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PROXIMITY MEASURES IN SYMBOLIC DATA ANALYSIS•

L. Nieddu, A. Rizzi 

1. INTRODUCTION 

The analysis of symbolic data has led to a new branch of Data Analysis called 
Symbolic Data Analysis (SDA) where the objects considered are new entities for 
which the representation as points in 1 2 nS Y Y Y= × × ×  (which usually reduces 

to nℜ ) no longer holds. In SDA features characterizing symbolic objects may 
take more than one value, or may be in the form of interval data or be qualitative 
data or subsets of qualitative data sets. The object or symbolic data analysis are 
elements of the type: “the weight is between 60 and 70 kg, the color is black or 
white and if age is lower then 18 then the occupation is ‘student’”. 

In real life problems, very often researchers and data analysts come across this 
type of features which are not only difficult to handle with classical data analysis 
techniques but are also quite difficult to put in a standard data matrix where units 
and variables are represented by columns and rows and where it is not possible to 
represent logical relations such as “if age is lower then 18 then occupation is ‘stu-
dent’”. Moreover, in particular occasions, it is also possible that the data to be 
processed are collected in the form of classes or groups of individuals instead of 
single individuals, e.g. census data which, to guarantee privacy, are made available 
aggregating data for subsets of units of the population.  

Another example of data available in aggregated form is the output of a query 
in a relational database. These data are often characteristic in Data mining. We are 
concerned with different types of data set coming from different sources as ac-
countancy, marketing researches, Delphi methods, open opinions expressed by 
customers, clients and so on. To handle in an appropriate manner this type of 
data the extension of standard statistical techniques to symbolic data has then be-
come necessary. 

Symbolic data can be generated in different ways. First of all one must con-
sider that each category of a categorical variable or any logical combination of 
variables is a concept (Diday, Lechevallier, 2000). Each concept of this variable 
can be obtained from a query to a database. 

•The paper is common job of both the A. Paragraphs 1, 2.1, and 3, are basically referred to L. 
Nieddu, paragraphs 2.2, and 4 to A. Rizzi. 
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Symbolic data can also be used after clustering in order to summarize a huge 
set of data to describe in an exploratory way the obtained clusters and their inter-
nal variation. 

A crucial issue in the adaptation of standard statistical techniques to symbolic 
data lays in the specification of resemblance measures (similarity and dissimilarity) 
between objects. 

For example, in cluster analysis, where the aim is to determine a partition of n
units in k homogeneous clusters, it is usually assumed that a similarity measure is 
set on the data in order to obtain clusters which are composed of units for whom 
the similarity is greater then the dissimilarity and it would be fair to assume that 
the dissimilarity between units belonging to different clusters be greater then the 
dissimilarity between units belonging to the same cluster. 

Various techniques that have been developed for exploratory data analysis and 
multidimensional classification manage to handle almost only numerical variables. 
In the last decade there has been a flurry of activity aimed at extending these 
techniques to symbolic data (Gowda and Diday, 1994; Nagabhushan et al., 1995; 
Lauro and Palumbo, 2000; Chouakria et al., 2000; Lauro et al., 2000; Périnel and 
Lechevallier, 2000; Chavent and Lechevallier, 2002; Mali and Mitra, 2003. 

This paper presents a series of well-established similarity and dissimilarity in-
dexes for binary symbolic objects. Some distance measures will be suggested for 
binary symbolic objects which could also be useful for probabilistic symbolic ob-
jects.

In section 2.1 the definition of symbolic data will be recalled, in section 2.2 we 
recall some algebraic structure that is involved in SDA, while in section 3 several 
resemblance measures will be considered. In section 4 the due conclusions will be 
drawn.

2. SYMBOLIC DATA ANALYSIS

A symbolic object is defined as a description that is expressed as a conjunction 
of statements regarding the values assumed by the variables. Let Ω be the set of 
observed objects, each one characterized by p variables ,p,, iy i …= 1 . Formally a 

variable :i iy OΩ →  can be considered as a function, where Oi is the observation 
set of yi. The observation set of a variable is composed only by those values that 
the observed objects can actually assume. The variable yi may be measured on a 
nominal, ordinal, interval, ratio or absolute scale. 

