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ON THE ESTIMATION OF THE STRUCTURE PARAMETER 
OF A NORMAL DISTRIBUTION OF ORDER P 

Angelo M. Mineo 

1. INTRODUCTION 

In statistical inference the usual hypotheses that we make on sample observa-
tions are that they are drawn from a population distributed as a normal, are ho-
moskedastic and independent. However, in many real situations the hypothesis of 
normality is not met by data that we are provided, so we have the problem to find 
alternative methods. In literature an used approach is to apply robust methods. 
Another approach is to hypothesize a different distribution for the observations 
and to look for deriving suitable methods by beginning from this hypothesis. This 
approach can be considered as alternative to the robust methods, since rather 
than referring, implicitly or explicitly, to the theory of the so called outliers, seeks 
distributional models more general than the normal one, how is pointed out by 
many researchers. Among them, the most authoritative is certainly Sir Ronald A. 
Fisher (1922) that, against the practice of excluding from analysis the so called 
outliers, says this: “as a statistical measure, however, the rejection of observations 
is too crude to be defended and unless there are other reasons for rejection than 
mere divergence from the majority, it would be more philosophical to accept 
these extreme values, not as gross errors, but as indications that the distribution 
of errors is not normal”. In this sense, the family of normal distributions of order 
p (Vianelli, 1963; Lunetta, 1963), known as exponential power distribution in the 
anglo-saxon literature (Box and Tiao, 1992; Gonin and Money, 1989), constitutes 
a valid alternative to the gaussian normal distribution. A recent review on this dis-
tribution family can be found on Chiodi (2000). 

In this paper it is faced the problem of the parameter estimation of a normal 
distribution of order p and particularly that, harder, of the estimation of the struc-
ture parameter p, by comparing some of the most interesting proposals existing in 
literature. In particular, after doing some considerations on the normal distribu-
tion of order p and on the maximum likelihood estimators of its parameters, we 
compare three methods based respectively on the likelihood function, on the pro-
file likelihood function and on the conditional profile likelihood function and a 
fourth suggestion based on the use of a particular index of kurtosis. 
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2. NORMAL DISTRIBUTION OF ORDER p

In 1923 Subbotin proposed a distribution family in which every component 
represents a random error distribution that generalizes the normal one. Subbotin, 
beginning from these two axioms: 
1. the probability of a random error depends only on the dimension of the same 

error and can be expressed by a function ( ) having the first derivative con-
tinuous in general; 

2. the most probable value of a quantity, of which are known direct measures, 
must not depend on the used measure unit (in literature this axiom is known as 
the Schiaparelli second axiom); 

that are equal to those used by Gauss with the exception of the second part of 
the first axiom that in our case is more general (for this part Gauss settled down 
the condition that the best way to combine observations is to use the arithmetic 
mean), has derived the distribution that has density function: 

( ) exp( | | )
2 (1/ )

m mmh
f h

m
 (1) 

In 1963 Lunetta, following the procedure introduced by Pearson (1895) to de-
rive new probability distributions, solves the differential equation: 

log log logd f f - a
p

dx x c
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that brings to the density function: 
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By using a different parameterization, the (3) assumes the form: 
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for - < x< , - < < , p> 0 and p> 0, with 

E[ ] ( )X xf x dx  (5) 

the location parameter, 
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the scale parameter and p the structure parameter. It is easy to see how (1) coincides 
with (4) if we consider the following substitutions: =x- , m=p e h=(p1/p

p )-1.
The distributions described by (4) have been called by Vianelli (1963) normal 

distributions of order p. This distribution family, as is known, describes both lep-
tokurtic (0 <p < 2) and platykurtic (p > 2) distributions, providing as special cases 
the Laplace distribution for p=1, the gaussian normal distribution for p=2 and the 
uniform distribution for p . It is worth noting how this distribution family is 
often used in literature only for 1 p < 2, since these distributions present heav-
ier tails than those ones of the normal distribution (see among others Hogg, 
1974; D'Agostino and Lee, 1977). However, the case of platykurtic normal distri-
butions of order p is also interesting by a practical point of view, since in the real-
ity we can have samples with observations that we can think drawn either from 
leptokurtic or platykurtic distributions, how verified by Cox (1967) that by check-
ing different data sets says that “the surprising conclusion was that while there are 
frequent departures from normality these were about equally often toward long-
tailed and toward short-tailed distributions”, or by Box (1967), according to 
whom “platykurtic distributions do occur in practice because of deliberate or un-
conscious truncation and these ought not to be ruled out a priori”. 

