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IMPACT OF CONTROLLING THE SUM OF ERROR PROBABILITY 
IN THE SEQUENTIAL PROBABILITY RATIO TEST 

Bijoy Kumar Pradhan 

1. INTRODUCTION 

Pradhan (1971) has considered a modified sequential probability ratio test 
(SPRT) with the assumption that the sum of the error probability does not exceed 
a pre-assigned bound. Patel and Dharmadhikari (1974) found a method on which 
the average of the two average sample numbers (ASN) is minimized by giving the 
same mass 1

2  to the null hypothesis as well as to the alternative hypothesis under 
the condition that the sum of the error probabilities equals a specified constant. 
Wald (1974) has compared the efficiency of a sequential test S of strength ( ,α β ) 
by the ratio 
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when H1 is true and calculated the number of observations that can be saved by 
adopting sequential probability ratio test instead of using current test procedure 
for testing mean of a normally distributed variate and found that the sequential 
test results in an average saving of at least 47 percent in the necessary number of 
observations as compared with the current test. 

In the present context a generalized modified method is proposed to mini-
mized the weighted average of the two average sample numbers 

0
( )E nθ  and 

1
( )E nθ  by attaching relative weights 1a  and 2a  respectively with 1 2 1a a+ =  

such that the sum of error probabilities in the sequential probability ratio test is a 
pre-assigned constant i.e., kα β+ = , 0<k<1 with the intention to minimized the 
expected value of the required number of observations simultaneously for all θ  
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to get uniformly best test which is admissible. We shall compare the expected 
number of observations required by the generalized modified sequential proce-
dure of strength ( ,α β ) such that kα β+ =  (a preassigned constant ) for testing 

0H  against 1H  with the fixed number of observations needed for the current 
most powerful test to attain the same strength ( ,α β ). The results are applied to 
the case when the random variate X follows a normal law as well as Bernoulli law. 
When the random variate X follows a normal law, we find that for kα β+ =  
with α β=  from 0.01 to 0.05 (the range most frequently employed), the general-
ized modified sequential procedure results in an average saving of at least 51% in 
the necessary number of observations as compared with the current most power-
ful test having same strength ( ,α β ). But when the random variate X follows 
Bernoulli law, we find that for kα β+ =  (a preassigned constant) with α β≠ , 
the generalized modified sequential procedure results in an average saving of at 
least 51% in the necessary number of observations as compared with the current 
most powerful test procedure having same strength. In both cases the gain is a 
decreasing function of k . Finally, we provide an example on the real data which 
also shows the same sort of results.  

2. THE GENERALIZED MODIFIED METHOD 

Let f (x , θ ) denote the probability function (or probability density function) 
of the random variable X where the parameter θ  is unknown. Suppose we have a 
test procedure of strength (α , β ) for testing a simple null hypothesis 0 0:H θ θ=  
against a simple alternative hypothesis 1 1 0: ( )H θ θ θ= > . 

Suppose 1 2, , ...,x x  etc be the successive observations of the random variable 
X. For any positive integral value m, the probability that a sample 1 2, , ..., mx x x  is 
obtained is given by 

1 , 1
1
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when H1 is true. 
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Hence 
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The sequential probability ratio test for testing H0 against H1 is described by 
Wald (1974) as follows: 

Two positive constants A and B (B<A) are chosen. At each stage of the ex-
periment (at the mth trial for each integral value of m) , the sum iZ∑  is com-
puted. 

If iZ∑ ≥log A, the process is terminated with the rejection of H0. 
If iZ ≤∑ log B, the process is terminated with the acceptance of H0. 
If log B< iZ∑ < log A, we continue the experiment by taking an additional 

observations. 
Wald (1974) has shown that boundaries A and B of the sequential probability 

ratio test have the approximations: 

1A β
α
−

≅  and 
1

B β
α

≅
−

 (2.5) 

Suppose n denote the number of observations required by the sequential tests 
defined by Wald (1974) to reach a decision and further suppose that ( )E n sθ  de-
note the expected value of n when θ  is the true value of the parameter of a se-
quential test S . Wald (1974) has shown that the following approximations hold: 
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Wald (1974) has compared the expected number of observations required by 
the sequential probability ratio test of strength ( ,α β ) for testing H0 against H1 
with the fixed number of observations n( ,α β ) needed for the current most pow-
erful test to attain the same strength ( ,α β ). Since the average saving of the se-

quential test as compared with the current test is 100 1
( )

1
( , )

E n s
n
θ

α β
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 percent if H1 

is true and 100 0
( | )

1
( , )

E n s
n
θ

α β

⎡ ⎤
−⎢ ⎥

⎣ ⎦
 percent if H0 is true. 

