ( ; , , ) ( ; , , )s s s

m m mC g g x a b C g x a b C g x a b+ = + ,  

where 1/2s > − , x D∈ . If 1 2( ) ( )g x g x≤ , for all x D∈ , we have  

( ) ( )
1 2( ; , , ) ( ; , , )s s

m mC g x a b C g x a b≤ ,  

x D∈ . Multivariate versions of these properties hold for (s)
m ( ; x, , )C g a b , given by 

(9), where 1/2s > − , x D∈ .  

8.2. Uniform convergence of the Bernstein-type approximations (8) and (9) 

The uniform norm g  of the function ( )g x , where x D∈ , is defined as 

max ( )
x D

g g x
∈

= . The Bernstein-type approximation ( )( ; , , )s
mC g x a b , where 

x D∈ , is given by (8). We want to show that, given a constant 0ε > , there exists 
a positive integer 0m , such that 
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0

( )( ; , , ) ( )s
mC g x a b g x ε− < , (18) 

for every x D∈ . 
For every x D∈ , ( )(1; , , ) 1s

mC x a b = , where 1/2s > − . We define the func- 

tions 1( )x xµ =  and 2
2( )x xµ = . We have ( )

1( ( ); , , )s
mC x x a b xµ = , and 

( ) 2 1 ' ' 2
2 1 2( ( ); , , ) { ( , ) ( , )}s s

mC x x a b m a b a b xµ λ λ− −= − + , where 1/2s > − , and the 

quantity ' '
1 2( , ) ( , )a b a bλ λ−  is given by (7).  

Suppose that g M= . We take 0x D∈ . We have 

02 ( ) ( ) 2M g x g x M− ≤ − ≤ , (19) 

where 0 ,x x D∈ . The function g  is continuous; given 1 0ε > , there exists a con-
stant 0δ > , such that 

1 0 1( ) ( )g x g xε ε− < − < , (20) 

for 0x x δ− < , and 0 ,x x D∈ . From (19) and (20), it follows that 

1 0 12 ( ) ( ) 2M g x g x Mε ε− − ≤ − ≤ + , and then 

2 2 2 2
1 0 0 1 02 ( ) ( ) ( ) 2 ( )M x x g x g x M x xε δ ε δ− −− − − ≤ − ≤ + − , (21) 

for 0 ,x x D∈ . In fact, if 0| |x x δ− < , (20) implies (21), 0 ,x x D∈ . If 

0| |x x δ− ≥ , then 22
0( ) 1x xδ − − ≥  and (19) implies (21), 0 ,x x D∈ . Following 

Appendix 8.1, (21) becomes 

2 ( ) 2 ( )
1 02 ( ( ) ; , , ) ( ; , , ) ( )s s

m mM C x x x a b C g x a b g xε δ −− − − ≤ −  

2 ( ) 2
1 02 (( ) ; , , )s

mM C x x x a bε δ −≤ + − , (22) 

for 0 ,x x D∈ . We observe that 2 2 2
0 0 0( ) 2x x x x x x− = − + , 0 ,x x D∈ . It fol-

lows that 

( ) 2 2 1 ' '
0 1 2(( ) ; , , ) { ( , ) ( , )}s s

mC x x x a b m a b a bλ λ− −− = − , (23) 

for x D∈ , where the quantity ' '
1 2( , ) ( , )a b a bλ λ−  is given by (7). We have 

( ) 2 2 1
0(( ) ; , , ) ( )s s

mC x x x a b O m− −− = , as m →∞ , x D∈ . Finally, we have 

( ) 2 2 1 ' '
1 1 2( ; , , ) ( ) 2 { ( , ) ( , )}s s

mC g x a b g x M m a b a bε δ λ λ− − −− ≤ + − , 
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x D∈ , where the quantity ' '
1 2( , ) ( , )a b a bλ λ−  is given by (7). Setting 1 /2ε ε= , for 

any 1/( 2 1)2 1 ' '
0 1 2[4 { ( , ) ( , )}] sm M a b a bλ λδ ε +− −> − , where 1/2s > − , and the quan-

tity ' '
1 2( , ) ( , )a b a bλ λ−  is given by (7), the uniform convergence (18) is proved.  

The condition 1/2s > −  is required for the uniform convergence. The conver-
gence ( )( ; , , ) ( )s

mC g x a b g x→ , for 1/2s > − , is uniform, at any point of continuity 
x D∈ , as m →∞ , in the sense that the upper bound (23) for the uniform norm 
does not depend on x , x D∈ . 

