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COMPLEX SAMPLING DESIGNS FOR THE CUSTOMER 
SATISFACTION INDEX ESTIMATION 

T. Di Battista, P. Valentini 

1. INTRODUCTION 

Customer satisfaction (CS) is a central concept in marketing and is adopted as 
an important outcome measure of service quality by service industries (Oliver, 
1997). Customers are getting more demanding with the services they receive and 
the products they buy. This makes firms quickly adapt themselves to develop a 
customer-oriented management and deliver higher quality services. 

For many firms, successfully managing customer dissatisfaction is crucial to 
stability and profitable growth. It requires a strategy that identifies the connection 
between the characteristics of customers and customer dissatisfaction responses. 

This paper deals with the problem of identifying dissatisfied customers for the 
purpose of delineating quality improvement strategies. The hypothesis of our ap-
proach is that the phenomenon of dissatisfaction is relatively rare, that is not ex-
ceedingly diffused among the different customers groups, and clusterized, in the 
sense that dissatisfied customers share some specific characteristics.  

Of critical importance to the general validity and reliability of customer satis-
faction indices (CSI’s) is the use of the best suited sampling design. In fact, fre-
quently CS assessments are conducted with little regard to statistical problems. In 
particular, a non-probability sampling is usually used and the derivation of a suit-
able statistics relative to the phenomenon of study cannot be used to infer about 
the characteristics of the population from which the sample come. When prob-
ability sampling are used the estimates of the parameters of interest have estima-
tion errors because only a subset of the population is observed, but inference is 
valid because samples are selected according to a sampling design that assigns a 
known probability to them. 

Sometimes designed CS surveys detect relatively few dissatisfied customers 
that might share the same characteristics since they can be considered as a few 
rare clusters in the population. In this framework, estimates of population charac-
teristics may have high uncertainty. For such populations, adaptive designs can 
produce gains in efficiency, relative to conventional designs, for estimating the 
population parameters. In addition, adaptive sampling designs can substantially 
increase the yield of interesting units in the sample. 
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In the case of CS, with adaptive sampling designs we may increase the number 
of dissatisfied customers for analyzing the profile and characteristics of these cus-
tomers. Considering such sampling design, the Hansen-Hurwitz procedure gives 
unbiased estimators of population moments, but sometimes nonlinear estimators 
may be used to estimate customer satisfaction indices which are generally biased 
and the variance estimator may not be obtained in a closed-form solution. Ac-
cordingly, delta method, jackknife and bootstrap procedures may be introduced 
in order to reduce bias and estimating variance.  

In order to evaluate the efficiency of our proposed method, the adaptive is 
compared with the conventional sampling design (Thompson and Seber, 1996; 
Di Battista and Di Spalatro, 1998, 1999; Di Battista, 2003). As the reader will see 
in the simulation study, for some dissatisfied populations, particularly those that 
are rare and clustered, adaptive sampling strategies produce remarkable increase 
in efficiency compared to conventional sampling designs of equivalent sample 
size. In particular, in Section 2, we introduce the basic ideas, formulas and im-
plementation of different approaches to variance estimation, while Section 3 and 
4 deal with the illustration of the adaptive sampling designs; in Section 5 we show 
procedures to estimating variance in the adaptive sampling designs. In Section 6 a 
simulation study is performed in order to estimate the variance of the estimator 
obtained from the sample design proposed. Finally, conclusions are given in Sec-
tion 7. 