An elementary event is an event of the type [ ]i ie y V= ∈  indicating that vari-

able yi takes values in i iV O⊆ . The elementary event e can be true or false, there-
fore. a mapping of the type e { , }true falseΩ= →  can be associated to the elemen-
tary event e.

An assertion object is composed by the logical conjunction of elementary 
events:
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[ ]i i ia y V= ∧ ∈ .

Again a mapping of the type a { , }true falseΩ= →  will be associated to the as-
sertion object a.

Boolean assertion objects (De Carvalho, 1995) can be used to provide, via the 
logical conjunction of elementary events, a precise description of a concept and  
allow to take into account, when describing concepts, the range of values of the 
variables considered. 

For instance, if Ω is a set of patients and the variables considered to describe 
them are “temperature”, “blood pressure” and “status”, an elementary event 
could be [ { ,   }]Status Conscious Partially Consciuous∈  or [ [37 ,39 ]]Temperature ∈ ° °  and 
an assertion object could be used to describe very severe conditions such as 

[  [60,90]] [ { }] [ [30 ,35 ]]Blood Pressure Status Unconsciuous Temperature∈ ∧ ∈ ∧ ∈ ° °

Each assertion object could be used to describe one class of patients. The ex-

tension of each assertion object a on the set Ω is defined as the subset of Ω for 
which the assertion a is true. 

To actually represent data, the description of concepts by Boolean assertions 
must take into account various types of logical dependencies between variables, 
such as: 
– Hierarchical dependences (mother-daughter): this type of dependence establishes 

conditions for which a variable could not be measured (“NA”, i.e. “not-
applicable”) when another variable takes values in a particular subset. For in-
stance, the variables “Pregnant” or “number of pregnancies” are not applica-
ble when the variable “gender” is equal to “male”. In these cases the domain 
of the variable is extended considering the code “NA”. It is worth noticing 
that the numeric value “zero” could not be used instead of “NA”, because 
having zero pregnancies has different implications for a woman then for a 
man.

– Logical dependences: which restrict the set of possible values of a variable accord-
ing to the values taken by another variable. For instance, if the variable “age” 
is greater then 70 then the variable “occupation” will probably be “retired”. 

In this paragraph we recall some important structure involved in SDA. 
A non empty set M with a relation ≤ is said to be an ordered set if the follow-

ing conditions are satisfied (Schaefer, 1974): 
1) x x≤  for every Mx ∈
2) yx ≤  and xy ≤  implies yx =

3) yx ≤  and zy ≤  implies zx ≤

Let A be a subset of an ordered set M. The element x M∈  (resp. Mz ∈ ) is 
called an upper bound (resp. lower bound) of A if xy ≤  for all Ay ∈  (resp. yz ≤

for all Ay ∈ ). Moreover, if there is an upper bound (resp. lower bound) of A,
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then A is said to be bounded from above (bounded from below resp). If A is bounded 
from above and below, then A is called ordered bound. Let x, y M∈  such that 

yx ≤ . We denote by: 

[ , ] : { | }x y z M x z y= ∈ ≤ ≤

the order interval  between x and y. It is obvious that a subset A is order bounded if 
and only if it is contained in some order interval. 

Definition 1. A real vector space E which is ordered by some order relation ≤ is 
called a vector lattice if any two elements x, y E∈  have at least a upper bound de-
noted as sup(x,y) and a greatest lower bound denoted by inf(x,y) and the follow-
ing properties are satisfied: 

1) yx ≤  implies x+z ≤ y+z for all x,y,z ∈ E 

2) 0 ≤ x implies 0 ≤ tx for all x ∈ E and +ℜ∈t .
Let E be a vector lattice. We denote by E+ :={x ∈ E|0 ≤ x} the positive cone 

of E. For x ∈ E let x+:= sup(x, 0), x-:= inf(-x, 0), |x|:=sup(x, -x) be the positive, 

negative, and the absolute value of x respectively. Two elements x, y E∈  are called 

orthogonal (or lattice disjoint), denoted by x ⊥ y) if sup(x,y)=0.
For a vector lattice E we have the following properties: 

