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BAYESIAN NONPARAMETRIC DURATION MODEL 
WITH CENSORSHIP 

J. Hakizamungu, J.M. Rolin 

1. INTRODUCTION

Nonparametric Bayesian methods have known a strong development after 
Ferguson’s (1973, 1974) presentation of the Dirichlet process. Soon after number 
of authors brought new contributions on the subject including among others An-
toniak (1974), Doksum (1974), Susarla and Van-Rysin (1976), Ferguson and 
Phadia (1979), Rolin (1983, 1992a, 1992b), Florens and Rolin (1988), Rolin 
(1997), Florens, Mouchart and Rolin (1999). 

This paper is concerned with nonparametric i.i.d. durations models with cen-
sored observations and we establish by a simple and unified approach the general 
structure of a Bayesian nonparametric estimator for a survival function S . We 
then give some corollaries with Dirichlet prior random measures. These results 
are essentially supported by prior and posterior independence properties. 

In general, the estimation of a survival function S  has to cope with the techni-
cal difficulty of the partial observability of the latent duration variable X . This 
situation is modelized by introducing a censoring variable Y . The observable 
variables are then a duration variable ),min( YXT =  and an indicator variable 

{ }1 X YD ≤=  which indicates if X  is observed or censored. The estimation proc-

ess will be done using T  and D .
This paper is organized as follows: we start by the specification of the model 

and some assumptions, we present afterwards nonparametric Bayesian estimators 
of the survival function. In an appendix, we recall some properties of random 
Dirichlet measures and present the Bayesian nonparametric estimator using 
purely discrete prior distributions. 

2. SPECIFICATION OF THE MODEL

Let X  and Y  be two independent random variables being respectively a la-
tent duration and a censoring time with respective survival functions S  and G .
The joint survival function is therefore: 



J. Hakizamungu, J.M. Rolin 238

( , ) ( , | , ) ( ) ( )x y P X x Y y S G S x G yΦ = > > = ×  (1)

Assumption 1. A priori S and G  are independent, i.e., GS .

Therefore, by standard properties of conditional independence, we obtain the 
following result: 

Lemma 1. Assumption 1 and equation(1) are equivalent to ( ) ( )X, S   Y, G

If {( , )i iX Y  : 1 }i n≤ ≤  is a sample of size n  of ),( YX , i.e., 

1

( )|i i

i n

X  , Y  S, G 
≤ ≤

 and ( , )| , ( , )| ,i iX Y S G X Y S G≈ ni ≤≤∀1 ,

the observable data are defined by 

),min( iii YXT =  and }{1
ii YXiD ≤= ni ≤≤∀1  (2) 

By elementary properties of conditional independence (see, e.g., Mouchart and 
Rolin (1984) or Florens, Mouchart and Rolin (1990)), we deduce the following 
result:

Lemma 2. 

i) The observed random variables are independent given nY1  = { iY : 1 }i n≤ ≤ ,

i.e.,

1
1

( )| , n
i i

i n

T  , D  S, G  Y
≤ ≤

 (3) 

ii) The distribution of ),( ii DT  conditionally on ),,( 1
nYGS  only depends on S

and iY  , i.e., 

1( , ) ( , , )|n
i iT D S G Y  S, Y   (4) 

and that implies 

1 1 1( , ) |n n nT D G  S, Y   (5) 

Since the distribution of nY1  is independent of S , we have a Bayesian cut (see 

Florens, Mouchart and Rolin (1990)) and the inference may be totally separated 

into the inference on G  through the marginal model generating nY1  and the in-

ference on S  through the conditional model generating ),( 11
nn DT  given nY1 .
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Equivalently, nY1  may be considered as “known” or “fixed” for the estimation 

of S .
As will be shown later on, we have in fact a stronger result : the inference on 

S  does not require the knowledge of the censoring times if ),( 11
nn DT  are ob-

served. This means that the knowledge of “unactive” censoring times ( iY  greater 

than iX ) is unnecessary. 

