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A REAL FORMULA FOR TRANSITION PROBABILITIES 

Alessandra Luati 

1. INTRODUCTION 

According to quantum theory (Isham, 1995; Peres, 1995; Sakurai 1994), quan-
tum systems behave on two different levels: the microscopic one, in which they 
live and evolve in a deterministic way, and the macroscopic one, in which they 
jump when they meet a macroscopic device, as for instance a measurement appa-
ratus. At the moment of the interaction with the macroscopic world, something 
completely random happens to the quantum system, so that its deterministic evo-
lution breaks down and its state irreversibly changes. The outside world in some 
way records the change. Thus the result of a quantum measurement, i.e. of an ex-
periment performed on a quantum system by means of a macroscopic device, is a 
random variable whose probability distribution depends on the state of the sys-
tem before the interaction and on the measurement itself. Since states and meas-
urements are described by vectors in complex Hilbert spaces, the probability dis-
tributions depend on complex vectors. 

In this paper, we show that in two dimensional quantum systems, the probabil-
ity that measuring a system in a state w turns the system in a state u (transition 
probability from w to u) can be written as a function of real vectors in the three 
dimensional Euclidean space. The proof is based on the Bloch or Poincarè or 
Riemann sphere representation (Preskill, 1998; Scott et al. 1999; Penrose, 1999; 
respectively) of two dimensional complex Hilbert spaces by means of unit vectors 
in real three dimensional Euclidean spaces. Such representation is well known 
among physicists and mathematicians, but not as well among statisticians and 
probabilists, to whom the paper is mainly directed: for this reason it is described 
in all details. 

The paper is organised as follows. Basic quantum probability is reviewed in 
section 2; section 3 deeply develops the geometry of two dimensional quantum 
systems. Transition probabilities as functions of real vectors are derived in section 
4. Brief comments with references for further developments are in section 5. 

Notation: any column vector will be indicated as u if it is real or as u  if it is 

complex (according to Dirac “bra-ket” notation); corresponding row vectors will 
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be the transpose of u, namely uT, and the Hermitian transpose of u  that is u .

Because of the isomorphism between any two dimensional complex Hilbert space 

H2 and the Euclidean space C2, we will refer to the latter and we will equivalently 

talk about selfadjoint operator and Hermitian matrices. 

2. QUANTUM PROBABILITY 

In quantum statistics (Barndorff-Nielsen, Gill and Jupp, 2001; Holevo, 1982; 

Helstrom, 1976), the probability distribution of a random variable X:( , ,P)

(G, ,PX) is given by the trace rule for probability 

( ) tr{ M( )}XP G G  (1) 

where is a density matrix, i.e. a nonnegative, selfadjoint and trace-one linear op-
erator representing the state of a system in an n-dimensional Hilbert space Hn,
while M is a probability operator-valued measure (POM), i.e. a set of nonnegative and 

selfadjoint linear operators defined on a measure space (G, )  and acting on Hn,

such that M(G)=In, the identity operator in Hn, ( )ø nM O , the null operator in 

Hn, and 
11 1

 if ,  ,h h h h k

hh h

M G M G G G G G h k .

If  is of the form w w  where w  is a unit vector in C2, then it is a pure state.

The probability that a measurement M: (G, )  C2x2, C={1,0}, throws the pure 

state w w  in the new state u u  where u  is also a unit vector in C2, can be 

computed by setting X({  = the new state is u })=1, X({  = the new state is 

orthogonal to u })=0, and

2M({1}) , M({0})u u u uI  (2) 

such that 

2
1({ }) tr{ } .XP w w u u w u

The latter is called transition probability from w  to u  and (2) is a von Neumann 

measurement (von Neumann, 1955; Davies and Lewis, 1970). 
In the following we will show how to represent state vectors and von Neu-

mann measurements acting on C2 by means of unit vectors in R3. In this way, 
transition probabilities can also be written in function of real vectors. 
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3. GEOMETRY OF QUANTUM SYSTEMS IN C2

Consider the vector space S2 C2x2 of Hermitian matrices acting on C2 in 

which the Hilbert-Schmidt inner product is defined as 2, : tr{ }, ,HA B A B A B S .