Proposition. For all Ez x,y ∈,  and a ∈ IR the following assertions are satisfied: 
1) x+y = sup(x,y) + inf(x,y);
              sup(x,y) = -inf(-x,-y)
              sup(x,y) + z = sup{(x+z, y+z)} and 
              inf(x,y) + z = inf{(x+z, y+z)}
2) x = x+ - x-

3) |x| = x+ + x-;   |ax| = |a|x| and |x+y| = |x| + |y|
4) x+ ⊥ x-  and the decomposition of x into the difference of two orthogonal 

positive elements is unique. 
5) x≤y is equivalent to x+≤y- and y-≤x-

6) x ⊥ y is equivalent to sup(|x| + |y|) = |x| + |y|. In this case we have 
|x+y| = |x| + |y|.

A norm on a vector lattice E is called a lattice norm.

|x| + |y| implies x ≤ y  for x,y ∈ E

Definition 2. A Banach lattice is a real Banach space E endowed with an ordering ≤
such that (E, ≤) is a vector lattice and the norm on E is a lattice norm. 

Symbolic data tables, constitute the main input of SDA (Bock and Diday, 2000). 
The column of the input data table are associated to symbolic variables wich are 
used in order to describe a set of units or objects. Rows are called symbolic descrip-
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tions of these objects because they are not only vectors of single quantitative or 
categorical values. Each cell of this symbolic data tables contains data of different 
types:

1) single quantitative value 
2) single categorical value 
3) interval  
4) multivalued with associated weights 

The algebraic structure of vector lattice is involved in the first three variables. 
It is always very important to understand the data structure: order for Boolean 
variables, vector lattices for intervals and so on. 

3. SIMILARITY AND DISSIMILARITY MEASURES

A dissimilarity measure D on a set of elements E is a real valued function 
:D E E× → ℜ  such that: 

1) ,

2)

3) ,

D(a,b) D(b,a) a b E

D(a,b) D(a,a)  b E

D(a,b) a b E

= ∀ ∈

≥ ∀ ∈

≤ +∞ ∀ ∈

Usually 0=D(a,a)  and sometimes it is also required for the dissimilarity meas-
ure to take values in ]1,0[ . This measures and the others considered in this para-
graph are defined in the  algebraic structure of the  vector lattice. 

A dissimilarity measure for which D(a,a) = 0 and that fulfils the triangle ine-
quality is called a metric or distance. Sometimes it is named a semi-metric or 
semi-distance, and the terms “metric” and “distance” are left for those dissimilari-
ties which also fulfill the definiteness condition (see for instance, Rizzi, 1985 or 
Esposito et al., 2000). It is also called an ultrametric if it fulfils the ultrametric con-
dition:

( , ) max{ ( , ), ( , )}     , ,D a b D a c D c b a b c E≤ ∀ ∈

Obviously if a dissimilarity is an ultrametric it is also a metric. 
Analogously a similarity measure S on a set of elements E is a real valued func-

tion :S E E× → ℜ  such that: 

1) ,

2)

3) 0 ,

S(a,b) S(b,a) a b E

S(a,b) S(a,a)  b E

S(a,b) a b E

= ∀ ∈

≤ ∀ ∈

≥ ∀ ∈

More specifically S is usually required to be a function having domain in 
E E×  and taking values in [0,1] .
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If a resemblance measure fulfils an inequality dual to the ultrametric condition, 
it is named an ultraminima, i.e.: 

( , ) min{ ( , ), ( , )}     , ,S a b S a c S c b a b c E≥ ∀ ∈

Given a similarity measure S on EE × , and a strictly decreasing function ξ  in 
[0,1]  then the mapping ( , ) [ ( , )]D a b S a bξ=  is a dissimilarity index. Conversely, if 
ξ  is also non-negative in ]1,0[ , then the quantity ( , ) [ ( , )]S a b D a bξ=  is a similar-

ity index. Usual transformations are: ( ) max( )x x xξ = − , ( ) max( )x x xξ = −  or 

( ) cos(90 )x xξ = , but any strictly decreasing function in [0,1]  would do, depend-
ing on the particular purpose of the resemblance index considered. 