2. GENERAL METHODS OF VARIANCE ESTIMATION FROM COMPLEX SURVEYS 

In the usual setup for finite-population sampling the population U consists of 
NT distinct units identified through the label j = 1, 2,..., NT. Associated with the 
jth unit is a variable of interest Yj and auxiliary variable Xj, each of which can be 
vector valued. The parameter of interest is a function of Yj, j = 1, 2,..., NT. A 
sample s is a subset of units from U selected according to a sampling plan that 
assigns a known probability p(s). A statistical analysis involves: i) the choice of 
sampling design; ii) the choice of the estimate of parameter of interest and iii) the 
construction of variance estimates and confidence sets. Here we briefly describe 
sampling strategies which are widely used in practice. The simplest sampling de-
sign is the simple random sampling in which units are drawn with or without re-
placement. Usually, this sampling design is rarely used for practical and theoreti-
cal considerations. A stratified sampling consists of partitioning the units in the 
population into mutually exclusive and collectively exhaustive subgroups, called 
strata. Then a sample is drawn from each stratum and independently across the 
strata. The construction of strata should be done in order to ensure that the units 
are homogenous internally the strata. A primary purpose of stratification is to im-
prove the precision of the survey estimates. For example, in a student satisfaction 
survey the stratification can be used to assure "representativeness" of student 
demographics (age, gender), enrolment status (full-time versus part-time, day ver-
sus evening), class size and academic department. 
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Another type of probability sampling is cluster sampling where sampling units 
consist of a group (cluster) of smaller units. If subunits within a cluster are se-
lected then this technique is called two stage sampling. One can continue this 
process to have a multistage sampling. Multistage sampling is traditionally used in 
large-scale surveys and because of economic considerations. For example, in  
CS across organizational units (i.e. banks), we can first select subunits (bank 
branches) and then customers from each cluster are sampled. 

Generally, we may consider complex sampling designs as a stratified multistage 
sampling designs since they include many commonly sampling designs. Accord-
ing to this sampling design, the population of interest has been subdivided into H 
strata with Nh clusters, h = 1,2,...,H. Within each stratum h a sample of nh primary 
sampling units (PSU's) are selected, independently across the strata. The selection 
of PSU's can be done using several methods, like unequal probability sampling 
with replacement or equal probability sampling. For each (h,i)th first stage, nhi ul-
timates units are sampled, i = 1, 2, ... , nh, h = 1, 2, ... , H. The total number of fi-
nal units is 

1 1
hH n

T hih in n
= =

= ∑ ∑ . 
Once selected the sample from the general sampling design described above, 

we may be interested in the estimation of population parameter θ then a survey 
estimator of θ  is ˆ ˆ( )g Zθ =  with a nonlinear known functional g, where 

1 1 1

ˆ
h hin nH

hij hij
h i j

Z w z
= = =

= ∑∑∑  (1) 

and hijz is a vector of observed data relative to (hij)th final sampling unit and hijw  
is the corresponding survey weight. After the construction of the survey estima-
tor, a crucial part is the derivation of estimator of the variance of the estimator, 
which can be used in: i) measuring precision and quality of the estimation; ii) de-
ciding the degree of detail with which the survey data may be meaningfully ana-
lyzed; iii) determining allocation and stratification under a specific design; iv) con-
structing confidence sets for unknown parameters. 

Several methods are available for computing the sample estimates of the vari-
ances of nonlinear statistics and they can be classified in: i) approximation meth-
ods and ii) resampling methods. One of the most useful approximation technique 
is the delta method (or linearization) that is based on the Taylor series approxima-
tion. A Taylor series linearization of a statistic is formed and then substituted into 
the formula for calculating the variance of a linear estimate appropriate for the 
sample design. The delta method produces the following variance estimator (Rao, 
1988): 
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where ,h h hf n N= 2
1

1 ( 1) ( )( ) ,hn
h h hi h hi his n z z z z

=
′= − − −∑  

1
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=
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11 hn
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=
= ∑  and hλ  is equal to 1 if the first stage is without replacement 

and 0 if the first stage is with replacement. 
This is the method which produces the usual large-sample formula for the 

variance of the ratio estimate given in literature (Cochran, 1977). Some underes-
timation of variance is to be expected at least for moderate-sized samples because 
higher order terms are neglected in delta-method. The underestimation of the 
variance of the ratio estimate by this method has been confirmed by Krewski and 
Rao (1981) and Efron (1982). 

Resampling methods may be used to estimate standard errors. The most popu-
lar resampling methods in the complex sampling designs are: balanced repeated 
replication (BRR), jackknife and bootstrap. The basic idea behind them is to se-
lect subsamples repeatedly from the whole sample, to calculate the statistic of in-
terest for each of these subsamples, and then use the variability among these sub-
samples or replicate statistics to estimate the variance of the full sample statistics. 
Here we present a detailed introduction of how the jackknife and bootstrap 
method are applied in survey problem. 