Wald (1974) has found that the sequential test analysis results in an average 
saving of at least 47 percent in the necessary number of observations as com-
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pared with the current test procedure when the observations are taken from a 
normal population with unknown mean θ  and variance unity. 

We known that if an admissible sequential test S exists for which the expected 
value of the number of observations is minimized for all θ , then that test may be 
regarded a uniformly best test. Keeping view on this point to get an uniformly 
best test which is admissible, a generalized modified method is proposed to the 
two average sample numbers 

0
( )E nθ  and 

1
( )E nθ  of strength ( ,α β ) by attaching 

weights 1a  and 2a  respectively with 1 2 1a a+ =  and by controlling the sum of er-
ror probabilities in the sequential probability ratio test. Then a comparison is 
made with the current fixed sample size procedure. 

Hence, the present method is to minimize 

0 11 2( ) ( )a E n a E nθ θ+  (2.7) 

subject to constraints 

1 2 1a a+ = ; ia >0, i = 1, 2; 

and kα β+ = ; 
where k  is a pre-assigned constant such that 0< k <1. 
Here, we assume kα β+ = , 0< k <1, so that 0<B<1<A<∞. 

Appendix-A shows that the minimization of (2.7) holds good if 
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and 

2 11a a= − ; (2.8) 

subject to 

0 1

(1 ) log log log (1 )log
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E Z E Zθ θ

α α β β− + + −
=  (2.9) 

Calculate 
0
( )E Zθ  and 

1
( )E Zθ . Fix α  and find β  for which (2.9) is satisfied. 

Substitute this value of α  and β  in (2.8) which will give the optimum values of 

1a  and 2a  i. e. ( )1 opta ) and ( )2 opta .  

Hence E(n) =n**(say) =
0 11( ) 2( )( ) ( )opt opta E n a E nθ θ+  (2.10) 
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3. COMPARISON 

It is required to compare the optimum sample size n** given by (2.10) of the 
sequential probability ratio test of strength ( ,α β ), kα β+ =  with the corre-
sponding fixed sample size procedure having the same strength ( ,α β ). The op-
timum sample size for the fixed sample size procedure is based on uniformly 
most powerful test. The procedure is as follows. 

Suppose sample 1 2, , ..., nx x x  of n independent observations of the random 
variable X is available. Then a test statistic is constructed in order to test a simple 
null hypothesis 0 0:H θ θ=  against a simple alternative hypothesis 1 1:H θ θ=  
based on the corresponding strength ( ,α β ) of the sequential test procedure. If 

1 2 1( , , ..., ; )nL x x x θ denote the likelihood function, then the procedure is to reject 
H0 if  

1 2 1 0 1 2 0( , , ..., ; ) ( , , ..., ; )n nL x x x k L x x xθ θ>  (3.1) 

and to accept H0, otherwise; see Rao (1952), where k0 is so determined that the 
probability of type I error =α . This is same as to find a critical region w0 given by 

0 1 0{( , .., ) :| }nW x x x k= >  (3.2) 

such that 0 0Pr[ | ]x k H α> =  (3.3) 

Hence 

0 1Pr[ | ] 1x k H β> = −   (3.4) 

From (3.3) and (3.4) we can able to find the optimum sample size n* for the fixed 
sample size procedure. 

Then the average percentage of saving in the number of observations due to 
the use of the present generalized modified method of the sequential test proce-
dure over the corresponding fixed sample size procedure is  

* *100 1 .
*

n
n

⎛ ⎞−⎜ ⎟
⎝ ⎠

 (3.5) 

Where n** is the optimum sample size for the sequential probability ratio test of 
strength ( ,α β ) with kα β+ =  and is given by (2.10). 

4. APPLICATIONS 

Case I: When the observations follow the normal law. 
 
Let the random variable X follows a normal law with unknown mean θ  and 
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variance unity. Consider the problem of testing a simple null hypothesis 
0 0:H θ θ=  against a simple alterative hypothesis 1 1:H θ θ= (>θ 0). 

