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ON THE RATE OF CONVERGENCE TO THE NORMAL LAW 
OF LSE IN REGRESSION WITH LONG RANGE DEPENDENCE (*)1

N. N. Leonenko, E. Taufer 

1. INTRODUCTION 

Long range dependence random fields arise in applications in the most dispa-
rate areas such as astronomy, economics, hydrology and the telecommunications; 
the study of random processes and fields with long range dependence presents 
interesting and challenging probabilistic and statistical problems and recent litera-
ture has seen an increasing number of papers developing models for the descrip-
tion and analysis of this phenomenon.  

In the present paper we will present some results on the rate of convergence to 
the normal law of the Least Squares Estimators (LSE) of the regression coeffi-
cients in models with multidimensional inputs and long range dependence errors. 

The same problem, for single input regression, has been considered in 
Leonenko et al. (2000); this work finds its motivation in the fact that the exten-
sion to multiple regression is not immediate and some different tools have to be 
utilized.

Note that we consider regression on continuous homogeneous random fields, 
in particular, for 1n , we can interpret the parameter of the random field as 
time. It could be pointed out that even if many of today's data set are available 
virtually in continuous time, practical applications require to consider the ob-
served phenomena at fixed time points. Notwithstanding, procedures of discreti-
zation lead sometimes to loss of information on important parameters (see, for 
example, Leonenko, 1999, pp. 14-16). 

Statistical problems related with long range dependent continuous random 
processes and fields have been considered in the book by Ivanov and Leonenko 
(1989), Chambers (1996) considers the problem of estimation of continuous pa-
rameters in long memory time series models, in Comte (1996) we find an analysis 
of different methods of simulation and estimation for long memory continuous 
models. Leonenko and Benši  (1996a, 1998) and Leonenko and Taufer (2001) 
present Gaussian and non-Gaussian limit distributions of univariate and multi-

(*) This work was partially supported by the Australian Research Council Grant A69804041. 
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variate regression for long memory random fields and processes, their results 
have been obtained by the methods presented in the works of Dobrushin and 
Major (1979) and Taqqu (1979). 

For other results of interest here see Yajima (1988, 1991), Künsch et al. (1993), 
Dahlhaus (1995), Robinson and Hidalgo (1997), Deo (1997), Deo and Hurvich 
(1998) which consider regression models with long memory errors in discrete 
time.

The paper is organized as follows. In Section 2 we will state our model and as-
sumptions exactly and formulate the main result which shows the rate of conver-
gence of Kolmogorov's distance between the distribution of the normalized LSE 
and the standard normal distribution. The proof of the main result, together with 
some preparatory lemmas, is given in Section 3. Section 4 contains the discussion 
for an extension to a wider case which can be done at the price of a slower con-
vergence rate. 

We do not take into consideration here the problem of estimation of the de-
pendence index (or Hurst parameter), for this, see Giraitis and Koul (1997) and 
their references.  

2. MAIN RESULTS

Let n, 1n , be a n-dimensional Euclidean space, n be a bounded and 
convex subset containing the origin and ( )T  be the image of the set  under 
the homotetic transformation with center at the origin and coefficient 0T , that 
is ( ) {T x n : / }x T . Practical situations often claim  that  is a paral-
lelepiped or a ball but we can allow this weaker condition. 

Assumption 1. Consider the regression model of the form 

( ) ( ) ( )x x x'g , x n

where 1( ) [ ( ), ..., ( )]'qx g x g xg  is a known vector function whose coordinate 

functions ( )ig x , 1,...,i q  form a linearly independent set of real functions posi-

tive on  and square integrable over the same set for all bounded n con-
taining the origin. 1[ , ..., ]q  is an unknown vector of parameters and ( )x  is 

an homogeneous random field of errors with ( ) 0xE  and 2( )xE .

Assumption 2. Let ( , ) ( )x x , x n, , be a real valued measurable 
mean square continuous homogeneous Gaussian random field on the probability 

space ( , , )F P  with ( ) 0xE , 2( ) 1xE  and correlation function 
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( ) (0) ( ) ( )
x

B x x x L x a
x

E , 0 n ,

where ( )a  is a continuous function on the n-dimensional sphere 

1(1) {ns x n : 1}x , and ( ) 0L t , 0t  is a slowly varying function at 

infinity ( lim( ( )/ ( )) 1
t

L ts L t , for every 0s ) bounded on each finite interval. 

