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DISTRIBUTIONS 
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1. INTRODUCTION 

In many research fields, as for example in probabilistic weather forecasting, 
valuable predictive information about a future random phenomenon may come 
from several, possibly heterogeneous, sources. Forecast combining methods have 
been developed over the years in order to deal with ensembles of sources (Collins, 
2007). The aim is to combine several predictions in such a way to improve fore-
cast accuracy and reduce risk of bad forecasts (Winkler and Clemen, 2004): for 
example, the ensemble mean usually outperforms the individual ensemble mem-
bers. 

In this framework, we propose the use of a Bayesian approach to information 
combining, which consists in treating the predictive probability density functions 
(pdfs) from the individual ensemble members as data in a Bayesian updating 
problem. The likelihood function is shown to be proportional to the product of 
the pdfs, adjusted by a joint “calibration function” describing the predicting skill 
of the sources (Morris, 1977). We propose to model the calibration function in 
terms of bias, scale and correlation and to estimate its parameters according to 
the least squares criterion. The performance of our method is investigated and 
compared with that of Bayesian Model Averaging (Leamer, 1978; Raftery et al., 
2005) on simulated data.  

The paper is organized as follows. In section 2 Morris’ model is rephrased in a 
probabilistic forecasting context. Section 3 presents the proposed forecast com-
bining model and describes our choice about the final deterministic forecast. The 
comparison with Bayesian Model Averaging is illustrated in section 4. Finally, in 
section 5 the conclusions are given. 

2. MORRIS’ APPROACH IN THE FRAMEWORK OF FORECAST COMBINING 

In the context of information combining, according to Morris (1977), the re-
ception of K  expert answers may be viewed as the outcome of an experiment. A 
likelihood function may be associated with it and possibly used to update a prior 
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judgment via Bayes theorem. In such a way, the information combining process 
just becomes an information updating process. 

This general principle can be applied to the aggregation of any kind of infor-
mation, ranging from the combination of point estimates to the combination of 
probability distributions. In the following, we rephrase Morris’ algorithm in a 
predictive context.  

More precisely, we suppose an unknown quantity y has to be forecast on the 
basis of the forecasts 1,  ..., ,  ...,k Kf f f  provided by K models (ensemble members) 

1 ,  ..., ,  ...,k KM M M . Denoting by (  )k k kg g y f=  the individual ensemble mem-
ber predictive pdf associated with (and parameterized by) kf ( 1,  2,  ...,  k K= ), 
the Bayesian algorithm can be written as: 

1(  ,  ..., ,  ..., )k Kp y g g g  ∝ 1( ,  ..., ,  ...,  ) ( )k KL g g g y p y⋅  (1) 

where 
– 1(  ,  ..., ,  ..., )k Kp y g g g  denotes the ensemble posterior predictive pdf; 
– ( )L ⋅  denotes the likelihood function for the experimental data 

1{ ,  ..., ,  ..., }k Kg g g ; 
– ( )p y  is a prior predictive pdf (which may also be uninformative). 

What makes the Bayesian approach rather difficult to apply is the assessment 
of the likelihood function: a joint probability assessment over the set of pdfs 
from the ensemble members, which must account for the differences in perform-
ance and the dependence among the ensemble members. Two assumptions allow 
to express ( )L ⋅  in a form easier to be modelled (Morris, 1977). 

Assumption (i). Each ( )kg ⋅  is parameterized by a location parameter km  (coin-
ciding with kf , in the present case) and a shape parameter kv . For example, ( )kg ⋅  
denotes the pdf of a Gaussian random variable ( ,  )k kf vN . Then, equation (1) 
becomes: 

1(  ,  ..., ,  ..., )k Kp y g g g  =  (  , )p y f v  ∝ (  , ) ( ) ( )L y L y p y⋅ ⋅f v v  (2) 

where 1,2,...,[ ]k k Kf =′=f  and 1,2,...,[ ]k k Kv =′=v . 
Assumption (ii). The joint probability density value assigned to the event “the 

shape parameters of the kg s are 1,  ..., ,  ...,k Kv v v ” does not depend on y: 

( ) ( )L y L=v v .1 Using this assumption, equation (2) takes the form: 

(  , )p y f v  ∝ (  , ) ( )L y p y⋅f v  (3) 

