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1. INTRODUCTION 

The evaluation of formative processes has received a growing attention by pol-
icy makers and public agents with the beginning of the Bologna process, in view 
of identifying critical factors for achievement that can improve curricula, instruc-
tional strategies, and conditions for learning. However, only recently, under a 
strong University internal pressure, the efficacy of a formation model integrated 
into students life is reassuming a central role. 

A very important emerging problem is the comparison between student per-
formances when different supporting and tutoring actions are adopted during the 
course of studies, and also in presence of very different personal situations. In 
order to pursue these objectives, several statistical methodologies have been de-
veloped to compare student careers over time. 

Given the multitude of aspects to be considered, the evaluation of formative 
processes may use both quantitative and qualitative methods. The complexity of 
the phenomenon under investigation is related to several factors, such as (a) the 
non experimental nature of the problem, with associated selection bias and pres-
ence of confounding elements; (b) the hierarchical structure of the data, with cor-
relation problems, different effects at several levels of the hierarchy and their in-
teraction; (c) the multivariate and qualitative nature of the responses. 

The availability of individual data repeated over a period of time allows dy-
namical studies of social processes, rather than static cross-sectional analyses. In 
educational studies we generally deal with “micropanels”, that consists of large 
cross-sections of individuals observed for short time periods. They are often used 
to answer questions about educational progress and obstacles to such progress, 
mainly concerning: (a) within-individual change - How does each individual perform 
over time? - and (b) interindividual differences in change - What predicts differences 
among individuals in their change? The analysis of repeated measures has been 
considered from different points of view, such as individual growth techniques 
(Rogosa and Willett, 1985; Singer and Willett, 2004), repeated measure 
MANOVA and ANOVA models (Kirk, 1982), time series and econometric 



 S. Bianconcini, S. Cagnone, S. Mignani, P. Monari 56 

analysis (Anderson, 1963; Diggle et al., 1994; Skinner and Homes, 1999; Feder et 
al., 2000; Wooldridge, 2000; Arellano, 2003), and multilevel modeling (Goldstein, 
2003; Srondal and Rabe-Heskett, 2004; Bryk and Raudenbush, 1989). They can 
be encompassed into the general class of random coefficient models, in which random 
effects are incorporated into the model in view of reflecting unobserved hetero-
geneity in individual behavior. 

When units are clustered, shared unobserved heterogeneity may induce “intra-
cluster” dependence among the responses, even after conditioning on observed 
covariates, that can lead to incorrect inferences if not properly accounted for. 
This phenomenon is common for longitudinal or panel data, where observations 
for the same unit are influenced by the same (shared) unit-specific unobserved 
heterogeneity. As pointed out by Lewbel (2006), the responses can be expressed 
as function of the observed covariates via a structural model, that may include 
fixed parameters and random effects. More generally, the random coefficients can 
be incorporated into Structural Equation Models (SEM) by considering them as 
latent variables (see e.g. Bollen and Curran, 2006). As shown by Muthén et al 
(1987), these enable to capitalize on all the strengths of SEM, such as the use of 
maximum likelihood techniques for missing data, the estimation of a variety of 
nonlinear trajectories, measures of model fit and diagnostics to determine the 
source of ill-fit, the inclusion of latent covariates and repeated variable, and so on. 
Borrowing from Meredith and Tisak (1990), we refer to these models as Latent 
Curves (LCMs), since random cofficients permit each case in the sample to have 
a different trajectory over time. The aim of the present paper is to study growth 
curve models for the comparison of University student careers over time. The 
study has two objectives: i) evaluating the performance of groups of students dis-
tinct because of the different time employed to reach the first degree, ii) evaluat-
ing the effect of some covariates on the student performance. We focus on con-
tinuous response variables, using conventional, normal-theory estimators, such as 
maximum likelihood, into the framework of SEM. The article is structured as fol-
lows. First, in Section 2, the growth modeling is introduced, starting from a rela-
tively simple situation and making the model increasingly complex. Then in Sec-
tion 3, we apply latent curve models to a cohort of students enrolled in 2001 at 
the Faculty of Economics of the University of Bologna. Finally, Section 4 gives 
the conclusions. 