For this case 

1

2
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0

2
0 1

1( ) ( )
2

E Zθ θ θ= − −  (4.1) 

For the fixed sample size procedure given by (3.1), we have 
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where G (λ0) =1-α  and G (λ1)= β  and G(t) is the probability that a normally 
distributed random variable with mean zero and variance unity will take a value 
less than t i.e.  

G(t)=
2

21
2

xt

e dx
π

−

−∞
∫  (4.3) 

Note: the probability of Type I error α  and the probability of Type II error β  
for the current test procedure were found firstly by the generalized modified se-
quential procedure of strength ( ,α β ) with kα β+ = . Then using those ( ,α β ) 
with kα β+ = , we find the optimum sample size for the current test procedure. 

From (4.1) we find 1 2C C= and hence equation (2.9) is satisfied for α β= . 
The optimum values of 1a  and 2a  are found by substituting 1 2C C=  and 

α β=  in (2.8) which gives 

1( )o p ta = 2( )opta = 1
2

  (4.4) 

Hence, we have 
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0 1
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The gain in the average number of observations given by the sequential prob-

ability ratio test as compared with current most powerful test is * *100 1 .
*

n
n

⎛ ⎞−⎜ ⎟
⎝ ⎠

 

Table 1 shows for the range α  and β  with kα β+ = , α β=  from 0.01 to 
0.05 (the range most frequently employed), the sequential test results in an average 
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saving of at least 51% in the necessary number of observations as compared with 
the current test. For α β=  with kα β+ = , the gain is a decreasing function of k . 

TABLE 1 

Average percentage of size of sample with the generalized modified SPRT analysis as compared with 
current most powerful test for testing mean of the normally distributed variate for α + β = k with α = β 

 α =0.01 
β =0.01 

α =0.02 
β =0.02 

α =0.03 
β =0.03 

α =0.04 
β =0.04 

α =0.05 
β =0.05 

k 0.02 0.04 0.06 0.08 0.10 
Gain (%) 58.454 55.722 53.874 52.319 51.035 

 
Case II: When the observations follow the Bernoullian law. 
 

Let the random variable X follows a Bernoullian law i.e. X~b (1, p), where p is 
unknown. Consider a problem of testing a simple null hypothesis 0 0:H p p=  
against a simple alternative hypothesis 1 1 0: ( )H p p p= > . 

Suppose a sample ( 1 2, , ..., nx x x ) of n independent observations of the random 
variable X is available. Then a test statistic may be constructed to test 0 0:H p p=  
against 1 1 0: ( )H p p p= >  for α  and β  with kα β+ =  (a pre-assigned con-
stant), 0< k <1. 

We know that for sufficiently large sample, n, the distribution of the sum 
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i
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X
=
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Bernoullian law. 
Hence, we have 

1 1

1 1 1 1

i
r

X np d npp
np q np q

β
⎡ ⎤− −

≤ =⎢ ⎥
⎢ ⎥⎣ ⎦

∑  and 0 0

0 0 0 0

1i
r

X np d npp
np q np q

α
⎡ ⎤− −

≤ = −⎢ ⎥
⎢ ⎥⎣ ⎦

∑  (4.6) 

Let 01
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= =  (4.7) 

Firstly find the optimum sample size n** of sequential test procedure of 
strength α  and β  with kα β+ = . Then for those α  and β  find the value of λ1 
(n) and λ0 (n) and hence solving (4.7) for n, we can able to find the value of n, say 
n*, the required optimum sample size, for the current most powerful procedure. 

The optimum sample size adopting sequential probability ratio test analysis for 
testing 0 0:H p p=  against 1 1 0: ( )H p p p= >  of strength ( ,α β ) with kα β+ =  
is given by (see Appendix – B). 
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Hence the average percentage of saving in the number of observations due to 
the use of the present generalized modified method sequential test procedure 

over the corresponding fixed sample size procedure is * *100 1
*

n
n

⎛ ⎞−⎜ ⎟
⎝ ⎠

. 

Suppose, we are required to test 0 0:H p p= =0.6 against 1 1:H p p= =0.7. Here, 

0

1 1
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1( ) log (1 )log 0.0098074
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p pE z p p
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−
 

and 

1
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1( ) log (1 )log 0.0093811
1p

p pE z p p
p p

−
= + − =

−
. 

For given α , it is required to find the value of β  satisfying (19) of Appendix 
B by which we can find the optimum value of n** given by (4.8).  

