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SOME CONSIDERATIONS AND DEVELOPMENTS ABOUT 
RECENTLY PROPOSED FAMILIES OF DISTRIBUTIONS 
WITH HINGE POINTS 

Maurizio Brizzi 

1. INTRODUCTION 

The research work regarding probability density models is, necessarily, always 
in progress, since many researchers are interested in finding reasonably simple 
functions, which are able to fit a set of experimental data. Nowadays, we receive a 
lot of quantitative information concerning several fields, from biology to sociol-
ogy, from chemistry to economy, from sport to music, and the list would be 
much longer; therefore, we often have to deal with “new” sets of data, and is al-
ways more important to have a large choice of probability models, discrete or 
continuous, in order to find the best fitting one. 

Sometimes, when representing the distribution of some kind of natural or so-
cial phenomena, we realize that smaller values have a different behaviour than 
larger ones, so that we cannot use an unique type of function, but rather two (or 
more) different functions, separated by hinge points. 

In this paper, two families of p.d.f.’s with hinge points are discussed and de-
veloped. The first one is the MTSP (Modified Two-Sided Power), derived from 
the STSP (Standard Two-Sided Power), defined and studied by Van Dorp and 
Kotz (2002a); the second one is the two-faced distribution (TF), recently pro-
posed in Brizzi (2006), defined by joining a triangular distribution and an expo-
nential one. 

2. FROM STSP TO MTSP 

The Standard Two-Sided Power distribution is a limited domain model, de-
pending on two parameters: the “hinge point” θ, in which the p.d.f. changes and 
becomes to decrease, and the shape parameter κ. In its original proposal by Van 
Dorp and Kotz (2002), the domain is the interval [0,1], and the p.d.f. is the fol-
lowing: 
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The effect of varying the parameters is represented in Figure 1 (where θ is fixed 
and κ is variable) and Figure 2 (κ fixed and θ variable). 
 

 
Figure 1 – Probability density function of some STSP distributions (θ = 0.4, κ variable). 

 
Figure 2 – Probability density function of some STSP distributions (κ = 3, θ  variable). 

 

The MTSP distribution family is generated by modifying the central part of an 
STSP distribution. The basic idea is to “strengthen” the neighbourhood of the 
hinge point θ  by adding an uniform component. 
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( ) (1 ) ( ) ( )Y Y Uf y f y f yα α= − +  (2) 

where X is a STSP (κ, θ)  and U is an Uniform (θ−β/2, θ+β/2). The domain of Y 
is the interval [0,1], the same of STSP distribution. 

 
The p.d.f. assumes, within its domain, four different expressions: 
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Parameters and corresponding parametric spaces are listed below: 
α = Weight of the uniform component 0 < α < 1 
β = Width of the uniform component 0 <  β <  2  min [θ, (1–θ)] 
κ =  Shape parameter κ > 0 
θ = Mode and hinge point 0 < θ < 1 
 
In Figures 3 and 4 we have represented the p.d.f. of a MTSP distribution, as a 
function of the parameters α, β. 
 

 
Figure 3 – Probability density function of some MTSP distributions (κ=3, θ=0.3, α variable, β=0.2). 
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Figure 4 – Probability density function of some MTSP distributions (κ=0.3, θ=0.3, α=0.2, β  vari-
able). 
 

The cumulative distribution function FY(y) assumes, within its domain [0, 1], four 
different expressions (outside the domain, the c.d.f. is obviously constant, 0 on 
the left and 1 on the right): 
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In particular, we have, at point θ: 

Y X UF ( )  (1- ) F ( )  F ( ) (1- ) /2 (1/2 )θ α θ α θ α θ α θ α θ=  + = + = + −  (5) 

In Figure 5 and Figure 6 the c.d.f. of MTSP distribution is represented, as a func-
tion of the parameters α and β, respectively. 
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Figure 5 – Cumulative distribution function of MTSP (α variable, β=0.20 ). 
 

 
Figure 6 – MTSP cumulative distribution function (α=0.20, β variable). 
 