2. THE MODEL 

2.1 Latent curves 

The basic idea behind latent curve models is that individuals differ in their 
growth over time, and they are likely to have different temporal behaviors as a 
function of differences in particular characteristics, such as gender, high school 
background, and so on. The approach posits the existence of continuous underly-
ing or latent curves, that are not directly observed but only indirectly using re-
peated measures. 
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The growth model is specified by a polynomial equation as follows 

0 1     1, ,   1, ,p
it i i t ip t ity i n t Tβ β λ β λ ε= + + + + = =… … …  (1) 

where yit is the value of the response variable y for the individual i at time point 
t, and 0, 1 , ,i i ipβ β β…  are subject-specific random coefficients assumed to be un-

correlated among individuals, that is cov( , ) 0ij kjβ β =  for every i k≠ . The argu-

ment tλ  is a parameter that allows for the inclusion of linear or non linear trajec-
tories, if the tλ 's are fixed or freely estimated respectively. In this latter case, a 
common coding convention is to have 1λ  = 0 and ¸ Tλ  = 1 (McArdle, 1988). The 
remaining tλ 's reflect the proportion of change between two time points relative 
to the total change occurring from the first to the last period. Specifically, each 
value represents the cumulative proportion of total change that has occurred 
from the initial time to that specific point. The disturbances itε  are normally dis-
tributed with zero means and non constant variances. They are also uncorrelated 
over time ( ,cov( ) 0it it sε ε + =  for 0s ≠ ), over individuals ( ,cov( ) 0it kt sε ε + =  for 
i k≠  and all s), and with the random coefficients ( cov( , ) 0ij itβ ε =  ,j i∀ ). 

Key modeling results are estimates of the overall means, that are measures of 
central tendencies in the trajectories, and the estimates of the variation across in-
dividuals of the random coefficients, as follows 

ijij i ββ β ς= +  (2) 

where the disturbances 
ijβς ’s are assumed to be normally distributed with zero 

means, variances 2
ijβϕ , covariances 

,ik ijβ βϕ , and uncorrelated with the itε . 
Eq. (2) can be incorporated into eq. (1) to obtain the following reduced form 

for the model 

0 10 1[ ] [ ]
i i pi

p p
it t p t t t ity β β ββ β λ β λ ς ς λ ς λ ε= + + + + + + + +… …  (3) 

This shows the trajectory of y as a function of mean coefficients and a complex 
disturbance term, that is heteroscedastic over time due to the presence of 

, 1, ,
ij

j
t j pβς λ = … , whose variance depends on tλ . 

This model is commonly referred to as an unconditional trajectory model in which 
the first term in parentheses is referred to as the fixed component, representing 
the mean structure of the model, and the second term is called the random part 
which expresses various sources of individual variability. To partially reduce such 
variability a conditional model can be estimated by incorporating in eq. (2) co-
variates in view of testing potential influences on the trajectory parameters, as fol-
lows 
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' ,   0,1, ,    1, 2, ,
j jij j iw j p i nβ ββ β γ ς= + + = =… …  (4) 

where γ ’s are the regression coefficients of the time-invariant covariates iw  in 
the random coefficient equation, and jβ  are mean coefficients when the covari-

ates are zero. Still 
ijβϕ  are disturbances with zero mean and variance 2

ijβϕ , but 
they are no longer variances of the random coefficients as in the unconditional 
model, since they are conditional variances. 

Growth curve analysis is particularly useful when one attempts to explain the 
individual variation in initial status and growth parameters using background vari-
ables for the individuals. These variables are viewed as causes of growth preced-
ing the testing occasion and do not vary across time. They are of substantive in-
terest in that they are predictors of the growth. 