Given two symbolic objects, [ ]i i ia y a= ∧ ∈  and [ ]i i ib y b= ∧ ∈  the dissimilar-
ity between these two objects can be computed aggregating, with an appropriate 
aggregation function, the comparison functions, which are dissimilarities meas-
ures computed independently for each variable.  

The usually applied aggregation function is the generalized Minkowski metric, 

1

1

( , ) ( , )
p r

r
k k

k

D a b D a b
=

=

where D(ak,bk) is a dissimilarity measure for feature k.
First then a comparison function must be chosen to compute similarity or dis-

similarity between variable, and then the resemblance between symbolic objects will 
be computed aggregating those similarity or dissimilarity indexes variable-wise. 

To compute comparison functions for each variable, agreement-disagreement 
indices can be used (De Carvalho, 1994) according to the following table: 

TABLE 1 

Agreement-disagreement table 

 Agreement Disagreement 

Agreement ( )k ka bα π= ∩ ( )k ka bβ π= ∩

Disagreement ( )k ka bγ π= ∩ ( )k ka bδ π= ∩

Where kb  is the complementary set of kb  in the domain kO  and ( )kaπ  is a 
function that accounts for the description potential of ak and that can be defined 
as:

if the variable is integer, nominal or ordinal.

( )

if the variable is a continuous interval

k

k

k k

a

a

a a

π =

−
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where with the symbols a  and a  the upper and the lower bounds of an interval 
of the real line have been represented. 

According to the previous definitions, classical similarity and dissimilarity in-
dexes have been extended for symbolic data. Namely, some similarity measures 
are:

Sokal-Michener (simple 
matching) S

α δ

α β γ δ

+
=

+ + +

Sokal-Sneath 

2( )
S

α

α β γ
=

+ +

Jaccard 
S

α

α β γ
=

+ +

Dice-Czekanowski-Sorenson 2

2
S

α

α β γ
=

+ +
Roger-Tanimoto 

2( )
S

α δ

α δ β γ

+
=

+ + +

Russel-Rao
S

α

α β γ δ
=

+ + +

The Sokal-Michener similarity index is invariant to inversion of “agreement” 
and “disagreement”. This property does not hold for Jaccard similarity. 

The Russel-Rao similarity index is peculiar, since in all the other indexes when 
the description potential of ( )k ka b∩  (i.e. the description potential of what is not 

in ka  or in kb ) is considered in the index then it is present both at the numerator 
and at the denominator of the fraction. 

Roger-Tanimoto and Soak-Sneath indexes double weight mismatches (i.e. 

kk ba ∩  and kk ba ∩ ) and the former ignores conjoint absence (i.e. kk ba ∩ ). On 
the other hand Dice-Czekanowski-Sorenson index double weights conjoint pres-
ence without considering conjoint absence. 

It is worth noticing that Jaccard, Sokal-Sneath and Dice-Czekanowski-
Sorenson indexes are all indeterminate if 0α β γ= = = , which could happen 

even if in very special cases, such as, for instance, when ka  and kb  are two de-
generate intervals. 

All these coefficients can be generalized according to the following formulas: 

( )
{0,1}; {0,1}; 0

t
S t w

w

α δ
ϑ

α δ ϑ β γ

+
= = = >

+ + +

Analogous class of dissimilarity measures can be obtained from the previous 
one simply considering the dissimilarity index SD −= 1 :

Other similarity measures that do not fit in the previous class are: 

Kulczynski 
1

2
S

α α

α β α γ
= +

+ +
Occhiai-Driver-Kroeber 

( )( )
S

α

α β α γ
=

+ +

which can be considered, respectively, as the arithmetic and geometric mean of 
the quantities /( )α α β+  and /( )α α γ+  which represent the proportion of 
agreements on the marginal distributions. 
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Another class of resemblance measures for symbolic objects is based on the 
notion of description potential of a symbolic object a. This type of measure does 
not require a variable-wise function and an aggregation function to obtain an ag-
gregate similarity or dissimilarity measure. 

Gowda and Diday have proposed various types of similarity and dissimilarity 
measures (see Gowda and Diday, 1992, 1991a, 1991b). To overcome some disad-
vantages of the previous measure, Gowda and Ravi have proposed (see Gowda 
and Ravi, 1995) modified similarity and dissimilarity measures defined on the ba-
sis of position, span and content of symbolic objects which can be used on sym-
bolic data composed of qualitative and quantitative values (mixed feature type). 