The jackknife method was originally introduced as a technique of bias reduc-
tion (Durbin, 1959). However, it has been widely used for variance estimation 
(Kish and Frankel, 1974). A detailed discussion of jackknife methodology can be 
found in Efron and Stein (1981) and Shao and Tu (1996). In the ‘standard’ ver-
sion, each jackknife replication can be formed by eliminating one PSU from a 
particular stratum (h') at a time, and increasing the weights of the remaining 
PSU's in that stratum by using ( 1)h h hg n n′ ′ ′= − . Each such replication provides 
an alternative, but an equally valid, estimate of the statistic concerned to that ob-
tained from the full sample. 
For a fixed h′ ≤ H e i′ ≤ nh′ , let : 

'
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be the analog Ẑ  after the i′th cluster in the stratum h′ is deleted,  
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Then the jackknife variance estimator for θ̂  is given by: 

2
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Another resampling method widely used thanks to an increase in computing 
power is the bootstrap method. The bootstrap was first introduced by Efron 
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(1979) for samples of independent and identically distributed (i.i.d.) observations 
from some distribution F. An overview of the bootstrap theory and applications 
in the i.i.d. case can be found in Shao and Tu (1996). 

A direct extension to surveys samples of the standard bootstrap method de-
veloped for i.i.d. samples is to apply the standard bootstrap independently in each 
stratum. This methodology is often referred to as the naïve bootstrap. Since the 
naïve bootstrap variance estimator is inconsistent in the case of bounded stratum 
sample sizes, several modified bootstrap methods were proposed.  

Rao, Wu and Yue (1992) proposed a modification of the original bootstrap in-
creasing the applicability of the method, from variance estimation for smooth sta-
tistics to the inclusion of non-smooth statistics as well.  

Assuming nh ≥ 2 , the bootstrap variance estimator for ˆ ˆ( )g Zθ =  is obtained 

calculating * *ˆ ˆ( )g Zθ =  after the bootstrap sample is obtained with 
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hijz  is the boot-

strap analog of hijz  and * hijw  is the bootstrap survey weight. 

The bootstrap estimator variance of θ̂  is 

* * 2
* *

ˆ ˆ ˆ( ) ( )bootv E Eθ θ θ= −  (6) 

where * *ˆ ˆ( )g Zθ =  and *E  is the expectation respect to the bootstrap sampling. 
To estimate the variance of the estimator, the following steps (i) and (ii) are inde-
pendently replicated B times, where B is quite large:  

(i) Independently in each stratum h, select a bootstrap sample by drawing a 
simple random sample of mh PSU’s with replacement from the sample PSU’s. Let 

*
him  be the number of times that PSU hi is selected *( )hi hi

m m=∑ in the boot-
strap sample b (b=1, 2,..., B) and the initial bootstrap weight are rescaled as 
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(ii) Calculate *
b̂θ , the bootstrap replicate of estimator θ̂  by replacing the final 

survey weights hijw  with the final bootstrap weights *
hijw  in the formula for θ̂ . 

The bootstrap variance estimator of θ̂  is given by: 
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3. ADAPTIVE SAMPLING DESIGNS IN CS SURVEYS 

In this section, we illustrate adaptive resampling designs that may be useful in 
customer satisfaction survey when the phenomenon of dissatisfaction is rare and 
is concentrated in some cluster of the population. For example, in a job satisfac-
tion survey we may suppose that people sharing the same office have the same 
degree of dissatisfaction because of environmental condition. Then it might be 
convenient to adopt adaptive sampling designs in order to increase the number of 
dissatisfied people in the sample since the management might be interested to 
analyze the characteristics of the dissatisfied workers. 

The use of information gathered during the survey to inform sampling proce-
dures is a key feature that distinguishes adaptive sampling and conventional sam-
pling. In conventional sampling, the sampling design is based entirely on a priori 
information, and is fixed before the study begins. 

Adaptive sampling designs are those in which the selection procedure may de-
pend sequentially on observed values of the variable of interest (Thompson and 
Seber, 1996). They are sampling designs that may redirect sampling efforts using 
information gathered during the survey.  

A researcher using a conventional sampling design would identify the universe 
of individuals eligible for sampling before any sampling was actually done, and 
would not add any eligible individuals discovered during the course of the study. 
For example, using a conventional sampling design, a researcher interested in dis-
satisfied customers might administer an interview to a random sample of custom-
ers. Suppose during the interview procedure a customer mentions that his social 
network includes a group of people that are extremely dissatisfied. Using a con-
ventional sampling design, these newly discovered customers could not be added 
to the group that was fixed before the study began. By contrast, in adaptive sam-
pling, the selection of people to include in the sample adapts based on observa-
tions made during the survey. In an adaptive sampling design, the sampling pro-
cedure might call for an initial random sample of customers to be interviewed. 
Then customers who report to be extremely dissatisfied might be asked for the 
names of several friends that use the same service or buy the same product. 
These people would then be given the interview, and if they themselves are dis-
satisfied, asked for the names of several of their friends that use the same service 
or buy the same product.  