Assumption 3. Let ( ) ( ( ))x G x , x n, where ( )x  is a random field satis-
fying Assumption 2, and ( )G  is a non-random measurable function such that 

( ( )) 0G xE  and 2 ( ( ))G xE , x n.

Note that the marginal distributions of a field ( )x , x n, satisfying As-
sumption 3 need not be Gaussian. Moreover, under Assumption 2 we have 

( )
n

B x dx . Typical examples of correlation functions satisfying Assump-

tion 2 are the following: 

2 /2
1( ) (1 )B x x , 0 n

and

1
2 ( ) (1 )B x x , 0 2 .

The first function is known as characteristic function of the multivariate Bessel 
distribution (see, for example, Fang et al., 1990, p. 69); the second one is known 
as characteristic function of the multivariate Linnik distribution (see, Anderson, 
1992 or Ostrovskii, 1995).

Our aim is to study the rate of convergence to the normal law of the LSE of 
the vector  which can be found by minimizing  

2

( )
[ ( ) ( )]

T
x x dx'g

with respect to . The final form of LSE is given by ( see Leonenko and Šilac-
Benši , 1998) 

1

( )
ˆ ( ) ( )T T T

x x dxQ g  = 1

( )
( ) ( ( ))T T
x G x dxQ g (1)

where the integral is taken with respect to every element of the matrices and 

( )
( ) ( )'T T
x x dxQ g g .
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The existence of 1
TQ  follows from linear independence and square integrabil-

ity of 1( ), ..., ( )qg x g x . It is straightforward to verify that 

ˆ( )TE

and that 

ˆ ˆ ˆVar( ) [ ][ ]'T T TE

1 1

( ) ( )
( ) ( )' [ ( ( )) ( ( ))] .T TT T
x y G x G y dx dyQ g g E Q (2)

Let

2 2

( ) ( 1) exp exp
2 2

m
m

m m

u d u
H u

du
,

u 1, 0,1, ...,m  be the Chebyshev-Hermite polynomials with the leading 
coefficient equal to 1; they are known to form a complete orthogonal system in 

the Hilbert space 1
2 ( , ( ) )L u du , where 1/2 2( ) (2 ) exp{ /2}u u , u 1.

Note that 0 ( ) 1H u , 1( )H u u , 2
2 ( ) 1H u u …

It is well known that (see, for example, Ivanov and Leonenko 1989, p. 55) if 

( , )  is a Gaussian vector with 0E E , 2 2 1E E , E , then 
for all , 0m p

( ) ( ) !p m
m p mH H mE (3)

where p

m  is the usual Kronecker's delta. 

Under Assumption 3 the function 1( ),G u u  allows the following represen-

tation in the Hilbert space 1
2 ( , ( ) )L u du :

0

( ) ( ),   ( ) ( ) ( )
!

m
m m m

m

C
G u H u C G u H u u du

m
(4)

and by Parseval's relation: 

2
2 2

0

( (0)) ( ) ( ) ( )
!

m
m

m

C
G H u G u u du

m
E (5)

Note that 2
0 ( (0)) 0C GE . From (1) - (4) we obtain: 
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1 1
,

1

ˆVar( )T T m T T
m

Q Q (6)

where 

2

, ( ) ( )' ( )  
!

mm
m T

T T

C
x y B x y dx dy

m
g g

Now we need some extra assumptions upon the regression vector function 
g( )  and the covariance function ( )B .

Assumption 4. Suppose that ( ) 0ig x  for all 0x , 1,...,i q  and, for 
0 / ,  1n m m  or 2m , the following limits exist and are finite: 

( ) ( )
( , ) lim     

( ) ( )
mi j m

m ij
T

i n j n

g xT g yT x y
l n a x y dx dy

g T g T x y1 1

, 1...i j q , and that (1 , )( , ) [ ( , ) ]m m ij i j qm l nL  is a positive definite matrix 

( n1  is a n-vector of ones).