3. ESTIMATION OF THE PARAMETERS OF A NORMAL DISTRIBUTION OF ORDER p

As it is known, in Statistics the most used estimation method is the maximum 
likelihood, because it provides estimators with suitable properties, at least asymp-
totically. The derivation of the maximum likelihood estimators does not give big 
problems in the case of the normal distribution of order p parameters, even 
though usually we obtain estimators not expressible in a closed form. Indeed, let's 
suppose to have a sample of n i.i.d. observations drawn from (4): then the likeli-
hood function is given by: 

1/ 1
| |
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and the log-likelihood function is given by: 
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If we want to determine the maximum likelihood estimators, we can derive the 
log-likelihood function respect to the three parameters ( , p, p) and equal to zero 
the obtained expressions: 
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with (.) the digamma function, i.e. the first derivative of the logarithm of the 
gamma function (Abramowitz and Stegun, 1972): 

ln ( ) '( )
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Equations (9) and (11) do not give estimators in a closed form, while (10) gives 
the maximum likelihood estimator for p:

1/
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The quantity ˆ
p  is also called power deviation of order p and it can be seen as 

a general variability index (Vianelli, 1963). 
It is also possible to compute the inverse of the Fisher information matrix 

(Agrò, 1995) that defines the asymptotic variance matrix of the maximum likeli-
hood estimators ( ˆ , ˆ

p , p̂ ):
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with (.) the trigamma function, i.e. the second derivative of the logarithm of the 
gamma function. 

It has been noted (Capobianco, 2000) how in general the asymptotic variance 
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of the maximum likelihood estimator of the normal distribution of order p scale 
parameter is larger than the corresponding estimator of the Laplace distribution 
and normal distribution scale parameter; in fact, the supposed loss of efficiency 
of the maximum likelihood estimator for p is only due to the need of estimating 
the structure parameter p. Indeed, by supposing to know the "true" value of the 
parameter p, the information matrix is given by: 

p

p p p

I I

I I
I  (15) 

with
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and, by inverting the information matrix, we obtain: 
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that for p=1 becomes: 
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(in this case to obtain the first element of the matrix, 1
1,1I , we have to compute a 

simple limit), while for p=2 becomes: 
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At this point, it is easy to see how the asymptotic variance of the maximum 
likelihood estimator of the normal distribution of order p scale parameter, both 
for p=1 and for p=2, results equal to that of the corresponding maximum likeli-
hood estimator of the scale parameter of the Laplace and normal distribution, re-
spectively. Therefore, it is evident that if we have preliminary information such 
that we can believe with a reasonable certainty that the sample at disposal has 
been drawn from a normal or a Laplace distribution, then it is needless to use 
normal distribution of order p. Maybe this preliminary information could also 
concern the location and scale parameter and so we do not need to make infer-
ence at all. However, usually we do not dispose of this information and then it is 
necessary to consider also p unknown. 

For the estimation of p, besides the use of the maximum likelihood estimator 
(Agrò, 1995), have been proposed other two procedures (Agrò, 1999) based the 
former on the profile log-likelihood (Barndorff-Nielsen, 1988): 
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the latter on the conditional profile log-likelihood (Cox and Reid, 1987): 
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In the conditional profile log-likelihood the parameters of interest have to be 
orthogonal to the nuisance parameters and then, in our case, p has to be or-
thogonal to p, in such a way making possible, according to Agrò, finite estimates 
of p even for samples with smaller size (n=30) than those considered when we 
use the (20) or when we apply directly the (8). However, we think that the re-
quirement of finite estimates of p is not convincing, since it is possible to have 
values of p , by defining in this way a normal distribution of order p corre-
sponding to an uniform distribution, as we have already seen. 