The set {I2, x, y, z} where I2 is the 2 2 identity matrix and 

x

0 1

1 0
y=

0

0

i

i
z=

1 0

0 1

are the Pauli matrices, constitutes an orthogonal basis for S2, dim S2=4; every Her-
mitian matrix S can be uniquely written as a linear combination of the matrices 
I2, x, y, z with real coefficients u,x,y,z:

1
,

2

u z x iy
S

x iy u z
u,x,y,z R (3)

Any density matrix  is of the form (3), provided that it has (i) unitary trace and 
(ii) non negative determinant. Condition (i) implies that u1=1/2 in such a way that 
(3) becomes 

11

12

z x iy
S

x iy z
 (4) 

while condition (ii) is equivalent to x2+y2+z2 1. It follows that the state of a sys-
tem can be written as 

2( )
1

( , )
2

w wI  (5) 

where [ ]T
w x y z R3 and 1w  while  is the three dimensional vectors 

of 2 2 Pauli matrices, i.e. [ ]T
x y z  in such a way that 

, ,

, .T
V V

V x y z

w w w

Relation (5) allows to represent the space of density matrices as the closed unit 
ball in R3 (Poincarè or Riemann or Bloch sphere); the surface of the sphere corre-

sponds to the set of pure states since 
22

( ) ( ) 1w w w , as one gets by de-

riving 2
( )w  from (5) and by the following properties of Pauli matrices: 

U V V U  if   and 1U V  if  . (6) 

Hence, if 
2

w
u

w
R3 is a unit vector, then 2

1
( ) ( , )

2
u uI  is an orthogonal 

projection matrix and its spectrum is the set {0,1}. It follows by the spectral 
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theorem that (u) can be written as1 ( )u u u , where u C2 is an eigenvec-

tor of (u) corresponding to the eigenvalue 1. It can be simply obtained by nor-
malising any column vector of (u). In fact, let E0 and E1 be eigenspaces corre-

sponding to the eigenvalues 0 and 1 respectively and let R (u) and C (u) be the row 

and column space of (u) respectively. Denoting with S  the orthogonal com-

plement with respect to C2 of a subspace S  C2, we have E0= E1  and 

N (u)= R (u) . It follows from E0 N (u) that E1 R (u). Since (u) is Hermitian, 

E1 C (u)=span u .

The orthogonal projection matrix onto E0 is therefore given by 

I2- (u) = 2 2 2

1 1
( , ) ( , ) .

2 2
u u uI I I

Summarising: u and -u are unit vectors in R3 and one is the opposite of the other; 
they respectively correspond to the pure states (u) and (-u) that orthogonally pro-
ject the state vectors of C2 onto the one dimensional subspaces spanned by the vec-

tors u  and u  which are mutually orthogonal (and not opposite2).

Considering non pure states, if w R3, 1w , then, by the spectral theorem and 

by the unitary trace constraint for the density matrix (w),

(w)= (u)+(1- ) (-u) (7) 

with [0,1] where 
1 1

2 2
w  and 

1 1
1

2 2
w  are eigenvalues of (w)

with eigenvectors u  and u  while u is a unit vector in R3. Observe that exclud-

ing I2 and O2 that project any vector of C2 onto its improper subspaces (C2 and the 

null vector), given a unit vector u R3, (u) and (-u) are the unique two density ma-
trices that project onto one dimensional proper subspaces of C2 orthogonal to each 
other. It follows that, in C2, the density matrices can be represented as a mixture of 
matrices (u) and (-u). Note that (7) is equivalent to w= u+(1- )(-u).