Assumption 5. Let 1m  or 2m . Suppose that there exist a function 
( , )mF x y  such that 

( ) ( ) 1
1 ( , )

( ) ( ) ( )

m
i j m

mm m
i n j n

g xT g yT L x y Tx y
a F x y

g T g T x y L Tx y1 1
,

, 1...i j q , 0 /n m , and 

( , )  mF x y dx dy .

Remark 2.1. Consider the case of polynomial radial regression: 

g g 1( ) ( ) ( , ..., )'qx x x x  with 1 , ... 0q . Suppose Assumption 2 hold 

with ( ) 1a  and 2 /2
1( ) ( ) (1 )B x B x x . Thus we have 

2 /2( ) (1 )L x x x 0 n ; then Assumptions 4 and 5 hold with 
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( )/2

1
( , )       , 1...

ji

i j
m ij m

x y
l n dx dy i j q

n x y
. (7)

Remark 2.2. We write 

1 1

( ) ( )
( , ) lim ( ) ( )'  

mm

m T TT T T

x y
n xT yT a x y dx dy

x y
L D g g D (8)

where 

1 11[ ( ), ..., ( )]T n q nD diag g T g T

Remark 2.3. After the transformation * ( )x x T T , * ( )y y T T ,

0T , *x , *y , we obtain the following expressions for the matrix 

,m T , 0 /n m :

* *2
2 1 * *

, ( ) ( )

* * * *
1

* * * *

( ) ( ) ( )' 
!

                                   ,    0 / .

m

n m mm
m T T T mT T

m
T Tm

L x y TC
T L T x T y T

m L T

x y dx dy
a n m

x y x y

D D g g

D D

Let 1m  or 2m  and 0mC . Then, from Assumptions 4 and 5 and 
Lebesgue dominated convergence theorem we obtain (for details, see Leonenko 
and Benši , 1998): 

2
2

, ( ) ( , ) (1 (1))
!

n m mm
m T T m T

C
T L T n o

m
D L D , 0 /n m (9)

as T .

To complete our preliminaries, we need to define the Kolmogorov's distance 
between random vectors. To this end, let 

,[ ] { :  1,..., }q
i i iu a u b i qa,b

be a parallelepiped in q  and let x  and y  be two arbitrary q-dimensional ran-
dom vectors. Introduce the uniform (or Kolmogorov's) distance between distri-
butions of random vectors x  and y  via the formula: 
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,

( ) sup | ( [ ]) ( [ ])|
qa b

K P Px, y x a,b y a,b

We are now ready to formulate the main result of this paper. Let z  be a stan-
dard normal random q-vector with zero mean and unit covariance matrix and 
consider the random vector 

1/ 2
1,

ˆ[ ]T T T Tk Q ,

where the LSE ˆ
T  are defined in (1) and 1/2

1,T  is a nonsingular matrix such that 

1/2 1/2 1
1, 1, 1,( )( )'T T T .

Theorem 2.1 describes the rate of convergence to the normal law of the ran-
dom vector kT  as T .

Theorem 2.1 Suppose that Assumptions 1-5 hold for 0 /2n , and 

1 ( ) ( ) 0C uG u u du

then the quantity: 

1/3

lim sup ( , )
( ) T

T

T
K

L T
k z

exists and is bounded by

1/32/3 1
1 2 1 22 ( ) ( ) ( ) [ ( , ) ( , )]c q c q c G tr n nL L

where 1( , )nL  and 2( , )nL  are defined by (8) and

2 2 2
1 1( ) ( ) ( )c G C G u u du C

1( ) 2/c q , if 1q   and 1

[( 1)/2]
( ) ( 1)

2 ( /2)

q
c q q

q
, if 2q

2

2

1
( ) 1 1c q q

q
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3. PROOF OF THE MAIN RESULT

Before proving Theorem 2.1 we mention some preliminary results. The follow-
ing lemma provides an estimate of the Kolmogorov's distance of a sum of ran-
dom vectors from a standard Gaussian vector. For its proof see Leonenko and 
Woyczynski (1998). 

Lemma 3.1 Let x , y  be two arbitrary random q-vectors and z  be a standard 

Gaussian q-vector such that, for all qa,b ,

| ( [ ]) ( [ ])|P P Kx a,b z a,b ,

where 0K  is a constant. Then, for any 0 ,

1( , ) ( [ , ]) ( )q qK K P c qx y z y 1 1 (10)

where 1( )c q  is defined in Theorem 2.1 and q1  is a q-vector of ones.  