Although many questions about the trajectories are possible, three are the main 
ones relative to (1) the characteristics of the mean trajectory of the entire group, 
represented by the fixed-effects components of the model; (2) the evaluation of indi-
vidual differences in trajectories, caught by the variances introduced to estimate 
the sampling fluctuations of the mean trajectory, and referred to be the random-
effects components; (3) the potential incorporation of predictors to better understand 
the variability observed in individual trajectories. As pointed out by Arellano 
(2003), fixed and random effects result from two different types of motivations. 
Fixed effects are related to the desire of exploiting panel data for controlling un-
observed time-invariant heterogeneity in cross-sectional models; whereas random 
effects enable the use of panel data as a way of disentangling components of vari-
ance and estimating transition probabilities among states, or more generally to 
study the dynamics of cross-sectional populations. 

2.2 A structural equation perspective 

Random coefficient models can be treated within the structural equation mod-
eling (SEM) perspective, where the case-specific parameters that determine the 
trajectories are treated as latent variables. They are commonly knows as LCM. 
Baker (1954) was the first to suggest the use of factor analysis to study panel data. 
Tucker (1958) and Rao (1958) gave a more technical expression of this idea for 
exploratory factor analysis. Meredith and Tisak (1990) took this to the confirma-
tory factor analysis and demonstrated that trajectory modeling fit naturally into 
these type of models. A number of authors expanded on this framework, among 
others MacArdle (1988), Browne and Du Tuot (1991) and Muthén and Khoo 
(1998). 

Let the repeated measures yit be stacked in the vector y and the latent variables 
ijβ 's be stacked in η , the model can be expressed as follows 

= +Λη εy  (5) 

= + + +η τ η Γ ςB w  (6) 
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In eq. (5), Λ  is a matrix of factor loadings, and iε  is the vector of time varying 
errors, assumed to have zero mean and covariance matrix Θ. In eq. (6) B is a null 
matrix, which represent the population average parameters of the score trajectory, 
whereas Γ contains the regression coefficients related to the covariates w. The 
latent residual vector is assumed to be normally distributed with zero mean and 
covariance matrix ( )Cov=Ψ ς . 

Eq. (6) can be substituted into eq. (5) to give the reduced-form expression  
of y, 

= + + +Λ τ Γ Λς εy ( w)  (7) 

Differently from the classical structural equation modeling approach where the 
loadings are estimated, generally the LCM fixes them to specific a priori values. 
Moreover in SEM, the means of the factors and observed variables are usually 
omitted; in contrast, the LCM explicitly models both the mean and the covariance 
structures among the observed measures. However, a restrictive structure is im-
posed on these means. Specifically, the intercepts of the repeated measures are set 
to zero, and the means for the latent trajectory factors are estimated. In this way 
the mean structure of the repeated measures is determined entirely by the means 
of the latent trajectory factors. 

2.3 Estimation 

As in the classical SEM approach model estimation is obtained by minimizing 
a fitting function depending on the discrepancy between the theoretical covari-
ance matrix of the observed variables, Σ , and the corresponding sample covari-
ance matrix, S. Hence, the information coming from the data is considered to be 
sufficient to get a unique estimation value of the parameters, that is, the model is 
identified (Bollen, 1989). However, differently from a classical SEM estimation 
procedure, in this case the inclusion of the information coming from the mean 
structure µ  is also required. 

Specifically from (5) and (6) we define µ  and Σ  as 

= +µ Λ τ Γ( w)  (8) 

+ +⎡ ⎤
= ⎢ ⎥
⎣ ⎦

ww ε ww

ww ww

Λ Γ Γ Ψ Λ Θ Λ
Σ

Γ Λ

( S ' ) ' ΓS

S ' ' S
 (9) 

where w  is the sample mean vector of the covariates and wwS  the correspond-
ing covariance matrix. Different fitting functions can be chosen according to the 
nature of the vector y. If either it is multivariate normally distributed or its com-
ponents do not present excessive kurtotis the following Maximum Likelihood fit-
ting function can be used (Muthén and Khoo, 1998) 
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1 1ln ln ( ) ( )' ( )MLF tr p− −= − + − − − −Σ Σ µ Σ µS S y y  (10) 

Under some regularity conditions, FML has desirable asymptotic properties as it 
gives asymptotically efficient estimators of the parameters and associated unbi-
ased test statistics. For evaluating the goodness of fit of the SEM models the 
most used statistic is defined as (n-1)FML. It is asymptotically distributed as a chi-
square with degrees of freedom equal to the number of the variances and covari-
ances in Σ  minus the number of the estimated parameters. 