The multivariate Bernstein-type approximation ( )
m ( ; x, , )sC g a b , where 

1/2s > − , and x D∈ , is given by (9). We observe that q  is fixed and does not 
depend on m . Considering the uniform norm g  of the function (x)g , x D∈ , 

defined as 
x D
max (x)g g
∈

= , we want to show that, given a constant 0ε > , there 

exist positive integers 0 01 0m ( , , )T
qm m= … , such that 

0

( )
m ( ; x, , ) (x)sC g a b g ε− < , (24) 

for every x D∈ . 

For every x D∈ , ( )
m (1; x, , ) 1sC a b = , where 1/2s > − . We define 1

1
(x)

q

i
i

xµ
=

=∑  

and 2
2

1
(x)

q

i
i

xµ
=

=∑ . We have ( )
m 1

1
( (x); x, , )

q
s

i
i

C a b xµ
=

=∑ , and 

( ) 2 1 ' ' 2
m 2 1 2

1 1
( (x); x, , ) { ( , ) ( , )}

q q
s s

i i
i i

C a b m a b a b xµ λ λ− +

= =

⎛ ⎞
= − +⎜ ⎟
⎝ ⎠
∑ ∑ , where 1/2s > − , and 

the quantity ' '
1 2( , ) ( , )a b a bλ λ−  is given by (7). 

Suppose that g M= . We take 0 01 0x ( , , )T
qx x= … , where 0x D∈ . We ob-

serve that 2 2 2
0 0 0

1
(|x x|) ( 2 )

q

i i i i
i

x x x x
=

− = + −∑ , 0x ,x D∈ . The uniform conver-

gence (24) follows from 2( ) 2 1
m 0

1
((|x x|) ; x, , ) ( )

q
s s

i
i

C a b O m− −

=

− =∑ , as im →∞ , for 

1/2s > − , where 1, ,i q= … , 0x ,x D∈ . Under the condition 1/2s > − , the con-

vergence ( )
m (g;x, , ) (x)sC a b g→  is uniform at any point of continuity x D∈ , as 

im →∞ , where 1, ,i q= … .  

8.3. Degrees of approximation (10) and (11) 

For every 0δ > , we denote by 0( , ; )x xξ δ  the maximum integer less than or 
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equal to 1
0x xδ − − , where 0 ,x x D∈ . We recall the definition of the modulus 

of continuity ( )ω δ , where 0δ > . We have 

0 0( ) ( ) ( ){1 ( , ; )}g x g x x xω δ ξ δ− ≤ + , (25) 

0 ,x x D∈ .  

The Bernstein-type approximation ( )( ; , , )s
mC g x a b  is given by (8), where 

1/2s > − , and x D∈ . Then, we have that 

( )( ; , , ) ( )s
mC g x a b g x−  

1
1 1 11

00

{ ( , )} ( ( ) ) ( ) (1 )
m

a k b m ks

k

m
B a b g m m v t x g x t t dt

k
− + − + − −− −

=

⎛ ⎞
≤ − + − −⎜ ⎟

⎝ ⎠
∑∫  

1
1 1 1

0
00

( ){ ( , )} {1 ( , ; )} (1 )
m

a k b m k

k

m
B a b x x t t dt

k
ω δ δξ− + − + − −

=

⎛ ⎞
≤ + −⎜ ⎟

⎝ ⎠
∑∫  

1
1 1 11 1

00

( ){ ( , )} {1 ( ) } (1 )
m

a k b m ks

k

m
B a b m m k t t t dt

k
ω δ δ− + − + − −− − −

=

⎛ ⎞
≤ + − −⎜ ⎟

⎝ ⎠
∑∫  

1
11 2 2 2 2 1

00

( ){ ( , )} {1 ( ) } (1 )
m

b m ks a k

k

m
B a b m k mt t t dt

k
ω δ δ + − −− − − − + −

=

⎛ ⎞
≤ + − −⎜ ⎟

⎝ ⎠
∑∫ , 

x D∈ . It follows that 

( ) 2 2 1 ' '
1 2( ; , , ) ( ) ( ) [1 { ( , ) ( , )}]s s

mC g x a b g x m a b a bω δ δ λ λ− − −− ≤ + − , 

x D∈ . Setting 1/2mδ −= , we finally have the degree of approximation (10).  
For every 0δ > , we denote by 0(x ,x ; )ξ δ  the maximum integer less than or 

equal to 1
0x xδ − − , where 

1/2
21 1

0 0
1

x x ( )
q

i i
i

x xδ δ− −

=

⎛ ⎞
− = −⎜ ⎟

⎝ ⎠
∑ , and 0x , x D∈ . 