Given two symbolic objects, a and b, dissimilarity between these two objects 
can be written as: 

1

( , ) ( , )
p

k k

k

D a b D a b
=

=

the dissimilarity between the k-th feature ),( kk baD  is computed considering the 
contribution of three different components which incorporate different types of 
dissimilarities (Gowda and Diday, 1991a; Gowda and Ravi, 1995; Ravi and 
Gowda, 1999): 

a) ),( kkp baD  dissimilarity due to position, defined for quantitative data; repre-

sents the relative positions of the two features values on the real line. 
b) ),( kks baD  dissimilarity due to span, defined for qualitative and quantitative 

data, is due to the relative dimensions of the feature values without taking 
into account their intersection. 

c) ),( kkc baD dissimilarity due to content, takes into account the common part 
of the two features. 

where ),( kkp baD  is the dissimilarity due to position and is computed, for quanti-

tative interval data, as: 

| |
( , ) cos 90 1 k k

p k k

k

a b
D a b

u

−
= −

where 
k

a and
k

b  are the lower limits of the two intervals ka  and kb  for the k-th

feature and ku  is the length of the maximum interval for that feature. 

( , )s k kD a b  represents the part of the dissimilarity due to span and is calculated, 
for interval data, as: 

( ) ( )
( , ) cos 45

|max( , ) min( , )|
k k

s k k

k k k k

a b
D a b

a b a b

π π+
=

−
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while for qualitative data the component due to span is given by: 

( ) ( )
( , ) cos 45

( ) ( ) ( )
k k

s k k

k k k k

a b
D a b

a b a b

π π

π π π

+
=

+ − ∩

The dissimilarity component due to content is defined as: 

( )
( , ) cos 90

( ) ( ) ( )
k k

c k k

k k k k

a b
D a b

a b a b

π

π π π

∩
=

+ − ∩

Dissimilarity is then computed, for quantitative interval data, as 
),(),(),( kkskkpkk baDbaDbaD +=  while for qualitative data as 

),(),(),( kkckkskk baDbaDbaD +=  (Gowda and Ravi, 1995; Ravi and Gowda, 
1999).

De Baets et al. (2001) have examined twenty-eight measures of similarity be-
tween crisp subsets of a finite universe. They propose a class of rational similarity 
measures based solely on the cardinality of the sets involved: 

{ } { } [ ] [ ]
{ } { } [ ] [ ]

{ }1,0',,',,',,',

)(#')(#')\(#),\(#max')\(#),\(#min'

)(#)(#)\(#),\(#max)\(#),\(#min
),(

∈

∩+∩++

∩+∩++
=

uustssrr

baubatabbasabbar

baubatabbasabbar
baS

where the symbol “#” denotes the cardinality of a set and “\” is the set differ-
ence operator. 

Or, according to the notation used in table 1: 

min{ , } max{ , }
( , )

'min{ , } 'max{ , } ' '

r s t u
S a b

r s t u

β γ β γ α δ

β γ β γ α δ

+ + +
=

+ + +
.

To obtain a reflexive similarity index the conditions 'tt =  and 'uu =  must 
hold. Indeterminacy cases such as 0/0 are handled setting the index to 1. 
Some of the measures that can be obtained for particular choices of the 
coefficients are well known in the literature. For instance, the choice 

1''' ,0' ======== ttsruusr  gives the Jaccard’s index, while the choice 
1'''' ,0 ======== uttsrusr  yields the Russel-Rao measure that, for binary 

vectors can be considered the normalized inner product. Besides the usual proper-
ties that should be verified by a similarity index, De Baets et al. propose three 
boundary conditions that similarity indexes should verify, regarding similarity to the 
empty set, similarity to the universe and similarity between complementary sets. 
The only two indexes that verify all the three boundary conditions are obtained for 

1''' ,0' ======== uuttsrsr  and 1'''' ,0 ======== uuttsrsr  and are 
respectively: 
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( , ) ; ( , )
max{ , }

S a b S a b
α δ α δ

β γ α δ α β γ δ

+ +
= =

+ + + + +

the second one being the well known Sokal-Michener simple matching coeffi-
cient. Besides boundary conditions, some monotonicity properties have been 
studied regarding three and four sets which have been extensively considered for 
all the indexes allowing for a complete characterization and classification of the 
rational similarity measures that have been considered. 