The optimum value of n** for kα β+ =  is given below in Table 2. 

TABLE 2 

The optimum value of n** for SPRT procedure for testing 
H0 : p = p0 = 0.6 against H1 : p = p1 = 0.7 

 α = 0.01 
β = 0.007972 

α = 0.02 
β = 0.0163024 

α = 0.03 
β = 0.024727 

α = 0.04 
β = 0.033194 

α = 0.05 
β = 0.041681 

n** 209 174 153 137 125 

 
From Table 2 we see that the optimum sample size exists for sequential prob-

ability ratio test procedure for α ≠ β and β close to α. 
The optimum sample size for the current test procedure for α and β as men-

tioned in Table 2 is given in Table 3. 

TABLE 3 
The optimum value of n* for fixed sample size test procedure for testing H0 : p = p0 = 0.6 against 

H1 : p = p1=0.7. 
H0 : p = p0 = 0.6 against H1 : p = p1=0.7 for α + β = k, α ≠ β 

 α = 0.01 
β = 0.007972 

α = 0.02 
β = 0.0163024 

α = 0.03 
β = 0.024727 

α = 0.04 
β = 0.033194 

α = 0.05 
β = 0.041681 

n** 514 394 332 288 256 
 
The gain in the average number of observations given by the sequential prob-

ability ratio test procedure over the corresponding most powerful test for testing 

0 0:H p p= = 0.6 against 1 1:H p p= =0.7 is * *100 1
*

n
n

⎛ ⎞−⎜ ⎟
⎝ ⎠

 and is given in Table 

4 given below. 
Table 4 shows that the sequential test results in an average saving of at least 

51% in the necessary number of observations as compared with the current most 
powerful test procedure for testing 0 0:H p p= =0.6 against 1 1:H p p= =0.7 for 

kα β+ = , α β≠ . Here the gain is a decreasing function of k. 
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TABLE 4 

Average percentage saving of size of sample with the generalized modified SPRT analysis 
compared with the current most powerful test procedure for testing H0 against H1 for 

H0 : p = p0 = 0.6 against for H1 : p = p1=0.7 for α + β = k, α ≠ β 

 α = 0.01 
β = 0.007972 

α = 0.02 
β = 0.0163024 

α = 0.03 
β = 0.024727 

α = 0.04 
β = 0.033194 

α = 0.05 
β = 0.041681 

k 0.017972 0.0363024 0.054727 0.073194 0.091681 
Gain (%) 59.338 56.837 53.916 52.430 51.172 

 
 

EXAMPLE 

 
A manufacturing plant produces articles with average quality characteristic 135 

on the basis of the following criterion. 
1. The producer is not willing to run the process having the rejection greater 

than α%. 
2. The purchaser is not willing to accept the lot average quality of 150 in more 

than β% cases. 
Prepare a sequential plan for the acceptance inspection on the basis of the fol-

lowing observations having known that σ = 25 and the characteristic follows a 
normal law at strength (α , β) : (0.01, 0.01); (0.02, 0.02); (0.03, 0.03); (0.04, 0.04) 
and (0.05, 0.05). 

The observations are: 
123  144  133  136  148  106  152  125  138  127  130  146  152  141  125  126  
129  137  136  138  134  140  157  123  130  ... . 

Find the average percentage saving in size of sample with sequential procedure 
as compared with current most powerful test for testing mean of a normally dis-
tributed variate. 

We want to construct a sequential plan to test 0H :θ = 0θ  against 

1H :θ = 1θ > 0θ , when 1X ... nX  follows normal law with mean θ  and known 
standard deviation σ. 

For strength (α, β) and for each m, we compute the acceptance number 

2
0 1

1 0

log
1 2ma m θ θσ β

θ θ α

+
= +

− −
, 

and the rejection number 

2
0 1

1 0

1log
2mr m θ θσ β

θ θ α

+−
= +

−
 . 

If 
1

m

i
i

X
=
∑ < ma , the sequential plan is terminated with the acceptance of 0H . 
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If 
1

m

i
i

X
=
∑ > mr , the sequential plan is terminated with the rejection of 0H . 