3. APPLICATION 

With the beginning of the Bologna Process, several Universities have revalu-
ated the role of the “in itinere” guidance, looking at the efficacy of a formation 
model integrated into the student life. 

Motivated from these new requirements of the University system, we propose 
a first longitudinal study of students career by analyzing a cohort of students en-
rolled in 2001 at the Faculty of Economics of the University of Bologna. 

The study has two objectives: i) evaluating the performance of three groups of 
students distinct according to the different time employed to reach the first de-
gree, ii) evaluating the effect of the covariates “gender” and “high school di-
ploma” on the student performance. 

3.1 The data 

The data set analyzed was extracted from the datawarehouse of the University 
of Bologna. It is composed of a cohort of n=714 students. Five different time 
points (academic years) are observed: t1=2001/2002; t2=2002/2003; 
t3=2003/2004; t4=2004/2005; t5=2005/2006. Within the cohort it is possible to 
distinguish three different patterns: 

(1) Students (n1 = 195) who got the first degree in t3 (GRAD1). 
(2) Students (n2 = 268) who got the first degree in t4 (GRAD2). 
(3) Students (n3 = 251) who did not get the degree yet (NOGRAD). 
Only the first group completes the course of the study in time. The informa-

tion available per each student is quite rich, allowing to build the overall student's 
career. In the construction of an indicator of the student performance we decided 
to involve the two most relevant variables, that is the mark (ranging from 18 to 
30 cum laude) and the number of credits associated to each exam (ranging from 2 
to 15). In detail the response variable yit is computed as the weighted average 
mark obtained by each student i (i = 1; 2; ... 714) over time tl (l = 1, 2, 3, 4, 5) and 
divided by the total number of credits required to get the degree, equal to 160. 
The weights are given by the credits corresponding to each exam. Thus, the vari-
able obtained is continuous and it can range from 0, if the student does not pass 
any exam, to a maximum that depends on both the number of credits expected in 
each academic year and on the average of the marks. 
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In Table 1 and Table 2 the means, the standard deviations and the correlation 
matrices of the response variable across time are reported for each pattern. We 
can observe that GRAD1 is the group of students that presents the best average 
performance. It increases almost linearly during the three years. The performance 
of the students belonging to GRAD2 is quite good in the first three years and de-
creases suddenly in the last year. It may be due to the fact that students prefer to 
conclude their course of study in the year t4 despite the mark obtained. The group 
of Nograd shows a low average performance in all the time points observed. As 
for the correlation values they are quite low for all the groups indicating that in 
general there are no strong associations between lagged performance indicators. 
Only in GRAD2 y4 presents high negative correlations with y1, y2 and y3. It con-
firms the different behaviour of this group of students in t4. 

TABLE 1 

Descriptive statistics for GRAD1, GRAD2, NOGRAD 

 GRAD1  GRAD2  NOGRAD 
 Mean StDev  Mean  StDev  Mean  StDev 

y1 7.62 1.49 5.77 1.86 3.87 1.70 
y2 8.51 1.67 6.35 1.76 4.53 1.85 
y3 9.81 1.63 7.61 2.00 4.31 1.98 
y4 -  4.51 2.47 4.14 2.16 
y5 -  -  3.05 2.83 

TABLE 2 

Correlation matrices 

 GRAD1  GRAD2  NOGRAD 
y1 1.00   1.00    1.00     
y2 -0.07 1.00  -0.11 1.00   0.25 1.00    
y3 -0.31 -0.48 1.00 0.02 0.14 1.00  0.15 0.23 1.00   
y4 - - - 0.44 0.33 0.54 1.00 -0.02 0.21 0.10 1.00  
y5 - - - - - - - 0.01 -0.14 -0.02 -0.05 1.00 