Anyway, it is necessary to note that in order to estimate p exist other proposals 
in literature, based on the computation of particular indices of kurtosis (see for 
example Mineo A.M., 1994, 1995 and 1996). These estimation procedures are to 
be seen as procedures based on the method of moments that first look for de-
termining the most proper value of p by means of the sample observations, af-
terwards go through the use of the maximum likelihood estimators to estimate 
the location parameter  and the scale parameter p. The indices of kurtosis more 
used for this aim are: 
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whose moment estimators are given by: 
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From these relationships it is evident the nature of the structure parameter p,
that essentially is itself an index of kurtosis, and the fact that p is positively corre-
lated with p, as it can be seen from (14), too. With these considerations it is evi-
dent as an estimation method for p based on the use of an index of kurtosis re-
sults very promising. In particular, in the simulation study described in the next 
section we have used the estimation procedure of p based on the index of kurto-
sis IV̂ , with value of M in the (26) given by the estimate of the location parame-
ter  of the corresponding normal distribution of order p (for more details on the 
method and particularly on the reason why we have chosen the index IV̂  among 
the others see Mineo A.M., 1996). 

Before ending this section, it is worth noting that about the estimation prob-
lem of the normal distribution of order p parameters has been proposed recently 
an approach based on the use of a genetic algorithm (Vitrano and Baragona, 
2001) that, however, does not present substantial improvements in comparison to 
any other numerical method used to solve the estimation problem by means of 
the likelihood function. 
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4. SIMULATION PLAN AND RESULTS 

In order to compare the four different approaches to estimate the parameter p,
described in the previous section, we have conducted a simulation study by draw-
ing 1000 samples of size 10(10)50, 100, 200 from a normal distribution of order 
p, with values of p=(1.5(0.5)3.5), location parameter =50 and scale parameter 

p=2. The samples have been drawn by using the method of the inverse of the 
distribution function, by exploiting the relationship linking normal distribution of 
order p and gamma distribution (Mineo A. 1978). Besides the parameter p, the lo-
cation and the scale parameters have been estimated by using the maximum like-
lihood estimators. To solve these optimization problems we have chosen the 
simplex method (Nelder and Mead, 1965) implemented in the function optim() of 
the R software (Ihaka and Gentlemen, 1996). Since the simplex method is an un-
constrained optimization method, a suitable reparameterization on the functions 
to be optimized that present constrains on p e p has been necessary (see for a 
similar example Everitt, 1987, pp. 32-35). The starting points for the simplex 
method have been the least squares estimates, i.e. respectively the arithmetic 
mean, the standard deviation and p=2.

The obtained results seem very interesting. While it seems that there are not 
substantial differences among the approaches in the estimation of the location 
parameter (results not shown), there are some differences in the estimation of the 
remaining two parameters. 

In particular, for the scale parameter we can see (table 1) how for large sample 
sizes (n=100, 200) the whole log-likelihood and the profile log-likelihood seem to 
give unbiased estimates, while the method based on the index IV̂  results com-
petitive. For these sample sizes the conditional profile log-likelihood behave in a 
good way, but for p=1.5. Concerning the estimate variances, all the methods seem 
to provide very similar values of variance. 

For smaller sample sizes (n=10(10)50) all the estimates seem biased, with val-
ues related to the whole log-likelihood and to the profile log-likelihood biased to 
the top, while the values related to the conditional profile log-likelihood and to 
the fourth method based on the index IV̂  seem biased to the bottom. However, 
it is worth noting that for sake of comparison we have used the relationship (13) 
for all the four methods, by replacing  with the corresponding maximum likeli-
hood estimate; but for small sample sizes some corrections are necessary, since 

the maximum likelihood estimator of p
p  is biased, as it is known; in particular 

have been proposed corrections that recall that one used in the case of the maxi-
mum likelihood estimator of the variance (see Mineo A.M., 1996), or asymptotic 
correction (see Chiodi, 1988), that seem to adjust, at least partially, the bias. How-
ever, these corrections would not adjust the bias of the estimates derived by using 
the whole log-likelihood or the profile log-likelihood, since they would increase 
the mean values reported in table 1. Concerning the variances of these estimates, 
it is worth noting as the lowest are that derived from the fourth method (estima-
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tion based on the index IV̂ ), but for n=10 where the lowest variances are that 
derived from the conditional profile log-likelihood, that anyway have the great 
drawback described next. 