The expected value of a MTSP distribution is: 

( 1) 1 (2 1) 1E( )=(1 ) E(X)  E( ) (1 )
1 1

Y U κ θ α κ θ α
α α α αθ

κ κ
− + + − + −

−  + = − + =
+ +

 (6) 

Therefore, E(Y) does not depend on β. When α increases, E(Y) moves linearly 
towards θ. For example, fixing some values of θ and κ, we may derive, by chang-
ing the value of α, the expected values represented in Table 1: 
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TABLE 1 

Expected value of MTSP as a function of α 

 
The effect of increasing α is to move the expected value towards the value of 

θ, which is the central point of the uniform window; when θ =1/2, there is no 
effect, since we have already E(X) = θ. The effect of increasing α is to move the 
expected value towards the value of θ, which is the central point of the uniform 
window; when θ =1/2, there is no effect, since we have already E(X) = θ. 

The second moment of Y, i.e. the expected value of Y2 , is: 

2 2 2( ) (1 ) ( )  ( )E Y E X E Uα α= − + =  

   
3 2

2 3 2(1 ) (1 ) 2 (1 ) (1 )
( 2) 1 2 12

κθ κ κ β
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 (7) 

Consequently, the variance V(Y)=E(Y2)-[E(Y)] 2 assumes a troubling compli-
cated general expression. Nevertheless, we can study the effect of varying α and 
β by fixing the values of the STSP parameters, κ and θ. We have reported, in Ta-
ble 2, the variance corresponding to some values of α and β for κ = 4 and θ =1/3. 

TABLE 2 

Variance of MTSP for κ = 4 , θ = 1/3 
 

β = 0.1 0.2 0.3 0.4 0.5 
α =      
0.1 0.0165 0.0167 0.0172 0.0177 0.0185 
0.2 0.0151 0.0156 0.0164 0.0176 0.0191 
0.3 0.0136 0.0144 0.0156 0.0174 0.0196 
0.4 0.0121 0.0131 0.0147 0.0171 0.0201 
0.5 0.0104 0.0117 0.0138 0.0167 0.0204 

 

The effect of varying β becomes stronger as well as α increases; on the other 
side, the effect of varying α depends on the difference between the variance of 
STSP component and uniform component: when β = 0.43 the two components 
have approximately the same variance, and the value of α has virtually no effect 
on it. 

 
Analysing the third moment of MTSP distribution, we can check its skewness. 

The third moment of MTSP is equal to: 

α κ=3, θ=1/4 κ=4, θ=1/4 κ=5, θ=1/4 κ=4, θ=1/3 κ=4, θ=1/2 κ=4, θ=2/3 
0.05 0.3688 0.3450 0.3292 0.3967 0.5000 0.6033 
0.10 0.3625 0.3400 0.3250 0.3933 0.5000 0.6067 
0.20 0.3500 0.3300 0.3167 0.3867 0.5000 0.6133 
0,30 0.3375 0.3200 0.3083 0.3800 0.5000 0.6200 
0,40 0.3250 0.3100 0.3000 0.3733 0.5000 0.6267 
0,50 0.3125 0.3000 0.2917 0.3667 0.5000 0.6333 
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The third central moment µ3(Y) is determined by a polynomial function of 
simple moments of order 1, 2, 3: 

3 3 2 3
3( ) [ ( )]  ( ) 3 ( ) ( ) 2 ( )Y E Y E Y E Y E Y E Y E Yµ = − = − +  (9) 

We can then directly calculate the Pearson index of skewness: γ1(Y) = µ3(Y) / 
σ 3(Y), whose final expression is rather cumbersome. 

 
Likewise, we can evaluate the kurtosis of MTSP distribution by analysing the 

fourth moment. As done before, we can calculate the fourth moment by linear 
combination: 
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The fourth central moment may be calculated as a polynomial function of 
simple moments: 

4 4 3 2 2 4
4 ( ) [ ( )]  ( ) 4 ( ) ( ) 6 ( )[ ( )] 3[ ( )]Y E Y E Y E Y E Y E Y E Y E Y E Yµ = − = − + −  (11) 

From (11) we can derive the Fisher index of kurtosis: γ2(Y) = µ4(Y) / σ4 (Y). 
We prefer not to write here the final expression of: γ2(Y), since it is results quite 
long and complicated; nevertheless, it is not so difficult to calculate such index, 
once fixed the values of κ and θ. 