If ma <
1

m

i
i

X
=
∑ < mr , the experiment is continued by taking additional observa-

tions. 
The average sample number required for the proposed generalized modified 

sequential procedure subject to α + β = k is  

2 2
0 1 0 1

2 2

(1 ) log log log (1 )log1 1E( )=
2 2( ) ( )

2 2

B A B An n
θ θ θ θ

σ σ

∗∗ α α β β− + + −
= +

− −
−

. 

If the optimum sample size for the current most powerful test is n∗ , then the 
gain in the average number of observations given by the proposed generalized 

modified method as compared with current most powerful test is 100 1 n
n

∗∗

∗

⎛ ⎞
−⎜ ⎟

⎝ ⎠
. 

Here, 0θ =135, 1θ =150, σ = 25. 
For strength (α, β) = (0.01, 0.01), we find ma = -191.4633271+142.5m, 
and mr = 191.4633271+142.5m. 

We find for m = 25, 
25

1
i

i
X

=
∑ = 3366, ma = 3371.037 and hence 

25

1
i

i
X

=
∑ < ma . 

Hence the sequential plan is terminated with the acceptance of the lot after in-
specting the 25th item. 
We also find n∗∗= 25.018 and n∗ = 60.218. 
For the strength (α, β) = (.02, .02), we find ma = -162.1591791 + 142.5m, 
and mr = 162.1591791 + 142.5m. 

We find for m = 21 , 
21

i
i

X∑ = 2826 , ma = 2830.341 and hence 
21

i
i

X∑ < ma . 

Hence, sequential sampling plan is terminated with the acceptance of the lot after 
inspecting the 21st item. 
We also find n∗∗= 20.756 and n∗ = 46.877. 
For strength (α, β) = (.03, .03), we find ma = -144.8374454 + 142.5m , 
and mr = 144.8374454 + 142.5m. 

We find that for m = 18, 
18

1
i

i
X

=
∑ =2418, ma = 2420.163 and hence 

18

1
i

i
X

=
∑ < ma . 

Hence, sequential sampling plan is terminated with the acceptance of the lot after 
inspecting the 18th item.  
We also find n∗∗= 18.153 and n∗ = 39.355. 
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For strength (α, β) = (0.04, 0.04), we find ma = -132.4189096 + 142.5m,  
and mr = 132.4189096 + 142.5m. 

We find that for m = 17, 
17

1
i

i
X

=
∑ =2281, ma = 2290.081 and hence 

17

1
i

i
X

=
∑ < ma . 

Hence, sequential sampling plan is terminated with the acceptance of the lot 
after inspecting the 17th item. 

We also find n∗∗= 16.243 and n∗ = 34.066 . 
For strength (α, β) = (0.05, 0.05), we find ma = -122.6849575 + 142.5m, 
and mr = 122.6849575 + 142.5m. 

We find that for m=16, 
16

1
i

i
X

=
∑ = 2051, ma = 2157.315 and hence 

16

1
i

i
X

=
∑ < ma . 

Hence, sequential sampling plan is terminated with the acceptance of the lot 
after inspecting the 16th item. 

We also find n∗∗= 14.722 and n∗ = 30.066. 

TABLE 5 

Sample size required for SPRT procedure and average percentage saving in size of sample with sequential 
procedure as comparedwith current most powerful test for testing mean of a normal distributed variate 

 α = .01 
β = .01 

α = .02 
β = .02 

α = .03 
β = .03 

α = .04 
β = .04 

α = .05 
β = .05 

k 0.02 0.04 0.06 0.08 0.10 
Sample size required 
for S.P.R.T procedure 
m = n 

25 21 18 17 16 

Average Sample Number 
required for the proposed 
generalized modified 
sequential procedure 
E (n) = n∗∗  

25.018 20.756 18.153 16.243 14.722 

Optimum sample size for the 
current most powerful test n∗  

60.218 46.877 39.355 34.066 30.066 

Gain (%) 58.454 55.722 53.874 52.319 51.035 

 

Table 5 shows for the range α and β with α + β = k , α = β from 0.01 to 0.05 
the sequential test results in an average saving of at least 51% in the necessary 
number of observations as compared with the current test. For α = β with 
α + β = k, the gain is a decreasing function of k. 
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APPENDIX A 
 
Minimize 

0 11 2( ) ( )a E n a E nθ θ+  (1) 

subject to  

1 2 1a a+ = ; ai>0, i=1,2 

and 

kα β+ =  (2) 

where ( )E nθ  is the expected value of n when θ is the true value of the parameter, 
(α , β ) is the required strength of the sequential probability ratio test to test the 
null hypothesis 0 0:H θ θ=  against the alternative hypothesis 1 1 0: ( )H θ θ θ= >  and 
k is a pre-assigned constant such that 0< k <1. We assume that 0< k <1, so that 
0<B<1<A<∞ and n, the number of observations required to reach a decision. 