TABLE 1 

Arithmetic means (M) and variances (V) of the power deviation of order p estimates for the four used methods 
(I=whole log-likelihood, II=profile log-likelihood, III=conditional profile log-likelihood, 

IV=method based on the index V̂I )

p=1.5 p=2.0 p=2.5 p=3.0 p=3.5 

n M( p
ˆ ) V( p

ˆ ) M( p
ˆ ) V( p

ˆ ) M( p
ˆ ) V( p

ˆ ) M( p
ˆ ) V( p

ˆ ) M( p
ˆ ) V( p

ˆ )

10 I 
II
III
IV 

2.5079
2.9228
1.7055
1.8086

1.1643
1.3359
0.2714
0.4195

2.4249
2.7239
1.5870
1.7161

0.8737
0.8335
0.2198
0.3960

2.3859
2.5960
1.5394
1.7095

0.6910
0.6655
0.1947
0.3824

2.3006
2.4727
1.4791
1.6299

0.5674
0.5027
0.1834
0.3351

2.1943
2.3485
1.4139
1.6016

0.4566
0.3916
0.1629
0.3185

20 I 
II
III
IV 

2.3364
2.5116
1.8550
1.8811

0.7564
1.0883
0.2868
0.2583

2.3396
2.4786
1.7798
1.8382

0.6897
0.8365
0.3086
0.2989

2.3914
2.5645
1.8026
1.8530

0.6087
0.7114
0.3255
0.3126

2.3973
2.5380
1.8128
1.8378

0.5067
0.5488
0.3347
0.3141

2.4228
2.5663
1.8277
1.8471

0.4236
0.4486
0.2954
0.3019

30 I 
II
III
IV 

2.1342
2.1941
1.8429
1.8805

0.4337
0.5722
0.2167
0.1806

2.1983
2.2700
1.8073
1.8407

0.5083
0.6198
0.2505
0.2017

2.2954
2.4169
1.8886
1.8939

0.4698
0.5832
0.2962
0.2461

2.3111
2.4200
1.8884
1.8875

0.4346
0.5161
0.3004
0.2672

2.3473
2.4593
1.8999
1.9041

0.4072
0.4699
0.2661
0.2818

40 I 
II
III
IV 

2.1385
2.1617
1.8748
1.9348

0.3194
0.3796
0.1733
0.1401

2.1295
2.1820
1.8507
1.9037

0.3099
0.4055
0.2017
0.1721

2.2152
2.2629
1.9070
1.9200

0.3591
0.4249
0.2066
0.1922

2.2050
2.2821
1.9213
1.9319

0.3390
0.4263
0.2225
0.2259

2.2427
2.3097
1.9480
1.9517

0.3166
0.3713
0.2084
0.2688

50 I 
II
III
IV 

2.0754
2.0862
1.8651
1.9409

0.1974
0.2216
0.1361
0.1122

2.1165
2.1311
1.9074
1.9378

0.2640
0.2989
0.1982
0.1627

2.1164
2.1592
1.9203
1.9214

0.2169
0.2873
0.1598
0.1412

2.1814
2.2195
1.9657
1.9616

0.2724
0.3207
0.1731
0.2091

2.2054
2.2638
1.9890
1.9693

0.2730
0.3320
0.1692
0.2268

100 I 
II
III
IV 

2.0092
2.0092
1.9021
1.9536

0.0538
0.0538
0.0702
0.0464

2.0351
2.0365
1.9802
1.9676

0.0540
0.0569
0.0678
0.0571

2.0268
2.0321
1.9872
1.9536

0.0620
0.0723
0.0575
0.0757

2.0488
2.0520
2.0004
1.9758

0.0780
0.0829
0.0558
0.1019

2.0522
2.0565
2.0008
2.0080

0.0716
0.0792
0.0517
0.1476

200 I 
II
III
IV 

2.0073
2.0072
1.9474
1.9788

0.0276
0.0276
0.0445
0.0258

2.0148
2.0148
2.0032
1.9864

0.0250
0.0250
0.0252
0.0256

2.0105
2.0105
1.9963
1.9748

0.0233
0.0233
0.0213
0.0252

2.0153
2.0153
1.9993
1.9875

0.0199
0.0199
0.0189
0.0340

2.0281
2.0281
2.0094
2.0095

0.0236
0.0236
0.0224
0.0562

For the structure parameter p, we can note as all the methods show some sam-
ples that join the theoretical bounds that we imposed can assume the parameter p,
i.e. 1 and +  (we have imposed to p as lower bound 1 because even if p could as-
sume values up to 0, defining in this way normal distributions of order p of some 
statistical interest since we have cuspidate distributions with tails heavier than the 
Laplace distribution, the estimation for 0< p< 1 involves remarkable computa-
tional problems): we are not particularly worried about this occurrence, since for 
p=1 and for p , as we have seen, we have special probability distributions very 
used in Statistics. It is evident that a good p estimator has to behave in such a way 
that these values do not happen very often when we have drawn samples with a 
finite value of p 1.