 
Example. Consider once more the parameter values represented in Table 2 

(κ=4 , θ = 1/3). The first four moments have been calculated and reported below: 
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Varying the parameter values, we can derive some primary statistics (moments, 
dispersion, skewness and kurtosis), as reported in Table 3: 

TABLE 3 

Effects of the parameter values on moments, variability, skewness and kurtosis 

 α = 0 α = 0.2 α = 0.3 α = 0.4 α = 0.1 α = 0.1 α = 0.1 
 β = 0 β = 0.2 β = 0.2 β = 0.2 β == 0.1 β = 0.2 β = 0.4 

E(Y) 0.4000 0.3867 0.3800 0.3733 0.3933 0.3933 0.3933 
E(Y2) 0.1778 0.1651 0.1588 0.1524 0.1712 0.1714 0.1724 
E(Y3) 0.0868 0.0775 0.0729 0.0682 0.0819 0.0821 0.0831 
E(Y4) 0.0460 0.0397 0.0366 0.0335 0.0427 0.0429 0.0436 
σ (Y)  0.1333 0.1249 0.1199 0.1143 0.1284 0.1294 0.1332 

C.V. (Y) 0.3333 0.3230 0.3155 0.3062 0.3264 0.3289 0.3386 
  µ3 (Y)   0.0014 0.0016 0.0016 0.0015 0.0016 0.0015 0.0014 
  µ4 (Y)   0.0011 0.0009 0.0009 0.0008 0.0010 0.0010 0.0011 
  γ1 (Y)   0.6071 0.8135 0.9218 1.0328 0.7461 0.7086 0.5733 
  γ2 (Y)   3.3616 3.8771 4.2316 4.6692 3.6740 3.5910 3.3615 

 

These are the effects of increasing the value of α: 
– expected value decreases slowly, and moves towards the value θ; 
– standard deviation and the C.V. decrease more than linearly; 
– skewness and kurtosis increase quickly and markedly. 
 
On the other hand, these are the effects of increasing the value of β: 
– expected value does not change (as said before, it does not depend on β); 
– standard deviation and C.V. increase slowly; 
– skewness decreases quickly and markedly; 
– kurtosis decreases slowly and slightly. 

3. SYMMETRIC STSP AND MTSP DISTRIBUTION 

Under the condition θ = 1/2, the STSP distribution is symmetric, and its p.d.f. 
assumes a simpler form: 
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In Figure 7 the p.d.f. of a symmetrical STSP distribution is reported, for some 
values of κ. 
 

 
Figure 7 – Symmetrical STSP distribution (θ=0.5, κ variable). 
 

The corresponding c.d.f. is, as well, simplified: 
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The expected value of a symmetric STSP variable is, obviously, always equal to 
1/2, which is the axis of symmetry. The second moment and the variance are, re-
spectively: 
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In Table 4, we have represented the value of E(X) , V(X) and S(X) as a func-
tion of κ. 

TABLE 4 

Expected value and variance of a symmetric STSP for some values of κ 
κ  E(X) V(X) S(X) 
1 0.3333 0.0833 0.2887 
2 0.2917 0.0417 0.2041 
3 0.2750 0.0250 0.1581 
4 0.2667 0.0167 0.1291 
6 0.2589 0.0089 0.0945 
10 0.2538 0.0038 0.0615 

 
If we introduce the MTSP adjustment, described above, we get a symmetric 

MTSP distribution, whose p.d.f. is represented in Figure 8 and Figure 9, as a 
function of α and β, respectively. 
 

 
Figure 8 – Symmetric MTSP density (κ=3, β=0.2, α variable). 

 

Figure 9 – Symmetric MTSP density (κ=3, α=0.2, β variable). 
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In this context, the p.d.f. assumes, within the interval [0, 1], these expressions: 
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The corresponding cumulative distribution function FY(y) becomes then: 
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There is a relevant regularity in this model: the expected value of a symmetric 
MTSP, for any values of the parameters κ, α, β, is always equal to 1/2. 

 
On the other side, the second moment (and consequently the variance) is a 

function of all of three parameters κ, α, β, and specifically: 

2 2
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4( 1)( 2) 12
X α ακ κ β
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2( ) ( ) 1/4V Y E Y= −  (19) 

4. PARAMETER ESTIMATION FOR MTSP DISTRIBUTION 

In a MTSP variable we have to estimate four parameters (α, β, κ, θ). A possible 
approach may be an iterative procedure, in which we consider the two couples  
(κ, θ ) and (α, β) separately. Suppose we have a sample of size n, say y1, y2, ..., yn , 
and denote with y(i) the i-th order statistic; we may estimate, first of all, the STSP 
parameters with the ML estimator proposed by Van Dorp and Kotz (2002), thus 
getting the estimators: 
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Once estimated κ and θ, we have reduced the likelihood function ˆˆ( , , , )L α β κ θ  
to a bi-dimensional one. Moreover, we have estimated the point at which the pdf 
reaches its maximum and changes its expression. We have to detect the maxi-
mum of ˆˆ( , , , )L α β κ θ  