We have 0 0(x ) (x) ( ){1 (x ,x ; )}g g δ ξ δω− ≤ + , where ( )ω δ  is the modulus of 
continuity, 0δ > , and 0x , x D∈ . 

The multivariate Bernstein-type approximation ( )
m ( ; x, , )sC g a b  is given by (9), 

where 1/2s > − , and x D∈ . We have 

( ) 2 2 1 ' '
m 1 2

1
( ; x, , ) (x) ( ) 1 { ( , ) ( , )}

q
s s

i
i

C g a b g m a b a bω δ δ λ λ− − −

=

⎡ ⎤
− ≤ + −⎢ ⎥

⎣ ⎦
∑ , 
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x D∈ . Setting 1/2mδ −= , where 
1

q

i
i

m m
=

=∑ , we finally have the degree of ap-

proximation (11). 

8.4. Orders of error in probability (14) and (15) 

The Bernstein-type approximation ( )( ; , , )s
mC g x a b  is given by (12), where 

1/2s > − . Let 1( ) ( ) ( )g x dx dg x−′ =  and 2 2''( ) ( ) ( )g x dx d g x−=  be the first two 
derivatives of the function ( )g x , where x D∈ . We recall that the quantity 

' '
1 2( , ) ( , )a b a bλ λ−  is given by (7). By Taylor expanding the function 

1( ( ) )sg m m k t x− − − +  around µ , for every 0,1, ,k m= … , we have 

( )( ; , , ) ( )s
mC g x a b g µ=  

'( )( )g xµ µ+ −  

2 1 ' ' 2
1 2

1 [ ''( ) { ( , ) ( , )} ''( )( ) ]
2

sg m a b a b g xµ λ λ µ µ− −+ − + −  

+"  

1/2 2 1( ) ( ) ( )s
pg O n O mµ − − −= + + , 

where 1/2s > − , as m →∞ , and n →∞ . Order 2 1 1/2( ) ( )s
pO m O n− − −+  of error 

in probability in (14), as m →∞ , and n →∞ , is thus proved. 
The Bernstein-type approximation ( )

m ( ; x, , )sC g a b  is given by (13), where 
1/2s > − . By Taylor expanding the function 

1
1 1 1 1 1

1

( )

( )

s

s
q q q q q

m m k t x
g

m m k t x

− −

− −

⎛ ⎞− +
⎜ ⎟
⎜ ⎟
⎜ ⎟⎜ ⎟− +⎝ ⎠

#  

around 1( , , )T
qµ µ µ= … , for every 1, ,i ik m= … , 1, ,i q= … , we can prove the 

order 2 1 1/2

1
( ) ( )

q
s

i p
i

O m O n− − −

=

+∑  of error in probability in (15), 1/2s > − , as 

im →∞ , where 1, ,i q= … , and n →∞ . 
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8.5. Asymptotic normality (16) and (17) 

Following (14), we have that 1/2 ( ){ ( ; , , ) ( )}s
mn C g x a b g µ− , where 1/2s > − , is 

asymptotically equivalent to 1/2{ ( ) ( )}n g x g µ− , as m →∞  and n →∞ . An ap-
plication of the Central Limit Theorem then shows the asymptotic normality in 
(16), as m →∞ , and n →∞ . 

Following (15), we have 1/2 ( )
m{ ( ; x, , ) ( )}sn C g a b g µ− , where 1/2s > − , 

1m ( , , )T
qm m= … , is asymptotically equivalent to 1/2{ ( x ) ( )}n g g µ− , as im →∞ , 

where 1, ,i q= … , and n →∞ . An application of the Central Limit Theorem then 
shows the asymptotic normality in (17), as im →∞ , where 1, ,i q= … , and 
n →∞ . 
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SUMMARY 

Bernstein-type approximation using the beta-binomial distribution 

The Bernstein-type approximation using the beta-binomial distribution is proposed 
and studied. Both univariate and multivariate Bernstein-type approximations are studied. 
The uniform convergence and the degree of approximation are studied. The Bernstein-
type estimators of smooth functions of population means are also proposed and studied. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 