In the proof of Theorem 2.1 we need an estimate on the tails of the maxima of 
a general second-order random vector's components which is provided by the 
following Lemma (see Karlin and Studden, 1966). 

Lemma 3.2 Let 1[ , ... ]qV Vv  be a random q-vector with mean 0Ev  and co-

variance matrix 1 ,' ( )ij i j qEvv , and let /( )i i i iW V k  where 2
i ii ,

and 1 , ..., 0qk k  are some constants. Then 

2

21

1
max 1 ( )( 1)i

i q
P W s qt s q

q
, (11)

where t tr , q qs 1 1 , 1 ,' ( )ij i j q=Eww , /( )ij ij i j i jk k , and 

q1  is a q-vector of ones. 

Remark 3.1. From Lemma 3.2 we readily obtain an upper bound for 

1(max 1)i q iP V  by setting 1/i ik , 1,...i q .

The purpose of the next Lemma will be made immediately clear in the subse-
quent Remark. 

Lemma 3.3. Let 1 ,( )ij i j q  be the variance- covariance matrix of a random 

q-vector v , t  its trace and s  the sum of its elements. Then 

0 s qt .
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Proof: that 0s  is obvious since Var( )qs 1 v . To prove that s qt , use the 

Cauchy-Schwarz inequality to obtain 

2

,
ij i i

i j i j i

s (12)

where 2
i ii . Again, by the Cauchy Schwarz inequality we know that 
2 2 2

i i i ii i i
a b a b  where ,i ia b  are positive numbers. Set i ia  and 

1ib , i . Then 

2
2 1i i

i i i

qt .

Remark 3.2. From Lemma 3.3 we can obtain a less tight version of Lemma 3.2:  

2 2
21

1
max 1 ( 1) (1 1)i

i q

t
P W qt qt q q

qq
.

For later convenience let  

2

2
1

( ) 1 1c q q
q

.

Proof of Theorem 2.1. Formula 4 implies the following expansion in the Hilbert 
space 2 ( )L :

1

( ( )) ( ( ))
!

m
m

m

C
G x H x

m
,

we now consider the random vectors 

, ( )
( ) ( ( )) ,   1, 2...m T mT
x H x dx mg

In order to apply Lemma 3.1, we represent Tk  as 

1/2
1,T T T Tk x y

where 



N.N. Leonenko, E. Taufer 62

1 1, ,T TCx , ,
2

.
!

m
T m T

m

C

m
y

Note that Tx  is a Gaussian random vector with 0TEx  and '
1,T T TEx x .

So we have 

1/2
1,( , ) 0T TK x z

and we may choose K=0 in Lemma 3.1. We are left with the term 

1/2 1/2
1, 1,

1

1
( [ , ]) ( [ ]) (max 1)T T q q T T q q i

i q
P P P Vy 1 1 y 1 ,1  where 

1/2
1,

1
T Tv y . We can then find an upper bound for 

1
(max 1)i

i q
P V  by using 

Lemma 3.2 as indicated in Remark 3.1. Also, Remark 3.2 shows us that we need 
only to evaluate the trace of 'Evv . We have: 

1/2 1/2 1
1, 1, 1,2 2

1 1
' T T T T T T Tt tr tr trEvv Ey y Ey y

For notational convenience, denote ,2T T m Tm
Ey y  as . Since 

( ) 1B x  we know that 2( ) ( ),   2mB x y B x y m . So that, for 

0 /2n ,

2

( ) ( )
2

2
2

( ) ( )
2

( ) ( )' ( )  
!

   ( ) ( )' ( )     (say).
!

mm

T T
m

m

T T
m

C
x y B x y dx dy

m

C
x y B x y dx dy

m

*

g g

g g

Where the inequality sign refers to any single element of the matrices. Also, we 

have that 
2

( ) ( )
2

' ' ( ) ( )' ( )  
!

mm

T T
m

C
x y B x y dx dy

m
a a a g g a  where a  is a 

vector of real numbers; hence, by the same reasoning and from the fact that 

, ,Var
!

m
m T m T

C

m
 is a positive definite matrix it can be seen that 

*a' a a' a  for any vector a  of real numbers, i.e. * - is a positive definite 
matrix.  
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Then, in order to find an upper bound for 't trEvv  we reason as follows: 
from positive definiteness there exists an orthogonal matrix P  such that 

1,T P P'  where  is a diagonal matrix containing the eigenvalues of 1,T

which are all real and positive. Hence,  

1 1 1 1
1,

1

( ) ( ) ( ) 0
q

T i i
i

tr tr tr* * * *
i- P P' - P' - P p - p

where 1 0i  are the diagonal elements of 1 , ip  is the i-th column of P .