 
 
As mentioned before, the effect of two time-invariant dummy covariates, 

“gender” (w1, with 0=“female”, 1=“male”) and “type of diploma” (w2, with 
0=“polytechnic”, 1=“high school or Liceo”), is also evaluated. As suggested in lit-
erature, the former can discriminate the time pattern of the individuals, whereas 
the latter can provide information about the background of each student. Figure 
1 shows the means of the response variable for w1 and w2 in the observed time 
points for each group of study. 

We can notice that if the tendency of the mean performances of each pattern is 
analogous to the one described before for the correspondent overall pattern, it 
does not seem to arise either gender or type of diploma noticeable differences. 
However a more deep analysis within the unconditional and conditional LCM 
approach allows to confirm or disconfirm these preliminary results. 
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Figure 1 – Student performance for gender (w1) and type of diploma (w2). 

4. RESULTS 

Before fitting latent curve models to the data it is convenient to evaluate if 
GRAD1, GRAD2 and NOGRAD can be considered as three samples of the same 
population. Indeed since the three groups have three time points in common we 
can test if any difference in these observed points can be disregarded. At this aim, 
the data not observed for GRAD1 and GRAD2 are considered missing by design. 
Hence a missing data three group analysis can be conducted by assuming that the 
three groups have been drawn from a single population. Equality constraints are 
imposed for mean vector and covariance matrix elements that the three cohorts 
have in common. However, we rejected such an hypothesis for our data and 
hence the three patterns cannot be considered random samples from the same 
population. This requires a different latent growth specification for each of the 
three cohorts (Latent curve analysis is implemented by using Mplus 4.1). 

As for the students who got the degree at t1, only three time points are avail-
able. It follows that only a linear growth model with uncorrelated residuals among 
the achievement scores is identified. In the left panel of Figure 1 the uncondi-
tional model for GRAD1 is represented. 

The linear growth model (Table 3) fits well with a chi-square value with one 
degree of freedom equal to 1.582, and p-value equal to p=0.208. 

The estimates of the intercept and the slope means, equal to 7.582 and 1.071 
respectively, indicate that the initial level of the students belonging to the first 
group is quite high and their performance increases of 1.071 between each as-
sessment period. The two values are both significant, whereas there are no sig-
nificant variances for the intercept 

0
ˆ( 0.404)βϕ =  and slope 

1
ˆ( 0.014)βϕ = . The 

negative covariance between the random coefficients (equal to -0.577) is not sig-
nificant too, indicating that there is no association between the student perform-
ance at the initial period and its rate of change over subsequent time points. 

The linear growth model for students who got the degree at t2 does not fit well. 
The source of this finding should not be only sought in the covariance structure, 
but also in the mean structure. 
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TABLE 3 

Parameter estimation for the unconditional models, GRAD1, GRAD2, NOGRAD 

 GRAD1 GRAD2 NOGRAD 
 Estimate SE Estimate SE Estimate SE 
λ1 - - - - - - 
λ2 - - 0.499 0.189 - - 
λ3 - - 1.423 0.304 - - 
λ4 -  - - - - 
λ5 -  - - - - 

Mean       
β0i 7.582 0.103 5.767 0.114 3.887 0.105 
β1i 1.071 0.088 -1.277 0.221 0.795 0.128 
β2i - - - - -0.250 0.032 

Variance       
β0i 0.404* 0.466 1.036 0.158 1.378 0.516 
β1i 0.014* 0.243 0.293* 0.794 1.281 0.549 
β2i - - - - 0.078 0.030 

Covariances       
β0iβ1i, -0.577* 0.305 -0.866 0.220 -0.630* 0.485 
β0iβ2, - - - - 0.070* 0.098 
β1i, β2 - - - - -0.302 0.122 
χ2 1.582 2.206 11.764 
df 1 1 1 

p-value 0.208 0.138 0.067 
                  * not significant 

 