The simulation results concerning the estimation of p are reported in tables 2 
and 3. 
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TABLE 2 

Arithmetic means (M) and variances (V) of the structure parameter p estimates for the four used methods 
(I=whole log-likelihood, II=profile log-likelihood, III=conditional profile log-likelihood, 

IV=method based on the index V̂I ).

p=1.5 p=2.0 p=2.5 p=3.0 p=3.5 

n M( p̂ ) V( p̂ ) M( p̂ ) V( p̂ ) M( p̂ ) V( p̂ ) M( p̂ ) V( p̂ ) M( p̂ ) V( p̂ )

10 I 
II
III
IV 

1.3775
1.1655
1.4070
1.4902

0.3543
0.0971
2.1852
1.1806

1.4467
1.2291
1.5101
1.6036

0.3889
0.1390
2.7133
1.3460

1.5447
1.2483
1.6758
1.8126

0.4582
0.1167
3.5216
2.0320

1.5441
1.2829
1.9513
1.8678

0.4929
0.1546
4.4857
1.9395

1.5610
1.2608
1.9619
1.9411

0.4467
0.1146
4.7065
2.0547

20 I 
II
III
IV 

1.8891
1.6825
1.5686
1.5759

1.2460
0.6388
2.2364
1.0477

2.2987
2.0439
1.8647
1.8106

1.7187
0.9994
3.0941
1.2657

2.1619
2.2147
2.3234
2.1967

2.7002
1.0311
4.4346
2.1823

2.8312
2.4067
2.8098
2.4691

2.4184
1.3207
5.6338
2.6015

3.1309
2.4691
3.1737
2.6210

2.8716
1.4221
6.2729
2.7663

30 I 
II
III
IV 

1.8924
1.8071
1.4732
1.4905

1.2147
0.9103
1.3572
0.5402

2.4361
2.2642
1.9298
1.9122

2.0545
1.5510
2.5157
1.2425

3.1064
2.8532
2.6107
2.3716

2.6579
2.1050
3.8825
1.8949

3.4806
3.1619
2.8756
2.6564

3.0479
2.2953
4.0623
2.6130

3.7801
3.3588
3.4471
2.7783

3.4101
2.3221
5.1812
2.2672

40 I 
II
III
IV 

1.9027
1.8626
1.4763
1.5308

1.0457
0.8943
1.1450
0.4524

2.5003
2.3973
1.9377
1.9448

1.7885
1.4506
1.7780
0.9258

3.0385
2.9742
2.6128
2.3705

2.0904
1.9978
2.9507
1.3920

3.6320
3.4045
3.1624
2.8432

3.2244
2.5245
3.8031
2.4154

3.9720
3.7923
3.5505
2.9820

2.9550
2.5638
3.8479
2.4394

50 I 
II
III
IV 

1.8009
1.7836
1.4152
1.5446

0.6341
0.5743
0.6951
0.4192

2.4816
2.4314
2.0925
2.0769

1.5094
1.2568
1.7419
1.1608

3.0969
3.0068
2.6259
2.4343

2.1141
1.8247
2.1699
1.3294

3.5966
3.5000
3.2479
2.9261

2.3678
2.1246
2.8675
2.2080

4.1509
3.9910
3.7632
3.2036

3.3259
3.0510
3.2419
2.3135

100 I 
II
III
IV 

1.6062
1.6061
1.4058
1.4862

0.1524
0.1524
0.2215
0.1169

2.2638
2.2613
2.1072
2.0362

0.5549
0.5488
0.5151
0.4528

2.8208
2.8133
2.6643
2.4901

0.8190
0.8064
0.6764
0.7157

3.4217
3.4125
3.2365
3.0220

1.3420
1.3022
1.1450
1.3878

4.0820
4.0733
3.8002
3.5818

1.9837
1.9664
1.4947
2.4524

200 I 
II
III
IV 

1.5458
1.5458
1.4402
1.4878

0.0632
0.0633
0.1166
0.0531

2.0916
2.0915
2.0580
2.0112

0.1356
0.1356
0.1298
0.1387

2.6295
2.6294
2.5822
2.5033

0.2508
0.2507
0.2705
0.3135

3.2184
3.2184
3.1329
3.0706

0.4741
0.4738
0.4087
0.6396

3.8375
3.8375
3.7091
3.7026

0.7912
0.7916
0.6539
1.4575

In table 2 we have reported the means and variances of p̂  considering all the 

values of p̂ , but p̂ > 10.0 that have been considered as p̂  (for this problem 
see Mineo A.M., 1996). From these values we can see how for large sample sizes 
(n=100, 200) the method that seems to give the best values of p̂  is that based on 