 
One possible way may be an iterative procedure like this: 
 
1) We fix an initial “reasonable” value for β, say β0, and then “move” α from 

zero towards one, until L(α,β0) reaches its maximum.  
2) Suppose that L1=L(α1, β0) is the maximal value. Then we can fix α =α1 and 

move β to find (possibly) a “new” maximum L2=L(α1, β1). 
3) Then we can fix β =β1 and move α again. If we get a new maximum we can 

go on the same way, varying alternatively one or another parameter. 
 
Otherwise, we can start with α, instead of β. In this case, we have to consider 

an initial value α =α0, and repeat the same steps. This iterative approach gives 
better results if the initial values are well chosen, i.e. if they are not too far from 
the “true” values of the parameters. If this procedure leads to α=0 and/or to 
β=0, then we can fit the data with a STSP distribution model. 

 
This estimation procedure is only a proposal, the problem of estimating α and 

β deserves a further and deeper investigation. 

5. POSSIBLE EXTENSIONS PF STSP AND MTSP 

The procedure that leaded us to the MTSP distribution may be extended in 
many ways. First of all, it is possible to change the domain from [0,1] to any 
closed interval [a,b] by applying the linear transformation: 

( ) (1 )W a b a Y a Y bY= + − = − +  (21) 
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The expected value becomes then E(W) = a + (b-a) E(Y), where E(Y) is reported 
in (6), while the variance of W will be then equal to (b-a)2 ⋅ V(Y). 

 
Another possible extension may be given by moving the centre of the window 

(i.e. the mean value of the uniform component), from θ  to another point of the 
domain. But this should split the domain in more parts, and the p.d.f. would be-
come much more complicated. It is also possible to “open” more than one win-
dow, e.g. adding two uniform components in two distinct points of the domain. 

 
Finally, it is even possible to define a multivariate STSP (as well as a multivari-

ate MTSP); the simplest way should be to define a bivariate density function 
fT,U(t,u), whose marginal pdf’s are STSP (or MTSP), with possibly different critical 
points (θT, θU) and the same value of κ. If the components are supposed inde-
pendent, the joint p.d.f., referred to the domain DT,U ≡ [0,1]x [0,1] is the follow-
ing: 
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6. TWO FACED DISTRIBUTION 

The recently proposed “Two-Faced distribution” (Brizzi, 2006) is a skewed 
distribution with a triangular left side and an exponential right side, divided by a 
hinge point θ  which is the modal point. Let now Y be a r.v. following such a dis-
tribution. 

 

Original parameters: θ (hinge point) , λ (exponential coefficient) 
 
Probability density function: 
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where: 
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It is useful to redefine the second parameter, denoting  κ=λ·θ. Therefore, we 
can write the p.d.f. in a simpler way: 
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where  θ > 0, κ > 0. In Figure 1 we have represented the p.d.f. as a function 
of κ; in Figure 2, we have represented it as a function of θ. 
 
 

 
Figure 10 – Two-faced probability density function (θ=2, κ variable). 
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Figure 11 – Two-faced probability density function (κ =2.5, θ ̣variable) 
 

The cumulative distribution function FY(y) can be easily derived by integrating 
the density function given in (24): 
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The hinge point y = θ  is the mode. The p.d.f. and c.d.f. of such point are, re-
spectively: 

2 2( ) , ( )  
2 ( 2) 2Y Yf Fλ κ κ

θ θ
λθ θ κ κ

= = =
+ + +

 (26) 

If κ is less, equal or greater than 2, the median is less, equal or greater than θ. 
 
The Expected value of a two-faced distribution is to be calculated by solving 

two integrals, corresponding, respectively, to values less and greater than θ. It is 
useful to start from the expression of p.d.f. given in (23). 