Minimization of (1) with respect to the constraints (2) is equivalent to the 
minimization of  

0 11 1( ) (1 ) ( ) ( )F a E n a E n kθ θ λ α β= + − − + −  (3) 

with respect to α,β, a1and λ where λ is a Lagrange’s multiplier. 

As 

0

0

(1 ) log log( )
( )
B AE n

E Zθ
θ

α α− +
=  

and 

1

1

log (1 )log( )
( )

B AE n
E Zθ

θ

β β+ −
=  

where A and B are boundaries of sequential probability ratio test and have ap-

proximation 1 ,
1

A Bβ β
α α
−

≅ ≅
−

 and 1

0

( , )log
( ,

f xZ
f x

θ
θ

⎡ ⎤
= ⎢ ⎥

⎣ ⎦
 and ( )

i
E nθ  denotes 

expectation when iθ θ=  for i=0,1 given by Wald (1974); (3) takes the form 

0 1

1 1
(1 )log log log (1 )log(1 ) ( )

( ) ( )
B A B AF a a k

E Z E Zθ θ

α α β β
λ α β

⎡ ⎤ ⎡ ⎤− + + −
= + − − + −⎢ ⎥ ⎢ ⎥

⎢ ⎥⎢ ⎥ ⎣ ⎦⎣ ⎦
. (4) 

Differentiating (4) with respect to α , β , 1a , and λ and equate to zero, we find  
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0 1

1 1
1 log (1 ) 0
( ) ( )

F A A Ba a
E Z B E Zθ θ

λ
α
∂

∂

⎡ ⎤ ⎡ ⎤−
= + − − − =⎢ ⎥ ⎢ ⎥

⎢ ⎥⎢ ⎥ ⎣ ⎦⎣ ⎦
; (5) 

0 1

1 1
1 1. (1 ) log 0
( ) ( )

F A B Aa a
E Z AB E Z Bθ θ

λ
β
∂

∂

⎡ ⎤ ⎡ ⎤−
= + − − − =⎢ ⎥ ⎢ ⎥

⎢ ⎥⎢ ⎥ ⎣ ⎦⎣ ⎦
; (6) 

0 1

(1 )log log log (1 )log 0
( ) ( )
B A B A

E Z E Zθ θ

α α β β⎡ ⎤ ⎡ ⎤− + + −
− =⎢ ⎥ ⎢ ⎥
⎢ ⎥⎢ ⎥ ⎣ ⎦⎣ ⎦

; (7) 

and 

0kα β+ − =  (8) 

From (8) we find kα β+ = . 
Solving (5) and (6) for λ, we find  

1 0 0 1

1
1 1 1 1log ( )
( ) ( ) ( ) ( )

Aa A B
E Z E Z B E Z AB E Zθ θ θ θ

⎡ ⎤ ⎡ ⎤⎧ ⎫ ⎧ ⎫⎪ ⎪ ⎪ ⎪− + − −⎢ ⎥ ⎢ ⎥⎨ ⎬ ⎨ ⎬
⎢ ⎥ ⎢ ⎥⎪ ⎪ ⎪ ⎪⎩ ⎭ ⎩ ⎭⎣ ⎦ ⎣ ⎦

 

1

1 . log ( )
( )

A A B
E Z Bθ

⎡ ⎤= + −⎢ ⎥⎣ ⎦
 (9) 

Wald [(1974), Appendix A.2] has shown that 
0
( ) 0E Zθ <  and 

1
( ) 0E Zθ > . If we 

write 
0 1( )E Z Cθ = −  and 

0 2( )E Z Cθ = , where 1C , 2C >0, (9) takes the form 

2
1 1 2 1( ) log ( ) CAa C C A B C

B AB
⎡ ⎤⎛ ⎞+ − − +⎜ ⎟⎢ ⎥⎝ ⎠⎣ ⎦

1 log ( )AC A B
B

⎡ ⎤= − −⎢ ⎥⎣ ⎦
, (10) 

and hence 

1

1

1 2

log ( )

log ( ) log

AC A B
Ba

A A A BC A B C
B B AB

⎡ ⎤− −⎢ ⎥⎣ ⎦=
−⎡ ⎤ ⎡ ⎤− − + −⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦

 , 

and 

2 11a a= −  as 1 2 1a a+ = . (11) 

The optimum value of 1a  and 2a  are found by (10) subject to the satisfaction 
of (7) and (8). 
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Remark 1: As A and B are boundary points of the sequential probability ratio 
test given by Wald [1974], there is no necessity of differentiating (4) with respect 
to α  and β  by substituting the values of A and B in terms of α  and β . 