In the following, we will show that von Neumann measurement acting on C2

can be represented by unit vectors of R3 in such a way that the transition prob-
ability between pure states can be equivalently written as a function of two unit 
vectors of R3 (instead of two state vectors in C2).

1 Observe that ( )u and ( )u  represent the same matrix, provided that is built on the vector 

3
u R , i.e. 2

1
( ) ( , )

2
u uI , or on the vector u X2 u u , i.e. ( )u u u .

2 Dirac notation emphasises the geometric meaning of state vectors instead of their algebraic 
connotation. 
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4. TRANSITION PROBABILITIES OVER R3

Measurement (2) can be written as 

2 2

1 1
M({1}) ( , ), M({0}) ( , )

2 2
u uI I  (8) 

and we can now compute the probability that, given a system in state (w), it col-
lapses in the state (u) after being measured by M. The transition probability is 

u

1 1
P P({ }) ,

2 2
u w u  (9) 

as follows by the trace rule for probability Pu =tr{ (w)Mu}, replacing (5) for (w)

and (8) for Mu to obtain u 2 2

1 1
P tr ( , ) ( , )

2 2
w wI I  and then using (6) and the 

linearity of the trace operator. By (1), it is immediate to see that if (w) is a pure 
state with corresponding eigenstate w  relation (9) is equivalent to  

2
P tr{ ( )M } tr{ } .u uw w w u u u w w u u w  (10) 

On the other hand, if (w) is not a pure state, the above relation becomes 
Pu=tr{ (w)Mu}= tr{ (u)+(1- ) (-u) (u)}=tr{ (u )}=  and equivalently (9) 

gives
1 1 1 1

, (1 )( ), .
2 2 2 2

uP w u u u u

For instance, a spin-1/2 system (see Beltrametti and Cassinelli, 1981) in the 
pure state 

2

2

( )

cos cos sin
2 2 2

,

cos sin sin
2 2 2

i

i

e

e

 (11) 

with  can be equivalently represented by the coherent eigen-
state (Peres, 1995) 

cos
2

( , )

sin
2

ie

w  C2 (12) 

such that ( ), ( , ) ( , )w w  or by 
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sin cos

( , ) sin sin

cos

w  R3 (13)

such that 2( )
1

, ( ( , ), )
2

wI , as one can derive by comparing (4) and 

(11). Transition probability from ( , )w  to, say, ( , )u , such that Mu( , )=

( , ) ( , )u u  can be obtained by (12) through (10) or by (13) through (9). 

5. COMMENTS 

We illustrated a representation of transition probabilities in two-state quantum 
systems based on real tridimensional instead of complex bidimensional vectors. 

On a theoretical viewpoint, the present study is part of a wider research in 
quantum statistics with special reference to Fisher information in pure and mixed 
states (see Luati 2001, 2004). Readers who are familiar to this topic could employ 
the present perspective in viewing state vectors and transition probabilities for 
developments concerning the geometry of spin-1/2 systems, asymptotic quantum 
statistics and measurement problems (Barndorff-Nielsen and Gill, 2000; Gill, 
1999; Gill and Massar, 2000 respectively, and references therein). 

A recent research area in which unit sphere representation of qubits (quantum 
bits), as two-state systems are there called, is quantum computing (Brooks, 1999; 
Steane, 1998; Williams and Clearwater, 1998). 
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SUMMARY

A real formula for transition probabilities 

Transition probabilities between states in two dimensional quantum systems are de-
rived as functions of unit vectors in R3 instead of state vectors in C2. This can be done 
once represented states and von Neumann measurements acting on C2 by means of vec-
tors on the unit sphere of R3.

RIASSUNTO

Una formula reale per le probabilità di transizione 

Le probabilità di transizione tra stati in sistemi quantistici di dimensione 2 sono 
ottenute come funzioni di vettori unitari in R3 anziché di vettori unitari in C2. Ciò è reso 
possibile dalla rappresentazione di stati e misure di von Neumann che operano su C2

attravero vettori nella sfera unitaria di R3.