When interesting values are observed, sampling intensity may be adaptively in-
creased for neighbouring or linked units. In the CS surveys the neighbourhood is 
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difficult to establish since it is not clear how to define criteria that let us add in-
teresting units. However, in this setting, investigators can decide a protocol that 
makes the decision to add interesting people dependent on behavioural or charac-
teristics of the person already in the sample. 

In the next section, sampling strategies for graph-structured populations will 
be briefly reviewed (Tompson and Collins, 2002), and a design-based strategy 
from adaptive cluster sampling will be described and illustrated with a simulation 
example. 

4. TYPES OF ADAPTIVE DESIGNS 

As mentioned above, any sampling design that adapts to observations made in 
the course of the study is adaptive.  

Human population with social structure can be conceptualized as graphs, 
where the nodes of the graph represent people and the edges or arcs linking some 
nodes to others represent social relationships between people. 

Sampling methods such as network sampling, snowball sampling, chain referral 
sampling, adaptive cluster sampling, and other link-tracing designs in which in-
vestigators use links between people to find other people to include in the sample 
are examples of survey sampling in graphs.  

However, a graph sampling design is adaptive if decisions on whether to fol-
low links depend on the observed values in the sample. For example, suppose the 
variable of interest is an indicator of whether or not an individual is satisfied 
about a specific service that he receives. If an individual in the sample is asked to 
name friends that they are supposed to be dissatisfied only if the individual re-
ports to be dissatisfied, the survey is adaptive, whereas it is not adaptive if every 
person sampled is asked to name dissatisfied friends. 

Snowball sampling, as described by Goodman (1961), has been applied to a va-
riety of graph sampling procedures. In one type (Kalton and Anderson, 1986) an 
initial sample of individuals were asked to name different individuals of the popu-
lation, who in turn were asked to identify further members and so on, for the 
purpose of constructing a nonprobability sample or obtaining a frame from 
which to sample. For example, workers who are dissatisfied might be asked to 
identify any colleagues who are dissatisfied, the colleagues might be asked to 
identify any of their colleagues who are dissatisfied, and so on. In this type of de-
sign the sampling procedure continues until no new individuals are identified, or 
the limits of the study’s resources (time or financial) are reached. In another type 
of snowball sampling (Goodman, 1961) individuals in the sample are asked to 
identify a fixed number of other individuals, who in turn are asked to identify the 
same number of individuals. 

Klovdahl (1989) used the term random walk to describe a variation of the link-
tracing sampling procedure in which an initial respondent is asked to identify 
other members of the population of interest, and one from this list is selected at 
random to be the next respondent. The pattern continues for a number of waves. 
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The motivation for using designs like this in practice is that initial respondents 
may be atypical in their characteristics. For example, in a study of job satisfaction 
where the satisfaction is a rare phenomenon, the initial dissatisfied respondents 
may be spread in several office. After a few waves researchers may find research 
participants who are dissatisfied only in a particular office.  

With adaptive allocation designs, the starting point is a sample obtained using a 
conventional design such as simple or stratified random sampling. Based on the 
observed values in key variables for the initially selected units, an additional sam-
pling is then concentrated in areas or strata based on the initial observations. For 
example, an initial stratified random sampling is taken and the dissatisfaction is 
measured. In strata or group of people where dissatisfaction is highly concen-
trated, a larger sample is allocated. 

In adaptive cluster sampling, an initial sample is selected with a conventional 
sampling design such as simple random sampling, cluster sampling two-stage 
sampling or stratified sampling. Whenever a particular variable of interest satisfies 
a specified condition for an individual in the sample, units in the neighbourhood 
of that unit are added to the sample. If in turn any of the added units satisfies the 
condition, still more units are added, and so on. For example, a study of customer 
satisfaction where dissatisfaction is a phenomenon rare might begin by taking a 
random sample of customers. Whenever a customer is found to be dissatisfied, 
the “neighbouring” customers would be sampled. In this example, neighbour-
hoods may be defined by social or institutional connections as well as geographi-
cally. 