This lack of fit suggests that linear growth is not realistic, so we explored 
nonlinear trajectories. We only fixed 1 0λ =  and 4 1λ = , while all others are freely 
estimated, as represented in the central path diagram of Figure 2. By correlating 
the residuals between t2 and t3, and t3 and t4, the model fit results excellent (Table 
3), according to the chi-square statistic [Chi-squared: 2.206, df: 1, p-value: 0.138]. 
The values of the freely estimated loadings are 2 0.499λ = − , 3 1.423λ = − , reveal-
ing the nonlinear pattern observed in the means. There is also a significant aver-
age of both the intercept ( 0 5.767β = ) and slope 1 1.277β = −  factors, as well as 
significant variance for the intercept 

0
ˆ( 1.036)βϕ = , but not for the slope 

1
ˆ( 0.2930)βϕ = . 
These variance components reflect that there are individual differences in the 

starting point, but not in the nonlinear rate of change over time. On the other 
hand, there is a significant negative covariance between the random intercept and 
slope (-0.866). Although a linear interpretation cannot be given to these results, 
the value of the intercept indicates that the initial level of the analyzed cohort is 
quite good whereas the negative slope estimate as well as the negative loading es-
timates imply a decreasing growth in its performance over time and a steep in-
crease at the end of the studies. 

For the students who did not get the degree in the last occasion, we have  
observed the score for five time points. Also in this case, a linear growth model 
fits the data poorly, whereas a quadratic trend with uncorrelated residuals is the 
right one for the data of this group of student (path diagram on the right, Figure 
2). This is confirmed by the chi-square value (Table 3) corresponding to a quad-
ratic linear trend with six degrees of freedom equal to 11.764 (p = 0.067). All  
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the mean estimated result significant (3.887, 0.795, and -0.250 for 0 iβ , 1iβ ,  
and 2iβ , respectively). The variance estimates are all significant 

0
ˆ( 1.378)

iβϕ = , 

1
ˆ( 1.281)

iβϕ = , 
2

ˆ( 0.078)
iβϕ =  as the covariance between 1iβ  and 2iβ , equal to -

0.302. 
Thus the students belonging to this cohort present a low initial level and, al-

though the value 1iβ  indicates on average a positive linear growth, the negative 
value of 2iβ  highlights that its increment decreases with time. Considered jointly, 
these results reflect that the performance of this group of students is in general 
low since its developmental trajectory increases very slowly with magnitude of 
changing decelerating over time. 
 

 
Figure 2 – Latent curve models for GRAD1, GRAD2 and NOGRAD students. 

The inclusion of covariates in the analysis allows to give further explanation of 
the individual variation in the initial status and growth rates. The aim of this study 
is to evaluate if the time-invariant covariates, gender and type of diploma, might 
influence the trajectory of students performance. With this regard, the conditional 
models described in Section 2 are applied, maintaining the growth models found 
in the previous analysis for all the patterns considered.  

In Table 4 the parameter estimates of the conditional models for the three co-
horts are reported. The chi-square tests indicate that the fitted model are good for 
all the three curves. We can also observe that the main parameter estimates are 
about the same as the ones obtained in the unconditional models. However, if we 
look at the regression coefficient estimates, only gender significantly predicts the 
intercept factor and the slope factor and only in GRAD1. That is, in the cohort of 
GRAD1 males (n=88) have a worse performance ( 0.647

igenγ = − ) than females 
(n=107) at the initial level but they present a positive significant slope 
( 0.421

igenγ = ) indicating an improvement over time. 
These differences are not present in GRAD2 and NOGRAD as the type of di-

ploma do not discriminate among individuals within the three groups. 
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TABLE 4 