Lemma 3. The following conditional independence relation is verified : 

1 1 1| ,n n nS Y T D  (6) 

In conclusion, whatever is the distribution of G , the posterior distribution of 
S  will be the same in the joint model as the posterior distribution of S  in the 

model conditional on nY1  , i.e., in the model considering that the censoring times 

are fixed and known. 

Let us now specify the prior distribution of S  or equivalenty the prior distri-
bution of the associated hazard function H  defined by 

)(ln)( tStH −=  (7) 

Assumption 2. The measure *H  associated to the hazard function H  is purely 

random, i.e., for all }1{ kj: B j ≤≤ , measurable finite partition of ),0[ ∞=
+R ,

we have the following independence property: 

kj

jBH
≤≤1

* )(  (8) 

This assumption amounts to say that S  is a neutral to the right process and 
Doksum (1974) has shown that the independence properties are preserved a pos-
teriori (see also Rolin (1983)). The prior distribution is therefore only specified 
through independence properties. Note also that the Dirichlet process is a neutral 
to the right process. 

3. NONPARAMETRIC BAYESIAN ESTIMATOR

We want to analyse the posterior distribution of S  given ),( 11
nn DT . For 

},...,1{ nJ ⊂ , let }0{}1{ =∩∩=∩=
∈∈

i
Ji

i
Ji

J DDA
c

. On this set, ),(1 cJJ
n YXT =

where }:{ JiXX iJ ∈=  and }:{ c
iJ

JiYY c ∈=  and we have the following result: 
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Theorem 1. Whatever is the prior distribution of S , for any measurable function 
K ,

1 1 1

E ( ) ( )| ,

E[ ( )| , , ]

E ( )| ,

c

c

c

c

i J J
i Jn n n

i J J
i J

K S S Y X Y

K S T D Y

S Y X Y

∈

∈

=

∏

∏

    on JA  (9) 

This proves Lemma 3, since the above formula shows that the conditional ex-
pectation only depends on the observed censoring times. 

The above formula may be rewritten in terms of the order statistics of the ob-

servable lifetimes. Let jZ{ , }1 Mj ≤≤  be the order statistics (the distinct ob-

servable lifetimes in increasing order) of nT1 . We define the number of individu-

als at risk at time jZ  by 

≤≤

≥=
ni

ZTj ji
N

1
}{1  (10) 

and respectively, the number of individuals censored and the number of individu-

als uncensored at time jZ  by 

≤≤

===
ni

DZTj iji
F

1
}0,{1  and 

≤≤

===
ni

DZTj iji
E

1
}1,{1  (11) 

With these notations, Theorem 1 may be rewritten as 

Corollary 1. For any measurable function K ,

1

1 1

1

E ( ) ( ) | ,

E[ ( )| , ]

E ( ) | ,

j
c

j
c

F

j J J
j Mn n

F

j J J
j M

K S S Z X Y

K S T D

S Z X Y

≤ ≤

≤ ≤

=

∏

∏

         on JA  (12) 

Proof. Let K  and iK , ni ≤≤1 , be arbitrary measurable functions, by definitions 

and independence properties, we have 
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= { } { } 1E ( ) ( ,1)1 ( ,0)1 |
i i i i

c

n
i i X Y i i X Y

i J i J

K S K X K Y Y≤ >

∈ ∈

∏ ∏

= { } 1E ( ) ( ,1)1 ( ,0) ( )|
i i

c

n
i i X Y i i i

i J i J

K S K X K Y S Y Y≤

∈ ∈

∏ ∏

because 1
1

| , n
i

i n

X S Y
≤ ≤

. Now, since 1 |n
JS Y X , if we define 

E ( ) ( )| ,

( , )