5. ESTIMATION IN ADAPTIVE DESIGNS 

For the development of estimators, it will be convenient to define network as a 
collection of observation units that share the same linkage pattern. We consider 
the situation in which if a unit of a network is selected then every unit in the net-
work will be included. More complex sampling procedures might be applied to 
adaptive sampling, but for illustrative purposes we limit ourselves to adaptive 
sampling designs with an initial sample selected with replacement. 

When a clustered distribution of units is suspected then the population may be 
suitably sampled by using an adaptive sampling. In this case, the units may be ag-
gregated in network, in such a way that the reference population is constituted by 
the set of networks {A1, A2,..., Ak} (k ≤ NT). 

Since most of CSI estimators may be obtained as a (linear/nonlinear) function 
of population means, we follow the approach proposed by Di Battista (2003) that 
allows us to obtain a reduced bias estimators of CSI and consistent estimators  
of the sampling variances in the case of adaptive sampling designs. Let 

1
l

l l lj AZ M Z−
∈

= ∑ be the mean for the lth network, where Ml represents the 

number of units in the network l (l = 1, 2,..., k). Now it is well known (Thompson 
and Seber, 1996) that an adaptive sampling starting from a random sample with 
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replacement of n units actually represents a sampling with replacement of n net-
work, in which at each time the lth network inclusion probability is l TM N  (l = 
1, 2,...,k). Accordingly, if G denotes a sample of n networks selected from the 
population by the adaptive design it is that 1

ll GZ n Z−
∈

= ∑  provides an unbiased 
estimator of the population mean. 

In particular, for measuring customer satisfaction an ample literature exists. 
The traditional indicators of CS, such as those based on SERVQUAL and 
SERVPERF instruments, are constructed as a linear combination of manifest 
variables and the estimate of the variance is quite easy to calculate. In particular, if 
we are interested to measure how much customers are satisfied in some specific 
dimension then we can define the following index: 
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where k
jY  is the kth variable (k=1,2,..., K) associated with unit j and jδ  assumes 

value 1 if the individual j satisfies some condition (i.e. if individual j is globally 
dissatisfied) and 0 otherwise. 
In the adaptive sampling design setup, an estimator of (8) is 

1

1

ˆ

n

l
l

d n

l
l

Z
CSI

δ

=

=

=
∑

∑
 (9) 

where 1

1

1

l

K
k

l l j j
j A k

Z M Y
K

δ−

∈ =

= ∑ ∑ . 

The estimator (9) is a non linear estimator and it can express as a function of 
means 1 2

ˆ ( , )dCSI g Z Z= , where 2Z  is an estimator of dissatisfaction ratio defined 
on some specific condition.  

The approach proposed by Di Battista (2003) allow us to a consistent estima-
tors of the sampling variances of (9) using approximation and resampling meth-
ods which are showed in the previous sections. 

6. SOME SIMULATION RESULTS 

In this section we report the results of a simulation study performed in order 
to illustrate the behaviour of the adaptive sampling in the Customer Satisfaction 
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Survey when the phenomenon of dissatisfaction is rare and concentrated in some 
clusters. The simulation mimics what we have observed in a real survey of Stu-
dent Satisfaction carried out at the University of Chieti-Pescara in 2005. 

The simulation study consists of generating three different populations with 
three different levels of dissatisfaction p = 0.05, 0.10 and 0.15 with NT = 1000. 
We generated four ordinal variables and one dichotomous variable from a multi-
variate normal distribution with zero mean and variance and covariance matrix: 

1.00 0.80 0.90 0.70 0.70
0.80 1.00 0.85 0.75 0.75
0.90 0.85 1.00 0.70 0.90
0.70 0.75 0.70 1.00 0.65
0.70 0.75 0.90 0.65 1.00

⎛ ⎞
⎜ ⎟
⎜ ⎟
⎜ ⎟=
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎝ ⎠

Σ . 

The four ordinal variables based on a five point scale (1 very dissatisfied, 2 dis-
satisfied, 3 neither satisfied nor dissatisfied, 4 satisfied, and 5 very satisfied) are 
obtained by fixing different thresholds in order to have the univariate distribution 
reported in Table 1. 