 
Left Integral (from 0 to θ): 

3
2 2

0 0

2
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Right Integral (from θ to +∞): 
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Applying the usual simplifying notation κ = λθ, we have: 

2  ( 1)
 ( 2)

RI θ κ
κ κ

+
=

+
 (29) 

Adding these two components we derive the expected value E(Y): 

2 22  ( 1) 2 6  ( 1) 2( 3 3)2( )
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 (30) 

In Table 5 we have specified the expected value of a two-faced variable Y for 
some parameter values: 

TABLE 5 

Expected value of TF distribution for some parameter values 

κ = 0.5 1 1.5 2 6  3 5 10 
θ =         
0.5   1.267   0.778   0.619   0.542   0.500 0.467 0.410 0.369 
1   2.533   1.556   1.238   1.083   1.000 0.933 0.819 0.739 
2   5.067   3.111   2.476   2.167   2.000 1.867 1.638 1.478 
3   7.600   4.667   3.714   3.250   3.000 2.800 2.457 2.217 
4 10.133   6.222   4.952   4.333   4.000 3.733 3.276 2.956 
6 15.200   9.333   7.429   6.500   6.000 5.600 4.914 4.433 
8 20.267 12.444   9.905   8.667   8.000 7.467 6.552 5.911 
10 25.333 15.556 12.381 10.833 10.000 9.333 8.190 7.389 

 
In particular, when κ is equal to 6 , then we have E(Y) = θ. Indeed, if we put 

κ= 6  in (30), we have: 

2 (6 3 6 3) 2(9 3 6)( ) .
3 6 ( 6 2) 18 6 6

E Y θ
θ θ

+ + +
= = =

+ +
 (31) 

Coming back to the general TF distribution, and using an analogous method, 
we derive the second moment: 

3 2
2 2

2
4 8 8 ( )

2 ( 2)
E Y κ κ κ

θ
κ κ

+ + +
=

+
 (32) 

Consequently, we derive the variance of a TF distribution: 
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4 3 2
2 2 2

2 2
6 24 72 72( ) ( ) [ ( )]

18 ( 2)
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= − =

+
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In Table 6 we have computed the variance of a two-faced variable Y for some 
parameter values: 

TABLE 6 

Variance of TF distribution for some parameter values 

κ = 0.5 1 1.5 2 3 4 5 10 
θ =         
0.5        1.021       0.270     0.131     0.082     0.046     0.033     0.027 0.019 
1       4.082       1.080     0.523     0.326     0.184     0.133     0.109 0.074 
2   16.33       4.321     2.091     1.306     0.738     0.534     0.437 0.296 
3   36.74       9.722     4.704     2.938     1.660     1.201     0.982 0.666 
4   65.32   17.28     8.363     5.222     2.951     2.136     1.747 1.185 
6 146.96   38.89 18.82 11.75     6.640     4.806     3.930 2.666 
8 261.26   69.14 33.45 20.89 11.80     8.543     6.986 4.739 
10 408.22 108.02 52.27 32.64 18.44 13.35 10.92 7.404 

 
Following the same pattern, we can easily derive the third and fourth moment 

of a TF distribution: 
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and give a general formula for the m-th moment: 
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From the moments of third and fourth order we can derive the usual indices 
of skewness (γ1) and kurtosis (γ2). It is worth to observe that indices γ1 and γ2 do 
not depend on θ, due to the fact that moments are directly proportional to the 
corresponding powers of the parameter θ  itself. We have reported, in Table 7, 
the first four moments, as well as the standard deviation S(Y), and the indices of 
skewness γ1 and kurtosis γ2. 

Looking at Table 3, we realise that moments are inversely correlated with κ; 
the level of skewness depends only on κ, being γ1 positive for small values of this 
parameter and negative for larger values. The value of κ corresponding to γ1=0 is, 
approximately, κ = 6.15. Νevertheless, ιn this context, the p.d.f. will not be per-
fectly symmetric, having limited left tail and unlimited right tail, so this specific 
result seems to deserve some attention. Kurtosis, as well, decreases as κ becomes 
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larger, and the TF may be leptokurtic (small values of κ) or platikurtic (large val-
ues of κ). The threshold value is approximately κ = 6.47, corresponding to a 
normokurtic distribution (with γ2=3, as in Gaussian model). It is interesting that 
threshold values, respectively corresponding to γ1=0 and γ2=0, are not coinciding 
but quite near to each other. 