                
1 As stochastic independence is reciprocal, assumption (ii) can be also expressed as invariance to 

scale about y , that is (  ) ( )p y p y=v : vector v alone gives no information regarding y. 
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where the conditional likelihood (  , )L yf v  has to be viewed as a function of y: it 
represents the joint probability – conditioned upon the variances vector v – of 
the event “the ensemble members 1 ,  ..., ,  ...,k KM M M  will give the predictions 

1,  ..., ,  ...,k Kf f f , respectively”. 
For the purpose of assessing (  , )L yf v , Morris (1977) introduces the notions 

of performance indicator and performance function. 
The performance indicator kτ  associated with ( )kg ⋅  is defined as the cumula-

tive distribution function ( , )k k kG f v⋅  evaluated at the observed value 0y  of y: 

0   ( , , )k k k kf v yτ τ= 0

0 ( , )     ( , )
y

k k k k k kg y f v dy G y f v
−∞

= =∫  (4) 

where 0 ≤ kτ ≤ 1. For example, if the observed value is the 0.3-quantile of ( )kg ⋅ , 
then kτ  = 0.3.  

The performance function, denoted by (  , )φ yvτ , is defined as a conditional joint 
density on the K-dimensional vector 1,2,...,[ ]k k Kτ =′=τ 1,2,...,[ ( )] ( )k k KG y y=′= =G , given 
v and y. 

Given the vector v, for any fixed value of y, a monotonic decreasing relation-
ship exists between corresponding elements in τ  and f . So, a change of variable 
allows to show that (Morris, 1977): 

(  , )L yf v  =
1

( ) ( , )
K

k k k
k

C y g y f v
=

⋅∏ , (5) 

where: 

( )C y  =  [ ( )  , ]φ y yG v  =  (  , )φ yvτ  (6) 

is called joint calibration function. It is nothing but the performance function 
 (  , )φ yvτ  looked at as a function of y (for fixed f ): it expresses the admissibility 

degrees assigned to each possible y value looked at as the realization of the K-
dimensional vector τ . 

Therefore, equation (5) shows that the likelihood function can be obtained as 
the product of the pdfs from the ensemble members, adjusted by function ( )C ⋅ : 
it is this last function that models the predictive performance of the ensemble 
members and their mutual dependence in assessing y.  

By substituting (5) into (3), the posterior predictive pdf can be written as: 

(  , )p y f v  ∝ 
1

( ) ( , )
K

k k k
k

C y g y f v
=

⋅∏ ( )p y⋅  (7) 

which describes the structural form of what we call “Joint Calibration Model”. 
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3. MODELLING THE PERFORMANCE FUNCTION: THE JOINT CALIBRATION MODEL 

According to the Maximum A Posteriori (MAP) principle, we suggest to take 
the value maximizing equation (7)  

ˆ JCMy = arg max (  , )
y

p y f v  (8) 

as the final deterministic forecast for y yielded by the Joint Calibration Model 
(JCM).  

However, implementing JCM requires that function ( )C y  is properly speci-
fied. In other words, once the scale parameters in v have been somehow assessed 
(see section 4), a conditional pdf (  , )φ yvτ  on the K-dimensional performance 
indicator variate τ  should be specified. 

This task is less demanding if function (  , )φ yvτ  can be assumed to take the 
same value whatever be the observed value of y (equivariance to shift assumption, 
Morris 1977):  

(  , )φ yvτ  =  (  )φ vτ  (9) 

However, it still remains a frustratingly difficult task, especially in the absence 
of an adequate parametric modelling, which would allow to assess the entire func-
tion by means of a relatively small number of parameters. 

There exist several suitable choices about a parametric probabilistic model for 
the K-dimensional performance variate τ . Some preliminary remarks are neces-
sary in order to motivate our choice: 

– according to definition (4), each element kτ  of vector τ  is a (cumulate) 
probability; 

– when modeling a joint pdf (  )φ ⋅ v  on the variate τ , it needs to take into ac-
count that “values [...] near 0 or 1 will ordinarily have smaller standard errors than 
those around ½. [...] A possibility is to suppose some transform of probability, 
like log-odds, has constant variance” (Lindley, 1990); 

– log-odds lie in the range −∞  to +∞ : probabilities that are less, equal or 
greater than 0.5 correspond to negative, zero, or positive log-odds, respectively. 
Therefore, modelling the performance function in terms of log-odds, instead of 
probabilities, is advantageous also because the range of log-odds is coherent with 
a Gaussian distribution, which is attractive for its good analytic properties and the 
clear interpretation of its parameters.  