TABLE 1 

Univariate distribution of four simulated items 

Level of satisfaction 
 1 2 3 4 5 

Y1 0.05 0.05 0.10 0.20 0.60 
Y2 0.05 0.10 0.05 0.30 0.50 
Y3 0.10 0.15 0.05 0.40 0.30 
Y4 0.10 0.10 0.10 0.40 0.30 

 

The threshold for the dichotomous variable (δ ) has been chosen differently for 
each population such as to ensure the three levels of dissatisfaction mentioned 
above. This variable may represent the overall satisfaction indicator, and it as-
sumes value 1 if an individual is globally dissatisfied and 0 otherwise. 

The main characteristics of the three population are showed in Table 2. 

TABLE 2 

Enrolment status of students by gender (percentage) 

Enrolment status 
 First year Second year Third year 

M 15.5 21.5 15.0 
F 17.0 14.5 16.5 

 
In order to establish the clusters of dissatisfied students, we have considered 

the population characteristics of Business and Management Faculty students of 
the University of Chieti-Pescara observed from a Student Satisfaction Survey car-
ried out in 2005. In particular, around the 50% of students who are globally dis-
satisfied (p = 0.05, 0.10 and 0.15) are male, attending the second year of college 
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and belonging to the age class 20-21. The remaining 50% of students are roughly 
equally distributed among students with characteristics reported in Table 3. 

TABLE 3 

Characteristics of dissatisfied students 

Characteristics 
Gender Enrolment Attendance Age 

Male 1 year yes 26-ω 
Male 2 year yes 26-ω 
Male 2 year no 20-21 
Male 2 year no 26-ω 

Female 1 year yes 20-21 
Female 1 year yes 22-23 
Female 1 year yes 26-ω 
Female 2 year yes 20-21 
Female 3 year yes 26-ω 
Female 1 year no 26-ω 

 

The dCSI  has been constructed on the four items and the indicator variable δ. 
From the three artificial populations, 2,000 samples of size n = 50, 100 and 200 

were drawn both by simple random sampling with replacement and without re-
placement. Each simulated sample was used to start the adaptive selection in 
which the networks were obtained by joining the “neighbouring” individuals re-
porting dissatisfaction condition respect to the variable δ. The rule we have cho-
sen in order to construct a network is the following: if a student is completely dis-
satisfied with respect to the variable δ then we randomly select three students 
which are the same gender, belong to the same age class and attend the same 
classes. If any of these added units satisfies the former condition then we con-
tinue the procedure of aggregation. Subsequently, for each final sample the ordi-
nary, the jackknife, bootstrap and delta estimators of dCSI  and their variances 
respectively were computed.  

Because of population considered, there was a non zero probability that all the 
students in the sample were not dissatisfied, especially for small sample sizes. 
Hence, in the simulation we can obtain these samples for which dCSI  is indeter-
minate. We discarded these samples in the simulation as they provided no infor-
mation relevant to the phenomenon that we want to study.  

Considering 2,000 simulations, Table 4 and Table 5 list the expected (effec- 
tive) sample sizes E(ν), variances and relative efficiencies, 

( ) ( )
ˆ ˆ ˆ( ) var( )/var( )d adap d d adapeff CSI CSI CSI= , for the different sampling strategies 

for a selection of initial sample sizes n. The variance of ˆ
dCSI  is computed con-

sidering the sample sizes E(ν) in place of n. Thus, ˆvar( )dCSI  offers one way to 
compare the adaptive strategies with simple random sampling of equivalent sam-
ple size.  

The adaptive strategies have a relative advantage respect to random sampling 
strategies as shown in the last column of Tables 4 and 5. In fact, considering the 
first example population (p=0.05) with an initial sample size of 50 (initial sam-



 T. Di Battista, P. Valentini 304 

pling fraction 0.05), the adaptive sampling strategy increases the expected size by 
14.3%, but is almost 1.6 times as efficient as the equivalent non adaptive strategy.  

In the real survey, in order to build a network we can ask “interesting” indi-
viduals to name other individuals that share the same characteristics such as sex 
and/or class attendance. 

Whereas in our simulation, we constructed the network under the “worst con-
ditions” associating to interesting units other people sharing the same characteris-
tics randomly. Hence, in practice if there are clusters of dissatisfied units then we 
will expect that the adaptive sampling will perform better than the simulation 
study shows.  