An effort to empirically compare dissimilarity measures has been carried out by 
Malerba et al. (2001) where an evaluation of dissimilarity measures for Boolean 
symbolic objects has been proposed. The data set considered for testing is the 
well-known Abalone Fish dataset available form the University of California at 
Irvine Machine Learning Repository. This dataset contains 4177 records of Aba-
lone fishes described by nine mixed (qualitative and quantitative) attributes. This 
dataset is usually used to predict the age of an abalone fish only considering such 
attributes like sex, weight, shell weight etc1 (see Malerba et al., 2001). The argu-
ment made in the paper of Malerba et al., is that, considered that the performance 
of techniques such regression-tree on the abalone fish dataset is quite high, the 
eight attributes are sufficient enough to predict the age of an abalone. They then 
“expect that the degree of dissimilarity between crustacean computed on the in-
dependent attributes do actually be proportional to the dissimilarity in the de-
pendent attribute” (Malerba et al., 2001). Abalone data have been aggregated into 
nine symbolic objects using SODAS software (Symbolic Official Data Analysis 
System http://www.cisia.com/download.htm) and ten dissimilarity indexes (in-
cluding De Carvalho’s, Ichino and Yaguchi’s and Gowda and Diday’s indexes) 
have been computed, comparing their performance. It is not clear, however, how 
the proportionality of the degree of dissimilarity stated above should still hold 
when the 4177 abalone fishes have been grouped into symbolic objects.  

Vladutu et al. (Vladutu et al., 2001) have proposed a distance for symbolic data 
in the context of Generalized Radial Basis Function networks. The proposed dis-
tance is tailored only for discrimination purposes, i.e. it is assumed that there is a 
training set available where data have previously been assigned to one of N
classes. The distance for a specific feature is defined in the following fashion: 

1

( , ) i i

s
N

a b

a b

i a b

c c
d v v

c c=

= −

where va and vb are two possible values for the feature under consideration, 
iac

and
ibc  are the number of element for which values va and vb have been classified 

in class i and ca and cb denote the total number of element which present, respec-

1 All the information regarding the dataset are available at ftp://ftp.ics.uci.edu/pub/machine-
learning-databases/abalone/abalone.names
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tively, value a and b for the feature under study. The overall distance between two 
elements is then calculated by a weighted sum of the distances between features, 
i.e. if k  is the total number of features and wi is the weight assigned to feature I
then: 

=

=
k

i

r
YXi ii

vvdwYXD
1

),(),(

The use of this type of distance even if proved useful on a number of test-
sample (Vladutu et al., 2001) is restricted to supervised learning frameworks where 
it reduces to a distance between row profiles in a matrix where the rows are the 
possible values of the character and the columns are the classes. 

Let a be a symbolic object [ ]i i ia y V= ∧ ∈ : the definition of description poten-
tial varies according to the type of symbolic object consider (constrained or un-
constrained). For an unconstrained symbolic object the description potential is 

given by 
1

( )( )
p

j

j

a aπ π
=

= ∏ , where ( )kaπ  has been previously defined. For a con-

strained Boolean symbolic object the definition of description potential needs 
to be slightly modified in order to take into consideration hierarchical and 
logical dependences. For logical dependence, i.e. dependences of the type 

 ( )    ( )j j j i i iif y s O then y s O∈ ⊆ ∈ ⊆  where js  and is  are subsets of the domains 

of, respectively, variables jy  and iy , the description potential becomes 

1

( ) ( ) ( ´)
p

j

j

a a aπ π π
=

= −∏  where ( ´)aπ  is the description potential of the incoher-

ent restriction of a  which includes all the description vectors fulfilling a  but 
that are incoherent. For a hierarchical dependence of the type 

 ( )    ( { })j j j iif y s O then y NA∈ ⊆ ∈ , the description potential becomes 

1,

( ) ( { }) ( ) ( ´) ( ´́ )
p

j j

j j i

a a NA a a aπ π π π π
= ≠

= ∪ − −∏  where variable iy  takes values 

in an enlarged domain which contains, as one of its categories, the label “NA”, 
( ´)aπ  is the description potential including all description vectors where 