TABLE 7 

Moments of TF distribution and related statistics 

κ  E (Y) E (Y2) E(Y3) E(Y4) S(Y) γ1 γ2 
0.5 2.533 θ 10.500 θ2 63.280 θ3 506.467 θ4 2.020 θ 1.939 8.760 
1 1.556 θ 3.500 θ2 10.800 θ3 43.444 θ4 1.039 θ 1.777 8.136 
2 1.083 θ 1.500 θ2 2.575 θ3 5.417 θ4 0.571 θ 1.302 6.465 
√6  θ 1.242 θ2 1.853 θ3 3.300 θ4 0.492 θ 1.070 5.763 
3 0.933 θ 1.056 θ2 1.396 θ3 2.141 θ4 0.429 θ 0.834 5.032 
4 0.861 θ 0.875 θ2 1.006 θ3 1.295 θ4 0.365 θ 0.469 4.074 
5 0.819 θ 0.780 θ2 0.825 θ3 0.955 θ4 0.330 θ 0.207 3.481 
6 0.792 θ 0.722 θ2 0.724 θ3 0.782 θ4 0.309 θ 0.023 3.119 
8 0.758 θ 0.656 θ2 0.616 θ3 0.615 θ4 0.285 θ -0.203 2.749 
10 0.739 θ 0.620 θ2 0.561 θ3 0.536 θ4 0.272 θ -0.324 2.590 
15 0.714 θ 0.576 θ2 0.497 θ3 0.450 θ4 0.257 θ -0.456 2.458 

7. PARAMETER ESTIMATION FOR A TWO – FACED DISTRIBUTION 

The two-faced distributions, as defined and described above has two parame-
ters to estimate: the hinge point θ and the shape parameter κ. If the hinge point 
value, say θ0, is known, say the ML estimator of the shape parameter is: 
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 (37) 

and it depends, essentially, on the right tail values of the sample. The main prob-
lem is to estimate θ, when unknown, since the p.d.f. depends directly on its value. 
Being θ the modal point, the following step-by-step procedure seems suitable: 

 
a) Find the sample subset where the points seem to be more dense, thus identi-

fying a set of (say) n’ sample values which are not too far from each other; 
b) Let θ  be equal to each of the n’ points belonging to the subset and calculate 

the corresponding maximum likelihood estimate κ* by applying (35). We find, 
with this method, n’ couples of parameter estimates {θj*, κj*; j= 1,2,..., n’} 

c) Calculate the log-likelihood of each couple of parameter estimates, and con-
sider the couple (θ**, κ**), yielding the maximum log-likelihood; 

d) Change slightly the value of θ** in both directions; if the resulting likelihood 
does not decrease, we can keep the couple (θ**, κ**) as a maximum likelihood 
estimation. 
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A specifical socio-demographic application of the TF distribution has been 
proposed in Brizzi (2006), concerning the distribution of municipal population of 
Emilia – Romagna, a region of northern Italy having a little more than 300 mu-
nicipalities. The TF model resulted to be very well-fitting for such set of data. 

7. CONCLUDING REMARKS 

There are many natural and social phenomena having a different behaviour, 
depending on we are considering values which are smaller or greater than a 
threshold point. The distribution models representing variables related with such 
kind of phenomena do need to have a different shape on the left and on the right 
of the above mentioned threshold value, which becomes the hinge point of the 
distribution. It is surely useful to dispose of general models, which may include a 
great variety of particular cases; families of distributions like STSP, MTSP and 
TF, developed in this paper, may be appropriate in such context, due to the wide 
range of models included. Evidently, this subject is worth of further investigation, 
and it would be surely possible and useful to derive new hinge-point models by 
modifying or generalising the distribution families considered here. For instance, 
the triangular-exponential TF distribution may be extended by changing the 
shape of right tail section, which may allow us to define a triangular-gamma dis-
tribution, a triangular-gaussian and so on. It is also possible to define models with 
more that one hinge point. As always, such “new” models should be fitted to real 
data, in order to check their capability to represent some specific natural or social 
variable. Even here, as in many other fields, theory can give useful tools to prac-
tice, and practice may give a strong validation to theory. 
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SUMMARY 

Some considerations and developments about recently proposed families of distributions with hinge points 

This paper deals with probability density functions with hinge points, useful when rep-
resenting phenomena which have different statistical features, depending on the fact that 
a threshold point has been overtaken or not. The STSP distribution, proposed by Van 
Dorp and Kotz (2002 a) is recalled and developed, and a modified model (MTSP), a mix-
ture of STSP and Uniform, is defined and studied. Moreover, the Two Faced distribution, 
already proposed in Brizzi (2006), is recalled and thoroughly analysed, and some estima-
tion problems, related to both models considered, are faced by a semi-empirical approach. 