E ( )| ,

c

c

c

c

c

i J J
i J

J J

i J J
i J

K S S Y X Y

L X Y

S Y X Y

∈

∈

=

∏

∏

we have 

1E ( ) ( )| ,
c

n
i J

i J

K S S Y X Y
∈

∏ = ),( cJJ YXL 1E ( )| ,
c

n
i J

i J

S Y X Y
∈

∏

Therefore, 

1
1

E ( ) ( , )1 |
J

n
i i i A

i n

K S K T D Y
≤ ≤

∏ = 1
1

E ( , ) ( , )1 |c
J

n
J i i i AJ

i n

L X Y K T D Y
≤ ≤

∏

Now, for 1+<≤ jj ZtZ , according to Docksum’s result )(ln)( tStH −=  may 

be decomposed into the following sum of independent terms conditionally on 

cJJ YX ,  , i.e., 

* *
1 1

1

( ) (( , ]) (( , ])l l l

l j

H t H Z Z H Z t− −

≤ ≤

= +  (13) 

This is equivalent to say that )(tS  is a product of independent terms condition-

ally on cJJ YX , , i.e., 

1
1

E ( ) ( , )1 |
J

n
i i i A

i n

K S K T D Y
≤ ≤

∏
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)(

)(

)(

)(
)(

1 1 jjl l

l

ZS

tS

ZS

ZS
tS ×= ∏

≤≤ −

 (14) 

Now, if *S  is the measure associated to the survival function S  and if we 

suppose that *S  is a random measure which follows the Dirichlet law, i.e., 

)( ** aDiS ≈  , where *a  is a finite measure, Ferguson (1973) has shown that for 

uncensored observations, *S  is a posteriori a Dirichlet measure. Therefore, 

* *| , ( )cJ uJ
S X Y Di a N≈ +

where 

1
i iu X i T

i J i n

N Dε ε
∈ ≤ ≤

= =  (15) 

is the counting measure of uncensored observations ( xε  is the Dirac probability 

measure at point x ).
From properties of the Dirichlet measure (see Appendix 1), we deduce that, 

* *
1

1

( )
| , [( )(( , )], (( , ]) ]

( )
c

l
J u l l l lJ

l

S Z
X Y Beta a N Z a Z Z E

S Z
−

−

≈ + ∞ +

and that 

* *( )
| , [( )(( , ]), (( , ])]

( )
cJ u jJ

j

S t
X Y Beta a N t a Z t

S Z
≈ + ∞

Combining these properties with Theorem 1, we obtain the following result: 

Theorem 2. If *H  is purely random (Assumption 2), then for 1+<≤ jj ZtZ , we 

may write )(tS  as a product of independent terms conditionally on ),( 11
nn DT ,

namely

)(

)(

)(

)(
)(

1 1 jjl l

l

ZS

tS

ZS

ZS
tS ×= ∏

≤≤ −

Moreover if )( ** aDiS ≈  and *( ) ([0, ]), 0a t a t t= ∀ > , then, for Ml ≤≤1 , 

1 1 1

1

( )
| , [ ( ) ( ) , ( ) ( ) ]

( )

n nl
l l l l l l

l

S Z
T D Beta a a Z N E a Z a Z E

S Z
−

−

≈ ∞ − + − − +  (16) 
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and

1 1 1

( )
| , [ ( ) ( ) , ( ) ( )]

( )

n n
j j

j

S t
T D Beta a a t N a t a Z

S Z
+≈ ∞ − + −  (17) 

Proof. Note that 

([ , ])

1 1 1

( )
( )

( )

c l

j

N Z

F l
j

j M l M l

S Z
S Z

S Z

∞

≤ ≤ ≤ ≤ −

=∏ ∏

where 

([ , ])c l j

l j M

N Z F
≤ ≤

∞ =

cN  denotes therefore the counting measure of censored observations, i.e., 

1

(1 )
ic i T

i n

N D ε
≤ ≤

= −

Applying Theorem 1 provides the result if we notice that 

1(( , ]) ([ , ])u l c l l l l lN Z N Z N E N F+∞ + ∞ = − = +

and

(( , ])u cN t N∞ + 1([ , ])jZ + ∞ = )( cu NN + 1([ , ])jZ + ∞ = 1jN +

The same type of computations provides the following corollary: 