NAy i ∉  even if the assumption of the relation is true, and ( ´́ )aπ  is the descrip-

tion potential including all vectors where NAy i ∈  even if the “if” part of the 
relation is false. This extended definition of description potential can be applied 
to the determination of dissimilarity measures which are a trivial extension of 
Ichino & Yaghuchi’s (Ichino and Yaguchi, 1994) distances such as: 

( ) ( ) [2 ( ) ( ) ( )]
( , ) [0,0.5]

a b a b a b a b
D a b

R

π π γ π π π
γ

⊕ − ∩ + ∩ − −
= ∈
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where R can be equal to 1, or be the potential of the entire domain of the p vari-
ables or be ( )a bπ ⊕  where ⊕  is the Cartesian join operator. For the first two 
choices of R the dissimilarity measures are equivalent and they are not metric 
functions because the triangular inequality does not hold. The third choice for R
ends up in a dissimilarity measures which is also a metric. 

It is worth noticing that the previous dissimilarity indexes are closely related 
to the concept of symmetric difference between two sets. Indeed an interest- 
ing class of distances based principally on the idea of symmetric difference 
between sets can be applied to the computation of dissimilarity for symbolic 
data. Given two sets, a and b, the symmetric difference is 

)()()()\( ba\baa\bbaba ∩∪=∪=− . Let µ  be a measure for a set, a pos-

sible distance between two sets ka  and kb  is given by the quantity 

( , ) ( )k k k kD a b a bµ= −

and if µ  coincides with the description potential π  then the previous quantity, 

for qualitative datasets, reduces to ( , ) ( ) ( )k k k k k kD a b a b a bπ π= ⊕ − ∩  which is 
also a liable option for a dissimilarity measure for interval data, for it is equivalent 
to Ichino and Jaguchi’s distance choosing 0γ = . This distance is easily extended 

to compare two functions 
kaf  and 

kbf  (which could be, for instance, two density 

functions) defined over an interval Ok

0

( , )
k k

k

k k a bD a b f f dµ= −

A distance assuming values in [0,1] is: 

( )
 ( ) 0

( )

( , )

0   ( ) 0

k k
k k

k k

k k

k k

a b
if a b

a b

D a b

if a b

µ
µ

µ

µ

−
∪ >

∪

=

∪ =

that reduces to: 

0

0

( , )
max( )

k k

k

k k

k

a b

k k

a b

f f d

D a b
f f d

µ

µ

−

=
−

when applied to functions defined over the same set. 
The previous distance can be slightly modified, taking into account the meas-

ure of the domain O where the sets are embedded 
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( )
 ( ) ( ) 0

( ) ( )

( , )

0   ( ) ( ) 0

k k
k k

k k

k k

k k

a b
if a b

a b

D a b

if a b

µ
µ µ

µ µ

µ µ

−
− ∩ >

− ∩

=

− ∩ =

O
O

O

This quantity depends on the part of the domain that is not common to the 
two sets, compared to the part of the union of the two sets which is not in com-
mon.

All the quantities proposed above can be used on single features of 
symbolic data or on the whole symbolic data considering the notion of 
description potential, which, for a Boolean symbolic object 

1 1 2 2[ ] [ ] [ ]p pa y a y a y a= = ∧ = ∧ ∧ =  can be considered a measure of the vol-

ume of the Cartesian product i

p

i
a

1=
×

Another way to compute dissimilarity between symbolic objects as dissimilarity 
between sets is to use the Hausdorff distance, which was initially defined to com-
pare two sets. Given the function ( ) sup inf

a b

h b a
∈ ∈

= −
a b

a, b , the Hausdorff distance 

between two sets a and b both in pℜ  is defined as 

( , ) max{ ( , ), ( , )}D a b h a b h b a=

In the particular case of vectors of intervals the Hausdorff distance (Chavent 
and Lechevallier, 2002) can be computed as  

1

( ) max{ , }
p

i ii i
i

D b a b a
=

= − −a, b

that, reduces to the city-block distance for degenerate intervals corresponding to 

points in pℜ .