Remark 2: Even if substituting the values of A and B in (4) and differentiating 
w. r. t. α  and β  and solving, we find the same results as shown in (5), (6), (9), 
(10) and (11). 

APPENDIX B 

Minimized 

0 1

* *
1 2( ) ( )p pa E n a E n+   (12) 

subject to the constraints 

* *
1 2 1a a+ = ; * 0ia >  for i=1,2 

and 

kα β+ = ; (13) 

where k  is a pre-assigned constant such that 0< k <1. 
Here we assume that the random variable X follows a Bernoullian law i. e. 

X~B (1, p) where p is unknown. Hence, we have 

1

1 1 1
1 1 1

0 0 0

( , ) 1( ) log log (1 )log
( , ) 1p p

f x p p pE z E p p
f x p p p

⎡ ⎤ −
= = + −⎢ ⎥ −⎣ ⎦

. (14) 

0

1 1 1
0 0 0

0 0 0

( , ) 1( ) log log (1 )log
( , ) 1p p

f x p p pE z E p p
f x p p p

⎡ ⎤ −
= = + −⎢ ⎥ −⎣ ⎦

. (15) 

Since for p=p1, L(P1) = β , we have 

1

1 1

( ) log [1 ( )]log log (1 )log( )
( ) ( )p

p p

L p B L p A B AE n
E Z E Z

β β+ − + −
= = . (16) 

Since for 0p p= , L( 0p ) =1-α , we have 

0

0 0

( ) log [1 ( )]log (1 )log log( )
( ) ( )p

p p

L p B L p A B AE n
E Z E Z

α α+ − − +
= =  (17) 
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Wald (1974), Appendix A.2) has shown that 
0
( ) 0pE n <  and 

1
( ) 0pE n > . If we 

write *
0 1( )pE Z C= −  and *

1 2( )pE Z C=  then *
1 0C >  and *

2 0C > . 

Proceeding as per Appendix A, the optimum value of *
1a  and *

2a  are found by 

*
1

*
1

* *
1 2

log ( )

log ( ) log

AC A B
Ba

A A A BC A B C
B B AB

⎡ ⎤− −⎢ ⎥⎣ ⎦=
−⎡ ⎤ ⎡ ⎤− − + −⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦

 , 

*
2a =1 – *

1a , (18) 

subject to 

kα β+ =  

and 

1 1
0 0

0 0

1 1
1 1

0 0

1log (1 )log
1(1 )log log
1log (1 )log log (1 )log
1

p pp p
p pB A
p pB A p p
p p

α α
β β

−
+ −

−− +
=

−+ − + −
−

. (19) 

For α β= , L.H.S. of (19) equals to -1. But the R.H.S. of (19) can not be equal to 
-1 for p1>p0 or p1<p0 . 

Hence the optimum values of *
1a  and *

2a  will be found only when α ≠ β . 
From (12), (13), (14), (15), (16), (17), (18) and (19) we find that 

E(n)=n**(say)=
0 1

* *
1( ) 2( )( ) ( )opt p opt pa E n a E n+ =

1 1
0 0

0 0

1(1 )log log
1

1log (1 )log
1

p pp p
p p

β α
α α

α β
−

− +
−

−
+ −

−

. (20) 
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SUMMARY 

Impact of controlling the sum of error probability in the sequential probability ratio test 

A generalized modified method is proposed to control the sum of error probabilities in 
sequential probability ratio test to minimize the weighted average of the two average sam-
ple numbers under a simple null hypothesis and a simple alternative hypothesis with the 
restriction that the sum of error probabilities is a pre-assigned constant to find the opti-
mal sample size and finally a comparison is done with the optimal sample size found from 
fixed sample size procedure. The results are applied to the cases when the random variate 
follows a normal law as well as Bernoullian law. 