For these reasons, a reasonable choice is to assume: 

τ  ∼ NK ( )t,S  (10) 

where 
– τ  denotes the K-dimensional vector of log-odds 1,...,[ ]k k Kτ =′ , with kτ =  
ln[ /(1 )]k kτ τ= −  ∈ℜ  for k = 1, 2, ..., K; 
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– t  and S  denote the mean vector and the covariance matrix of the K-variate 
Gaussian distribution, respectively. 

The analytical form of function (  )φ vτ  can be obtained by using a change of 
variable from τ  to τ . Denoting by (  )ψ ⋅ v  the model in (10) for the performance 
function of the transform τ , the well-known change formula yields: 

(  )φ vτ   J  (  )ψ→= ⋅ vτ τ τ τ  (11) 

As the Jacobian of the transformation τ → τ  is: 

  
1

1J  
(1 )

K

k k kτ τ→
=

=
−∏τ τ  (12) 

the resulting performance function of the variate τ  is: 

(  )φ vτ 1

=1

1 1 exp ( )  ( )
(1 ) 2

K

k k k
c

τ τ
−⎡ ⎤′= ⋅ ⋅ − − −⎢ ⎥− ⎣ ⎦

∏ St tτ τ  (13) 

where c denotes the normalization constant. 
Finally, the calibration function ( )C y , defined in (6), can be obtained as fol-

lows. 
Definition (4) implies that: 

( )y=Gτ  (14) 

where ( )yG [ ]kG ′= 1,...,[ ln( /(1 ))]k k k KG G =′= − . By substituting equation (14) in 
(13), ( )C y  takes the form: 

( )C y = ( ( )  )φ y =G v  

1

=1

1 1 exp ( ( ) )  ( ( ) )
( ) [1 ( )] 2

K

k k k
c y y

G y G y
−⎡ ⎤′= ⋅ ⋅ − − −⎢ ⎥⋅ − ⎣ ⎦

∏ G S Gt t  (15) 

It’s worth noting that the calibration function, as represented by (15), is univo-
cally defined by two parameters: the mean vector and the covariance matrix of τ . 
These parameters are estimated by least squares on a training set consisting of n 
verifying observations 1,  ..., ,  ...,i ny y y  of y and the corresponding forecasts 

1,  ..., ,  ...,i ik iKf f f  from the ensemble members, for i = 1, 2, ..., n. In other words, 
the estimates are the solutions of the following minimization problem,  

2

, 1

ˆmin ( )
n

i i
i

y y
=

−∑
t S

, (16) 

where ˆ iy  is obtained according to equation (8). 
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4. A COMPARISON WITH BAYESIAN MODEL AVERAGING: A SIMULATION STUDY 

The performance of JCM is compared with that of Bayesian Model Averaging 
(BMA) on a Monte Carlo study. 

BMA (Leamer, 1978; Hoeting et al., 1999) is a standard method for combining 
predictive pdfs from different sources. Section 4.1 briefly presents BMA exten-
sion to dynamical models proposed by Raftery et al. (2005). In section 4.2 the 
simulated settings explored in our study are described and the results are dis-
cussed. 

4.1. Bayeisan Model Averaging 

Let y be a quantity to be predicted on the basis of the determinisitic forecasts 
1,  ..., ,  ...,k Kf f f  given by K models 1 ,  ..., ,  ...,k KM M M . BMA predictive model 

can be written as follows (Raftery et al., 2005):  

1
1

(  ,  ..., ,  ..., ) (  )
K

k K k k k
k

p y f f f w g y f
=

=∑  (17) 

where: 
– (  )k kg y f  is the individual ensemble member predictive pdf associated with 

kf ; 
– 0kw ≥  represents the weight assigned to ( )kg ⋅  on the basis of the perform-

ance of model kM  in a training period, with 
1

1
K

k
k

w
=

=∑ . 