Corollary 2. Conditionally on ),( 11
nn DT ,

)(

)(

)(

)(

)(

)(

11 −
×

−
=

−− j

j

j

j

j

j

ZS

ZS

ZS

ZS

ZS

ZS

where 

1 1

1

( ) ( )
| ,

( ) ( )

j j n n

j j

S Z S Z
T D

S Z S Z−

−

−

1 1 1

1

( )
| , [ ( ) ( ) , ( ) ( )]

( )

j n n
j j j j

j

S Z
T D Beta a a Z N a Z a Z

S Z
−

−

−
≈ ∞ − − + − −  (18) 
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1 1

( )
| , [ ( ) ( ) , ( ) ( ) ]

( )

j n n
j j j j j j

j

S Z
T D Beta a a Z N E a Z a Z E

S Z
≈ ∞ − + − − − +

−
 (19) 

This last formula shows that, if *a  is a diffuse measure, then, a posteriori, 

there is a jump only at the death observations ( 0>jE ).

Taking the posterior expectation provides the Susarla-Van Ryzin estimator 

Corollary 3. If )( ** aDiS ≈ , then, for 1+<≤ jj ZtZ ,

1 1

1

11 1

1

1 1

ˆ ( ) [ ( )| , ]

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

( ) ( )
{1 }

( ) ( ) ( )

n n
SV

j l l l

l jj j l l

j l

l j l l

S t E S t T D

a a t N a a Z N E

a a Z N a a Z N

a a t N F

a n a a Z N

+

≤ ≤+ −

+

≤ ≤ +

=

∞ − + ∞ − + −
= ×

∞ − + ∞ − +

∞ − +
= × +

∞ + ∞ − +

∏

∏

 (20) 

where *( ) ([0, ])a t a t= , 0>∀t .

Considering the non informative case, i.e., 0)( =∞a , we obtain the Kaplan-

Meier estimator

Corollary 4. In the noninformative case, the posterior expectation is given by: 

{ : }

ˆ ( ) 1
j

j

KP

j Z t j

E
S t

N≤

= −∏  (21) 

APPENDIX 

1. Random Dirichlet measures 

We first recall the definition of a Dirichlet measure (Ferguson (1973)). 

Definition: *~m  is a random Dirichlet measure defined on (A, M ) with parame-

ter *a , a finite measure on (A, M ), and we write )(~ ** aDim ≈ , if for all partitions 

∈≤≤ jj BljB  },1,{ M, the random vector )(~
1

* Bm ,..., )(~*
lBm  follows the Dirich- 

let law with parameter )( 1
* Ba ,..., )(*

lBa  characterized by 
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*

1

*

1 1*

*
111

1

{ } 1
[ ]

j

j
j l

j

j l a (B )

j j j j
vj lj l j

j l

a (B )

P m (B ) dv v dv
a (B )

≤ ≤

≤ ≤ −

=≤ ≤≤ ≤

≤ ≤

∈ = × ×∏
∏

 (22) 

In particular, ∈∀B M

* * *( ) [ ( ), ( )]cm B Beta a B a B≈   (23) 

The Dirichlet measure may also be characterized as follows (see, e.g., Rolin 
(1992a). Let us define the following σ -algebra 

*{ ( ) : , }B m C C B C Mσ= ⊂ ∈F

and the conditional probability 

*
*

*

( )
( | )

( )

m C B
m C B

m B

∩
=

Proposition. Let *~m  be a random probability on (A, M ). Then )(~ ** aDim ≈ if and 

only if, ∈∀ BC , M with 1)(0 *
<< Ba ,

(i) * ( | )m C B cB
F

(ii) * * *( | ) [ ( ), ( )]cm C B Beta a C B a C B≈ ∩ ∩  (24) 