4. CONCLUSIONS

Symbolic data analysis has been introduced by E. Diday in the late 80’s. In the 
last decade we have had so many papers, national and international research 
groups, specific international research for implementing adequate software. The 
well known European Community Project, called SODAS, for a Symbolic Official 
Data Analysis System, implemented by 17 institutions of 9 European countries, has 
produced a prototype software for SDA. All these researches have a common 
denominator: a relation measure between two or more symbolic objects. The 
measure of similarity or dissimilarity is different for Booleans objects and for dif-
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ferent kinds of variables (defined for intervals, categorical variables with multiple 
values) or probabilistic objects. 

The methods for the synthesis of different measure of relation are another 
crucial point in SDA.  

The problem of data codification is open particularly with regard to the stabil-
ity of the conclusions that can be deduced from the dataset.

The representation of the data is in complex algebraic structures. These struc-
tures are fundamental for a scientific approach to SDA. Although they are not 
generally known to the scholars of social sciences. 

Often the objects are characterised by different kinds of variables. Many of 
these variables have been studied for the first time in Statistics just with reference 
to this type of analysis. We refer for instance to algebra of intervals.  

Reality is very simple but usually our simple models cannot manage to explain 
this reality! Linear models can give information on the complexity of data but 
cannot show all the relations between the objects we are concerned with. Meas-
ures of similarity and dissimilarity are the basis for every kind of data process. 

We believe that SDA can improve the approach to explain data. We need to 
process these data to reduce our information and to gain some understanding of 
the phenomenon we are concerned with. 

SDA has specific applications in Data mining and, particularly, in the elabora-
tion of large data sets. Knowledge extraction from large databases is the crucial 
issue in Data mining. 

In these researches the stability of the conclusions is very important when we 
do new revisions of the input data or we change slightly the data that we are 
processing. SDA has had many kinds of applications but it is not yet very well 
known by scholars, particularly in the Anglo-Saxon academic world. Nonetheless 
the applications also are limited and generally done in academic circles. Applica-
tions referee to classical data, as Fisher’s Iris. It is very complicated to obtain data 
from firms because of the privacy issues. It is also very complicated to codify 
large data sets in the logic of SDA. 

It is our specific opinion that SDA can find very important applications in dif-
ferent sectors of  the economy, social sciences, technology  and in many other 
important branches of research. The Software  is not yet well known to different 
people in firms. 

The heavy formalization of SDA can limit the utilization by scholars not spe-
cifically expert in mathematics and particularly in abstract algebra. 
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RIASSUNTO

Misure di prossimità nell’analisi di dati simbolici 

Gli autori considerano il problema della determinazione di misure di prossimilità tra 
dati simbolici. Inizialmente vengono richiamate le definizioni di evento elementare, asser-
zione e dipendenze logiche e gerarchiche. Quindi alcune bene note misure di prossimità 
tra due oggetti vengono considerate (Sokal-Michener, Roger-Tanimoto, Sokal-Sneath, Di-
ce-Czekanowski-Sorenson, Russel-Rao). Come misure di prossimità basate su funzioni di 
aggregazione vengono prese in considerazione le proposte di Gowda-Diday, De Baets et
al., Vladutu et al., e Ichino-Iyaghuchi. Le strutture algebriche sono prese in considerazio-
ne, con particolare riferimento a reticoli vettoriali e interni nello spazio di Banach. 

SUMMARY

Proximity measures in symbolic data analysis 

The Authors consider the general problem of similarity and dissimilarity measures in 
Symbolic Data Analysis. First of all they examine the classical definitions of elementary 
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event, assertion object, hierarchical dependences and logical dependences. Then they con-
sider some well-known measures of similarity and dissimilarity between two objects (So-
kal-Michener, Roger-Tanimoto, Sokal-Sneath, Dice-Czekanowski-Sorenson, Russel-Rao). 
For resemblance measures based on aggregation functions, the authors consider the pro-
posals of Gowda-Diday, De Baets et al., Malerba et al., Vladutu et al., and Ichino-
Iyaghuchi. A paragraph is dedicated to the general algebraic structure; particularly to inter-
vals and vector lattices in Banach space.