Parameter estimation for the conditional models, GRAD1, GRAD2, NOGRAD 

 GRAD1 GRAD2 NOGRAD 
 Estimate SE Estimate SE Estimate SE 
λ1 - - - - - - 
λ2 - - -0.470 0.180 - - 
λ3 - - -1.378 0.289 - - 
λ4 - - - - - - 
λ5 - - - - - - 

Mean       
β0i 8.771 0.435 5.888 0.186 4.201 0.458 
β1i 0.161* 0.375 -1.566 0.461 0.341* 0.555 
β2i - - - - -0.153* 0.139 

Variance       
β0i 0.379 0.453 1.031 0.153 1.370 0.516 
β1i 0.011 0.237 0.381* 0.856 1.256 0.547 
β2i - - - - 0.076 0.030 

Covariances       
β0iβ1i, -0.574 0.296 -0.849 0.218 -0.625* 0.484 
β0iβ2, - - - - 0.069* 0.097 
β1i, β2 - - - - -0.296 0.122 

β0i Regression       
γgeni -0.647 0.201 0.031* 0.063 -0.059* 0.211 
γdipi -0.153* 0.207 -0.106* 0.063 -0.142* 0.214 

β0i Regression       
γgeni 0.421 0.174 -0.016* 0.188 0.313* 0.256 
γdipi 0.183* 0.178 0.196* 0.185 -0.008* 0.260 

β0i Regression       
γgeni - - - - -0.074* 0.064 
γdipi - - - - 0.008* 0.065 
χ2 3.226 13.115 12.781 
df 3 5 10 

p-value 0.357 0.022 0.236 
            * not significant 

4. CONCLUSIONS 

In this paper we proposed a latent growth curve analysis for evaluating the ca-
reer of a cohort of students enrolled in 2001 at the University of Bologna. This 
represents a first longitudinal study motivated by new requirements of the Uni-
versity system. 

From the results of the analysis we found three different subgroups or cohorts. 
The first one, GRAD1, is constituted by students who get the degree in the ex-
pected time, that is the third academic year. They present a high initial level of 
performance and their growth rates increase over time. Within this group females 
score significantly better than males in the initial level but the latter improve their 
performance over time. The type of diploma does not influence the trajectory of 
this group.  

As for the second cohort, GRAD2, it is composed by students who get the de-
gree in four academic years. This is a group characterized by a quite good initial 
level but a negative growth rate. Furthermore these students tend to finish their 
course of study with a lower average score than the previous years, probably due 
to the need of concluding as soon as possible. The covariates considered do not 
affect this group of analysis. 

The third group, NOGRAD, is characterized by students who did not get the 
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degree yet. The results show that these students begin their studies at a low initial 
level and they do not improve their performance. On the contrary, their growth 
rate tends to decrease over time. Also for this group the covariates do not dis-
criminate among individuals. It would be useful to consider different covariates 
to better understand different individual situations. 

From a methodological point of view, we applied linear and non linear latent 
growth models. We considered as the response variable an indicator built as a 
combination of marks and credits that has been assumed to be a proxy of student 
performance. It would be useful to extend this class of models to the multivariate 
framework. Indeed, the specification of a multivariate latent growth model allows 
to include different response variables, each of them contributing with a proper 
weight in the measure of a latent student performance. 

As far as we are concerned there are no applications of multivariate latent 
growth models within the SEM framework. This can represent a further field of 
investigation from both a theoretical and an applied point of view. 
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SUMMARY 

A latent curve analysis of unobserved heterogeneity in university achievements 

The aim of this paper is to analyze the academic achievement of a cohort of students 
enrolled in 2001 at the Faculty of Economics of the University of Bologna by using a la-
tent growth model for longitudinal data. The basic idea of this approach is that individuals 
differ in their growth over time according to a continuous underlying or latent trajectory. 
Random coefficients in the model allow each individual to have a different trajectory. La-
tent growth models can be incorporated in the Structural Equation Models (SEMs) 
framework by viewing the random coefficients as latent variables. Hence model identifi-
cation and estimation are performed according to the conventions of the SEM analysis. 
The effects of different covariates in the student temporal behavior is also evaluated. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 