2. Estimator using a purely discrete prior distribution

Let }1:{ mjt j ≤≤  with mttt <<< ...21  be the support of *S . The hazard 

rate, for mj ≤≤1  , is defined by 

)(

)(
1

)(

)(
1

1−

−=
−

−=Λ
j

j

j

j

j
tS

tS

tS

tS
 (25) 

These hazard rates characterize entirely *S  since, for mj ≤≤1 , 

1

( ) (1 )j l

l j

S t
≤ ≤

Λ= −∏

and
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*

1

({ }) ( ) ( ) (1 )j j j j l

l j

S t S t S t
≤ <

Λ Λ= − − = −∏

Now, if , for mj ≤≤1 , jN , jE  et jF  denote respectively the number of in-

dividuals at risk, uncensored and censored at time jt , the likelihood of the sam-

ple is given by 

jj F

mj

j

E

mj

jn tStSL )()}({
11

*
∏∏

<≤≤≤

×=

or, in terms of hazard rates, by 

1

(1 )j j jE N E

n j j

j m

L
−

≤ <

Λ Λ= −∏  (26)

For the prior distribution, note that *H  is a purely random measure if and 

only if the jΛ  ’s are independent random variables. In view of the likelihood, this 

property will hold a posteriori. Now, if *S  is a Dirichlet measure with purely dis-

crete parameter *a , we have 

* *[ ({ }), (( , ])] [ , (1 )]j j j j j j jBeta a t a t Beta c l c lΛ ≈ ∞ = −  (27) 

where ( )j jl E Λ=  and * ([ , ]) ( ) ( )j j jc a t a a t= ∞ = ∞ − − .

By taking jc , mj <≤1 , to be arbitrary positive constants, we see that we may 

use more general priors than Dirichlet measures to obtain tractable posterior dis-
tributions. This gives the following result 

Theorem 3. If a priori,
1

j

j m≤ <

Λ  and for mj <≤1 ,

jΛ ≈ Beta [ , (1 )]j j j jc l c l−  (28) 

where ( )j jl E Λ=  and jc , mj <≤1  are arbitrary positive constants, then, a 

posteriori, 1 1
1

| ,n n
j

j m

T D
≤ <

Λ  and for mj <≤1 , 

j BetaΛ ≈ [ , (1 ) ]j j j j j j jc l E c l N E+ − + −  (29) 

Note that jc  indicates the degree of credibility that the statistician allows to the 

prior distribution because the variance of the hazard rates is given by 
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(1 )
( )

1

j j

j

j

l l
V

c
Λ

−
=

+

As a corollary, we obtain 

Corollary 5. The Bayesian nonparametric estimator of the survival function for 
mj <≤1  is given by: 

1 1
1

ˆ ( ) [ ( )| , ] 1n n l l l
BN j j

l j l l

c l E
S t E S t T D

c N≤ ≤

+
= = −

+
∏  (30) 

We note that if jc → 0 we obtain the Kaplan-Meier estimator. This is the same 

as to use a non-informative prior law as 1 1( ) (1 )j j jf λ λ λ
− −

∝ −
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RIASSUNTO

Modello non parametrico Bayesiano di durata con dati censurati 

Il seguente articolo tratta di modelli i.i.d. non parametrici di durata con dati censurati e 
considera una struttura generale di uno stimatore bayesiano non parametrico per una fun-
zione di sopravvivenza attraverso un approccio semplice e unificato. Per le distribuzioni a 
prior di Dirichlet, si descrive in modo completo la struttura della distribuzione a posteriori 
della funzione di sopravvivenza. Questi risultati sono essenzialmente sostenuti dalle pro-
prietà di indipendenza a priori e a posteriori. 

SUMMARY

Baesian nonparametric duration model with censorship 

This paper is concerned with nonparametric i.i.d. durations models with censored ob-
servations and we establish by a simple and unified approach the general structure of a 
bayesian nonparametric estimator for a survival function S. For Dirichlet prior distribu-
tions, we describe completely the structure of the posterior distribution of the survival 
function. These results are essentially supported by prior and posterior independence 
properties.