Raftery et al. (2005) restrict their attention to the situation where the condi-
tional pdfs (  )k kg y f  are approximated by normal distributions, each centered at 
a linear function of the forecast, k k ka b f+ , with ,  k ka b ℜ∈ . That is, 

 ky f  ∼ N 2( , )k k ka b f σ+ ,     1,  2,  ...,  k K=  (18) 

Therefore, according to BMA, the pdf of the quantity of interest is a weighted 
average of pdfs centered on the individual bias-corrected forecasts. The condi-
tional expectation of y given the forecasts is taken as the BMA final forecast 
ˆ BMAy : 

ˆ BMAy = 1
1

(  ,  ..., ,  ..., ) ( )
K

k K k k k k
k

E y f f f w a b f
=

= +∑  (19) 

Model parameters, ka , kb , kw  (k = 1, 2, ..., K) and 2σ , are estimated on a 
training dataset, consisting of forecasts from the ensemble members and verifying 
observations. Firstly, ka  and kb  are estimated by simple linear regression of the 
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observations on the forecasts. Then, the estimation of kw  and 2σ  is carried out 
by maximum likelihood via the EM algorithm (Dempster et al., 1977; McLachlan 
and Krishnan, 1997). 

4.2. The simulation study 

The performance of JCM with respect to BMA has been evaluated on simu-
lated ensembles. Both the methods are compared to the ensemble mean. 

Two remarks about the way JCM has been implemented are needed: 
- a non-informative prior in (7) has been adopted; 
- the scale parameters in vector v should be known before fitting JCM. In ab-
sence of models 1 ,  ...,  ,  ...,  k KM M M  providing a variability measure together 
with the deterministic forecast2, they have to be somehow assessed. In our study, 
the generic element kv  has been estimated on the training data by the mean of 
squared residuals in a simple linear regression of ikf  on iy , for i = 1, 2, ..., n. 

For the sake of simplicity in designing the simulated settings, the number K of 
ensemble members was taken equal to 2. 

The predicted values for both the members have been simulated starting from 
the observed values 1, ..., , ...,i ny y y  of sea-level pressure y (in mb) in Pacific 
Northwest in the second half of June 2000 (SLP dataset available at http:// 
www.stat.washington.edu/MURI). 

The forecasts given by the ensemble members were drawn from a bivariate 
normal distribution with diagonal covariance matrix: the i-th value predicted by 
member 1 was simulated from a Normal distribution with mean equal to the ob-
served value iy  and variance equal to 1; the i-th value predicted by member 2 
was simulated from a Normal distribution with mean equal to iy +1 and variance 
equal to 2. With this setup, the performance indicators of the two ensemble 
members are mutually independent; moreover, member 2 tends to provide biased 
forecasts, which are more variable than those given by member 1.  

In order to explore the effectiveness of the compared methods in the presence 
of some association between members’ performance, we considered the same 
situation described above also with non-diagonal covariance matrices. Positive 
and relatively high values of Pearson’s correlation coefficient r between members’ 
performance have been examined, as this is the most problematic context where 
a combining algorithm can be applied (Cooke, 1991). For this reason, we re-
ported only the results for r=0.8 and r=0.9. The situation corresponding to r=0 
has been taken as a benchmark, because it represents a null situation, where the 
ensemble members behave independently from each other. 

                
2 Recently, in probabilistic weather forecasting such a variability measure can be assessed by 

running the model in the same starting time, using different initial conditions or physical parametri-
zations (see e.g. http://www.nhc.noaa.gov/modelsummary.shtml ). 
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TABLE 1 

Training period and test day (in calendar days of June 2000), for the 10 replicates of the simulation. 
n denotes the number of sea-level pressure observed values 

Replicate Training period (3 days) Test day 
Replicate 1 14th, 16th-17th (n=488) 18th  (n=164) 
Replicate 2 17th, 18th, 21th (n=461) 22th  (n=168) 
Replicate 3 18th, 21th, 22th (n= 468) 23th  (n=164) 
Replicate 4 21th – 23th        (n=468) 24th  (n=171) 
Replicate 5 22th – 24th        (n=503) 25th  (n=164) 
Replicate 6 23th – 25th        (n=499) 26th  (n=163) 
Replicate 7 24th – 26th        (n=498) 27th  (n=160) 
Replicate 8 25th – 27th        (n=487) 28th  (n=154) 
Replicate 9 26th – 28th        (n=477) 29th  (n=164) 
Replicate 10 27th – 29th        (n=478) 30th  (n=155) 

 

We generated 10 replicates for each setting (r=0, r=0.8 and r=0.9). For each 
replicate, a training period of 3 calendar days has been considered and the follow-
ing day has been taken as a test period (see table 1). For some days the data were 
missing, so that the number of calendar days spanned by the training dataset was 
sometimes larger than three. 