TABLE 4 

Variance comparisons with adaptive cluster sampling and initial sample size n (with replacement) 

n ( )E ν  ˆvar( )dCSI  ( )
ˆvar( )d adapCSI  ( )

ˆ( )d adapeff CSI  

p=0.05     
50   57.14 0.307 0.192 1.599 
100 111.69 0.151 0.093 1.614 
200 219.05 0.065 0.046 1.416 

p=0.10     
50   62.84 0.127 0.098 1.292 
100 122.90 0.059 0.044 1.342 
200 235.35 0.027 0.020 1.337 

p=0.15     
50   69.43 0.097 0.065 1.506 
100 133.64 0.041 0.029 1.408 
200 251.60 0.023 0.014 1.655 

TABLE 5 

Variance comparisons with adaptive cluster sampling and initial sample size n (without replacement) 

n ( )E ν  ˆvar( )dCSI  ( )
ˆvar( )d adapCSI  ( )

ˆ( )d adapeff CSI  

p=0.05     
50 56.887 0.296 0.190 1.556 
100 112.456 0.141 0.092 1.536 
200 220.317 0.057 0.039 1.453 

p=0.10     
50 63.371 0.118 0.097 1.218 
100 123.492 0.053 0.041 1.295 
200 237.437 0.024 0.018 1.333 

p=0.15     
50 69.809 0.089 0.057 1.545 
100 134.455 0.039 0.026 1.500 
200 254.169 0.018 0.012 1.545 

 

Tables 6 and 7 list the coverage probabilities of the lower confidence bound 
(CPL), the upper confidence bound (CPU), the two-sided confidence interval 
(CPI) and the standardized length (length of interval estimate divided by 

1 22 msez α− ) of the linearization (LIN), the jackknife (JACK) and bootstrap 
(BOOT) variance estimators. The relative bias (RB) and the relative stability (RS) 
are also given, where 
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simulation mean of variance estimator 1
the true mse

RB = −  

and 
1 2(simulation mse of variance estimator)

the true mse
RS =  

The bootstrap estimators are approximated by the simple Monte Carlo approxi-
mation with B=500. 

The jackknife has a small relative bias but is quite unstable. The bootstrap and 
linearization variance estimators tend to underestimate and the phenomenon be-
comes more pronounced as the sampling number decreases. The bootstrap vari-
ance estimator perform slightly better than delta method in terms of relative bias 
and relative stability. Even though the coverage probabilities for all of the two-
sided confidence intervals are not close to the nominal level and the left tail is 
understated, the right tail is closer to the nominal level for all the three methods 
especially when sample size increases. The jackknife variance estimator perform 
better than the other two methods when the sample size increases. In addition, 
from the simulation results, we can conclude that the jackknife procedure is rec-
ommended for estimating the variance for the statistic defined in (8). 

TABLE 6 

Performances of confidence sets and variance estimators for adaptive cluster sampling with  
an initial random sampling with replacement (CSId, α = 0.05) 

 n CPL CPU CPI SEL RB RS 
p=0.05        

50 0.859 0.704 0.590 0.713 -0.026 1.756 
100 0.931 0.869 0.843 0.970 0.270 1.972 JACK 
200 0.948 0.907 0.902 0.968 0.060 1.217 
50 0.829 0.670 0.529 0.496 -0.572 0.825 
100 0.910 0.843 0.797 0.806 -0.195 0.803 BOOT 
200 0.940 0.900 0.891 0.913 -0.079 0.669 
50 0.820 0.660 0.512 0.450 -0.645 0.818 
100 0.895 0.829 0.774 0.726 -0.348 0.724 LIN 
200 0.934 0.884 0.874 0.856 -0.199 0.574 

p=0.10        
50 0.920 0.861 0.827 0.931 0.236 2.095 
100 0.947 0.915 0.914 0.983 0.090 0.931 JACK 
200 0.947 0.927 0.932 0.986 0.019 0.455 
50 0.899 0.835 0.784 0.773 -0.230 0.859 
100 0.941 0.905 0.901 0.930 -0.038 0.716 BOOT 
200 0.943 0.923 0.923 0.962 -0.032 0.433 
50 0.888 0.819 0.762 0.704 -0.364 0.774 
100 0.936 0.894 0.883 0.875 -0.156 0.605 LIN 
200 0.938 0.919 0.918 0.938 -0.081 0.401 

p=0.15        
50 0.932 0.920 0.896 0.951 0.083 1.363 
100 0.933 0.941 0.926 0.954 -0.024 0.581 JACK 
200 0.964 0.948 0.938 0.992 0.018 0.376 
50 0.916 0.905 0.877 0.870 -0.131 0.750 
100 0.927 0.937 0.917 0.920 -0.094 0.525 BOOT 
200 0.944 0.943 0.934 0.974 -0.018 0.370 
50 0.903 0.893 0.853 0.810 -0.255 0.650 
100 0.920 0.931 0.911 0.893 -0.149 0.492 LIN 
200 0.943 0.938 0.932 0.963 -0.043 0.349 
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TABLE 7 