the use of the index of kurtosis IV̂ . For smaller sample sizes (n=10(10)50) the 
fourth method seems again better than the others three, also considering that the 
mean computed on p̂  suffers of the great skewness of its sampling distribution: 
indeed, in a previous simulation study (Mineo A.M., 1995) we have already noted 
as from the values of p̂  obtained with the fourth method we get frequency dis-
tributions with mode centered on the “true” value of p used to generate the sam-
ples of pseudo-random observations. 

Anyway, we consider really interesting the results shown on table 3, that re- 
ports the percentage of values with p̂ > 10.0 (and then p̂ ) and values with 

p̂ < 1.01 (and then p̂ =1). In fact, in this table we can note as in the case of con-

ditional profile log-likelihood it is very high the percentage of values with p̂ =1:
for sample sizes n=10 this percentage varies from 80% to 90%, with decreasing 



On the estimation of the structure parameter of a normal distribution of order p 119

percentages as n increases, but that are very high, anyway. According to our opin-
ion, this behaviour shows a fundamental inadequacy of the conditional profile 
log-likelihood to estimate p, especially when we have samples with medium-small 
sizes.

TABLE 3 

Percentages of samples that present estimates of the structure parameter p greater than 10.0 or lower than 1.01 
for the four used methods (I=whole log-likelihood, II=profile log-likelihood, III=conditional profile log-likelihood, 

IV=method based on the index V̂I ).