The last inequality follows from positive definiteness of * - . Using this last 
result we obtain the following estimate 

2
1 1 * 1

1, 1, 1, 2,2 2 2 2
2 2

1 1 1 2

!
m

T T T T
m

C
t tr tr tr

m C
.

Using (9) we have that 

2
1 11

1, 2, 1 22
2

2
lim ( , ) ( , )

( ) T T
T

C T
t tr tr n n

L TC
L L , 0 /2n .

Hence we have the following upper bound for t :

1
1 22

( )1
( ) ( , ) ( , )

L T
c G tr n n

T
L L , 0 /2n (13)

as T , where 

2
2 2 2 2

1 1 1
2

( ) ( ) ( )
!

m

m

C
c G C C G u u du C

m
.

Finally, using Lemma 3.1 with 1/2
1,T Tx x  and 1/2

1,T Ty y we obtain from 

(13) that for any 0 :

1
1 2 1 22

( )1
( , ) ( ) ( ) ( ) ( , ) ( , )T

L T
K c q c G c q tr n n

T
k z L L . (14)

In order to minimize the r.h.s. of the inequality, set 

1/3
1

2 1 2

1

( ) ( ) ( , ) ( , ) ( )

( )

c G c q tr n n L T

c q T

L L
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and substitute into (14) to obtain the following 

1/3
2/3 1 1/3

1 2 1 2
( )

( , ) 2 ( ) [ ( ) ( ) ( ( , ) ( , ))]T

L T
K c q c G c q tr n n

T
k z L L .

4. EXTENSIONS AND GENERALIZATIONS

As follows from the results of Leonenko and Šilac-Benši  (1998), the asymp-
totic normality of the normalized LSE takes place for all (0, )n  (see Assump-

tion 1) if 1 0C , whereas Theorem 2.1 gives the convergence rate to Kolmo-
gorov's distance only for (0, /2)n .

Nevertheless, our method is applicable also to the broader interval (0, )n

at the price of a slower convergence rate. 
For simplicity we consider the homogeneous isotropic random field (the function 

( ) 1a  in Assumption 2) and the case of radial regression function: 

( ) ( ),  nx x xg g .

We consider now the case ( ) ( ) { : },  nT v T x x T T . Thus the 

random field ( ) ( ) ( )x x x'g  is observed on the ball ( )v T .

Assumption 6. Let ( )x , nx , be a real valued mean square continuous ho-

mogeneous isotropic Gaussian field with ( ) 0xE , 2( ) 1xE  and correlation 
function  

( ) ( ) (0), ( ) 0B x B x xE

monotonically as x , and ( ) ( ( ))x G x , where ( ( )) 0G xE  and 
2 ( ( ))G xE , x n.

Assumption 7. Suppose that for the regression function it holds 

( ) ( ),  nx x xg g  such that ( ) 0ig x , 1, ...,i q , if 0x , and 

( ) ( )i ig x g y , 1, ...,i q , for x y .

Assumption 8. There exists a (0,1) such that
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(1 )
, ( ) ( )

(1 )

( ) ( )

( ) ( )
( )  

( ) ( )

( ) ( ) ( )
      ( )       , 1, ...

( ) ( ) ( )

i jn
T ij v T v T

i j

i jn

v T v T
i j

g x g y
T B x y dx dy

g T g T

g xT g yT B T x y
T B T dx dy i j q

g T g T B T

as T .

Note that if Assumption 2 (with ( ) 1a ), and Assumptions 4 and 5 (with 

1m ) hold, then ,T ij  as T  for all , 1, ...,i j q . Thus the random 

field ( )x , nx  satisfying Assumption 8 is a random field with long range de-
pendence. 