Performances of confidence sets and variance estimators for adaptive cluster sampling with  
an intial random sampling without replacement (CSId, α = 0.05) 

 N CPL CPU CPI SEL RB RS 
p=0.05        

50 0.863 0.713 0.604 0.697 -0.101 1.489 
100 0.925 0.882 0.845 0.948 0.220 1.865 JACK 
200 0.939 0.911 0.901 0.919 -0.079 0.638 
50 0.838 0.676 0.544 0.481 -0.606 0.788 
100 0.906 0.859 0.808 0.792 -0.223 0.803 BOOT 
200 0.932 0.898 0.882 0.902 -0.065 0.541 
50 0.829 0.666 0.557 0.443 -0.664 0.799 
100 0.893 0.842 0.785 0.714 -0.374 0.709 LIN 
200 0.928 0.885 0.867 0.859 -0.188 0.503 

p=0.10        
50 0.930 0.873 0.845 0.927 0.177 1.811 
100 0.948 0.924 0.915 0.978 0.068 0.836 JACK 
200 0.953 0.922 0.927 0.950 -0.061 0.402 
50 0.904 0.833 0.787 0.778 -0.232 0.776 
100 0.933 0.913 0.897 0.928 -0.039 0.646 BOOT 
200 0.943 0.913 0.915 0.951 -0.030 0.388 
50 0.882 0.806 0.754 0.646 -0.377 0.719 
100 0.927 0.904 0.890 0.872 -0.154 0.574 LIN 
200 0.942 0.910 0.913 0.934 -0.077 0.377 

p=0.15        
50 0.920 0.927 0.896 0.954 0.079 1.210 
100 0.930 0.939 0.925 0.952 -0.091 0.531 JACK 
200 0.955 0.943 0.932 0.985 -0.081 0.331 
50 0.911 0.914 0.871 0.882 -0.108 0.758 
100 0.923 0.930 0.922 0.921 -0.087 0.443 BOOT 
200 0.942 0.942 0.928 0.958 -0.082 0.334 
50 0.897 0.898 0.855 0.814 -0.246 0.658 
100 0.917 0.920 0.915 0.900 -0.121 0.438 LIN 
200 0.939 0.937 0.921 0.957 -0.095 0.326 

6. CONCLUSION 

In this article we have illustrated that adaptive resampling designs may be use-
ful to detect dissatisfied people when the characteristics of dissatisfaction are con-
centrated in some cluster of population defined on some specific features.  

We have showed that adaptive strategies have an evident advantage respect to 
random sampling strategies. Thus, we suggest practitioners to adopt adaptive 
sampling designs when some a priori information (i.e. statistics from previous 
studies) about clusterization of dissatisfaction is available. In fact, adaptive de-
signs can give substantial gains in efficiency and then reduce the cost in terms of 
time, money and labour compared with simple random sampling designs.  

Moreover, we have showed that the jackknife procedure is recommended for 
estimating the variance of the estimator proposed and building the related confi-
dence interval.  
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SUMMARY 

Complex sampling designs for the Customer Satisfaction Index estimation 

In this paper we focus on sampling designs best suited to meeting the needs of Cus-
tomer Satisfaction (CS) assessment with particular attention being paid to adaptive sam-
pling which may be useful. Complex sampling designs are illustrated in order to build CS 
indices that may be used for inference purposes. When the phenomenon of satisfaction is 
rare, adaptive designs can produce gains in efficiency, relative to conventional designs, for 
estimating the population parameters. For such sampling design, nonlinear estimators 
may be used to estimate customer satisfaction indices which are generally biased and the 
variance estimator may not be obtained in a closed-form solution. Delta, jackknfe and 
bootstrap procedures are introduced in order to reduce bias and estimating variance. The 
paper ends up with a simulation study in order to estimate the variance of the proposed 
estimator. 

 