p=1.5 p=2.0 p=2.5 p=3.0 p=3.5 

n p̂  >10.0 <1.01 >10.0 <1.01 >10.0 <1.01 >10.0 <1.01 >10.0 <1.01 
10 I 

II
III
IV

53.10 
75.40 
0.30
7.60

23.40 
15.00 
91.90 
51.60 

63.30 
82.10 
1.20
10.40 

16.60 
9.70
89.00 
42.60 

71.10 
85.50 
1.80
15.20 

10.50 
7.00
85.50 
33.40 

76.70 
89.40 
1.80
16.30 

9.50
5.10
80.10 
30.10 

78.00 
90.30 
1.60
20.30 

7.70
4.10
80.40 
26.80 

20 I 
II
III
IV

22.30 
32.50 
3.60
2.50

18.10 
16.90 
80.20 
33.90 

31.30 
41.40 
5.30
6.20

9.40
9.00
71.30 
18.00 

42.00 
56.50 
8.50
9.20

5.30
5.00
57.90 
11.40 

53.00 
64.90 
11.20 
11.70 

3.40
2.90
47.30 
8.50

61.80 
74.90 
14.40 
16.10 

3.30
3.20
40.40 
7.20

30 I 
II
III
IV

7.30
11.00 
1.40
1.00

16.60 
16.30 
78.50 
27.90 

16.40 
22.20 
3.10
2.20

5.20
5.10
63.20 
9.70

25.60 
35.80 
6.50
6.00

1.40
1.30
42.70 
3.50

32.80 
43.00 
9.80
8.50

1.30
1.30
34.90 
2.00

41.10 
52.20 
10.00 
12.90 

0.40
0.30
26.50 
0.30

40 I 
II
III
IV

4.00
5.50
0.50
0.40

9.70
9.70
74.60 
16.10 

7.30
11.30 
1.70
2.10

2.80
2.80
53.30 
4.80

14.80 
18.50 
2.80
3.60

0.90
0.80
34.00 
1.00

18.90 
26.20 
5.40
6.70

0.50
0.50
23.40 
0.40

25.90 
32.60 
8.10
11.50 

0.20
0.20
15.60 
0.30

50 I 
II
III
IV

1.70
2.40
0.30
0.20

7.30
7.30
72.50 
11.00 

5.20
6.40
1.30
1.10

1.20
1.20
41.30 
1.60

6.00
9.60
1.30
1.90

0.20
0.20
25.50 
0.30

13.90 
17.50 
3.60
5.40

0.00
0.00
13.30 
0.10

19.50 
25.40 
6.60
8.90

0.10
0.10
8.60
0.00

100 I 
II
III
IV

0.00
0.00
0.00
0.00

2.40
2.40
51.10 
2.70

0.00
0.10
0.00
0.10

0.00
0.00
12.60 
0.00

0.40
0.80
0.20
0.60

0.00
0.00
2.40
0.00

1.70
2.00
0.60
1.60

0.00
0.00
0.40
0.00

1.90
2.30
0.80
3.90

0.00
0.00
0.10
0.00

200 I 
II
III
IV

0.00
0.00
0.00
0.00

0.30
0.30
30.10 
0.10

0.00
0.00
0.00
0.00

0.00
0.00
0.60
0.00

0.10
0.10
0.00
0.00

0.00
0.00
0.10
0.00

0.00
0.00
0.00
0.20

0.00
0.00
0.00
0.00

0.20
0.20
0.20
0.70

0.00
0.00
0.00
0.00

Concerning the methods based on the whole log-likelihood and on the profile 
log-likelihood, these seem to have the opposite drawback, that is it seems very 
high the percentage of samples with p̂ > 10.0, with results that seem better for 
the method based on the whole log-likelihood, that have yet the drawback of a 
greater computational complexity, at least in comparison to the approach based 
on the profile log-likelihood.  

The method to estimate p based on the index IV̂  seems the best among the 
four, having neither a great number of samples with p̂ =1, neither with p̂ .
Therefore, by summing up all the considerations done so far, the fourth method 
is surely to prefer in comparison to the others three. 
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5. CONCLUSION 

In this paper we have seen how the family of normal distributions of order p
constitutes a valid generalization of the hypothesis of normality that usually is 
made and that often it is not sustainable on data we have at disposal. The use of 
the normal distributions of order p constitutes also a parametric alternative to the 
robust methods, that referring, implicitly or explicitly, to the theory of the so 
called outliers do not seem suitable to a profitable use in the scientific research. 
How is dangerous the practice to eliminate automatically the outliers is testified 
by the following real event (Faraway, 2000, pag. 70): NASA launched the Nimbus 
7 satellite to record information on the terrestrial atmosphere. After several years 
of operation, in 1985 the British Antarctic Survey observed a large decrease of the 
level of the atmospheric ozone over the Antarctica. NASA astonished on the fact 
that its satellite did not record such anomaly ever: by examining more careful the 
satellite data it was found that the data processing program automatically dis-
carded extremely low observations, assuming that they were wrong recordings. 
With good reason we can believe that this “drawback” retarded the discovery of 
the so called ozone hole over the Antartica, delaying, as a result, the adoption of 
the correct policies to try to reduce it (for example, by banning CFC ). 

Concerning the normal distributions of order p, however exist some practical 
problems still open that have precluded a wide use, so far: one of these problems 
is the estimation of the structure parameter p. In this paper we have compared 
some interesting proposals among those existing in literature and in particular the 
estimation based on the whole log-likelihood, on the profile log-likelihood, on the 

conditional profile log-likelihood and on the index of kurtosis IV̂ . The results of 
a simulation study show as the best method is that one based on the index of kur-
tosis IV̂ , while, if for any particular reason, we want to use an approach based on 
the likelihood function, the whole log-likelihhod seems behave better than the 
profile log-likelihood and the conditional profile log-likelihood. 
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RIASSUNTO

Sulla stima del parametro di struttura di una distribuzione normale di ordine p 

In questo lavoro si confrontano quattro differenti approcci per la stima del parametro 
di struttura di una distribuzione normale di ordine p (spesso chiamata nella letteratura an-
glosassone exponential power distribution). In particolare, abbiamo considerato la massi-
mizzazione della log-verosimiglianza, della log-verosimiglianza profilo, della log-verosimi- 
glianza profilo condizionale e un metodo basato su un indice di curtosi. I risultati di uno 
studio di simulazione sembrano indicare la superiorità dell'ultimo approccio. 

SUMMARY

On the estimation of the structure parameter of a normal distribution of order p 

In this paper we compare four different approaches to estimate the structure parame-
ter of a normal distribution of order p (often called exponential power distribution). In 
particular, we have considered the maximization of the log-likelihood, of the profile log-
likelihood, of the conditional profile log-likelihood and a method based on an index of 
kurtosis. The results of a simulation study seem to indicate the latter approach as the best. 