On each training dataset, both BMA and JCM were carried out. The BMA 
procedure described in section 4.1 has been implemented by Raftery et al. in the R 
package ensembleBMA. We implemented JCM procedure in R code, resorting 
to simulated annealing (implemented in the R function optim ) in order to ad-
dress the minimization problem in (16). 

 The predictive performance of the compared procedures has been assessed in 
terms of root mean square error (RMSE). 

TABLE 2 

Results of the simulation study. 
The values are root mean square RMSEs (with the corresponding range reported in brackets) 

Pearson’s correlation coeffcient Predictive model 
r = 0 r = 0.8 r = 0.9 

Member 1 0.99 (0.96,1.03) 1.01 (0.95, 1.11) 0.99 (0.91, 1.02) 
Member 2 2.23 (2.13, 2.41) 2.22 (2.09, 2.49) 2.20 (2.05, 2.30) 
Ensemble mean 1.22 (1.16, 1.34) 1.52 (1.40, 1.70) 1.52 (1.42, 1.58) 
BMA 0.94 (0.85, 1.07) 1.00 (0.93, 1.08) 0.98 (0.92, 1.02) 
JCM 0.92 (0.87, 1.00) 0.90 (0.85, 0.96) 0.76 (0.70, 0.86) 

 

As the results in table 2 show, both JCM and BMA outperform the ensemble 
mean for each r value. This is due to the fact that the ensemble mean is based on 
the assumption that the ensemble members are unbiased, mutually independent 
and with common variability. When r=0, only the second assumption holds, and 
when r≠0 no assumption holds at all, while both BMA and JCM allow for bias 
correction, variability differences and correlations.  

Therefore, as it could be expected, the ensemble mean is negatively affected by 
the presence of positive correlation. On the contrary, BMA error values seem to 
be quite stable over different correlation levels, while JCM error values even get 
lower with increasing correlation, up to an improvement of 23% over BMA when 
r=0.9. Invariance of BMA performance over different correlation levels is proba-
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bly due to the fact that, even though BMA does not include any correlation pa-
rameter, it is fitted via maximum likelihood, so allowing for correlation as an in-
trinsic feature of the data. On the other hand, JCM seems to take advantage from 
high values of positive correlation, as if the calibration parameters were able to 
exploit information from correlated members in order to improve the final JCM 
forecast.  

Finally, another notable difference with respect to BMA which emerges from 
these results is that JCM final forecasts outperform also each individual ensemble 
member. 

5. CONCLUDING REMARKS 

A Bayesian joint calibration model (JCM) for combining predictive distribu-
tions from forecast models has been proposed, where “forecast model” is a ge-
neric term referring to any tool used to generate a prediction of a future event, 
such as the state of the atmosphere.  

JCM, as well as Bayesian Model Averaging (BMA), is designed to produce 
probabilistic forecasts, and as a by-product also produces deterministic forecasts. 
The performance of JCM with respect to BMA has been evaluated in terms of 
root mean square error (RMSE) on simulated ensembles. Both BMA and JCM 
outperform the ensemble mean. BMA error values seem to be quite stable over 
different correlation levels between the predictions provided by the forecast 
models, while JCM error values even get lower with increasing correlation, up to 
an improvement of 23% over BMA. In addition, JCM deterministic forecasts 
have a lower RMSE than any of the individual ensemble members. 

At present we are investigating issues related to the application of JCM on real 
data. 
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SUMMARY 

A joint calibration model for combining predictive distributions 

In many research fields, as for example in probabilistic weather forecasting, valuable 
predictive information about a future random phenomenon may come from several, pos-
sibly heterogeneous, sources. Forecast combining methods have been developed over the 
years in order to deal with ensembles of sources: the aim is to combine several predictions 
in such a way to improve forecast accuracy and reduce risk of bad forecasts. 

In this context, we propose the use of a Bayesian approach to information combining, 
which consists in treating the predictive probability density functions (pdfs) from the in-
dividual ensemble members as data in a Bayesian updating problem. The likelihood func-
tion is shown to be proportional to the product of the pdfs, adjusted by a joint “calibra-
tion function” describing the predicting skill of the sources (Morris, 1977). In this paper, 
after rephrasing Morris’ algorithm in a predictive context, we propose to model the cali-
bration function in terms of bias, scale and correlation and to estimate its parameters ac-
cording to the least squares criterion. The performance of our method is investigated and 
compared with that of Bayesian Model Averaging (Raftery, 2005) on simulated data. 