Remark 4.1. We write  

(1 ) 1
, 1 , ( ) ( )

[ ] ( ) ( )' ( )   n
T T ij i j q T Tv T v T

T x y B x y dx dyD g g D

We have the following result: 

Theorem 4.1 Suppose that assumptions 6-8 hold, and 

1 ( ) ( ) 0C uG u u du

then the following quantity: 

1/3

1( )2
lim sup ( ) ( , )

n

q T q T
T

c n
B T K

n
1 1 k z

exists and is bounded by

1/3 2/3
2 12[  ( ) ( )] ( )c G c q c q

where 1( )c q  and 2( )c q  have been defined in Theorem 2.1, and 

2

1
4 ( /2)

( )
n n

c n
n

Before proving the theorem, we need some preliminaries. With this in mind, 
let 1u  and 2u  be two independent random vectors selected in accordance to the 

uniform law on the ball ( ) nv T . Then (see Ivanov and Leonenko, 1989, p. 25) 
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the density function ( )T u  of the Euclidean distance 1 2u u  between 1u  and 

2u  is 

2
1

1 ( /2 )

1 1
( ) ,

2 2
n n

T u T

n
u T nu I ,  0 2u T ,

where 

1 1

0

( )
( , ) (1 )

( ) ( )

u a ba b
I a b t t dt

a b
,  0a , [0,1]

is the incomplete Beta function. Using randomization we obtain for every func-

tion ( ), ,n nf x y x y :

2
1 2( ) ( )

( )  ( )
v T v T

f x y dx dy v T fE u u

222

0
           (1) ( ) ( )  

Tn
TT v f u u du

2

2 1
1 ( /2 )0

1 1
           ( ) ( ) ,   

2 2

Tn n

z T

n
c n T z f z I dz ,

(15)

where 2( ) 4 ( /2)/nc n n n  and ( )v T is the volume of a ball ( )v T .

Proof of Theorem 4.1: we follow the scheme of proof of Theorem 2.1 including 
the necessary modifications. Let us introduce the sets 

1

2

{( , ) : }

{( , ) : }

A x y x y T

A x y x y T

Following the results of the previous section, in order to find an upper bound 

for 1
1[ ( ) ]t tr T  consider 

1 2

1 1
1 2 12

2

2!
( ) ( ) ( ) ( ) ( )' ( )  A Atr T T tr T x y B x y dx dy

C
g g  (16) 

Consider first the set 1A , we have 2 ( ) 1B  and then, for the first term on the 

r.h.s. of (16), using result (15) with 
1

( ) Af x y 1  we have the estimate 
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1 1

1 2 1
1 1

(1 ) 1
1

( ) ( ) ( )' ( ) ( ) ( ) ( )'

2
                                                                   ( ) ( ) ( ) ( )'

A A

n
n

tr T x y B x y dxdy tr T T T dxdy

c n T tr T T T
n

g g g g

g g (17)

The above result can be manipulated a little further by using the properties of 
the trace operator. Recall the definition of TD  and let q1  and qJ  denote respec-

tively a q  vector and a q q  matrix of ones. Note that  q q q1 1 , 1 1 Jq q q  and 

q q qqJ J J . Then we can write 

1 1 1 1
1 1

1 1 1
1

1
1

( ) ( ) ( )' ( ) ( ) ( )'

1
                                    ( ) ( ) ( )'

1
                                    ( )

T T T T

T T T q q T

T T q q

tr T T T tr T T T

tr T T T
q

tr T
q

g g D D g g D D

D D D g 1 1 g D

D D J J

1
1

1
1

(1 ) 2 1
1

                                    ( )

                                    ( )

                                    .

T T q

q T T q

n
q T q

tr T

T

T C

D D J

1 D D 1

1 1

(18)

As far as the second term in the r.h.s. of (16) is concerned note that on the set 

2A  we have 2( ) ( ) ( )B x y B T B x y  and then 

2

2

1 2
1

1 2
1

2
1

( ) ( ) ( )' ( )  

                    ( ) ( ) ( ) ( )' ( )  

                   ( )

A

A

tr T x y B x y dx dy

B T T x y B x y dx dy

B T C

g g

g g  (19) 

Using Lemma 3.1 in the same fashion as in the proof of Theorem 2.1 and re-
sults (17)-(19) we obtain that 

1
1 22

( )21
( , ) ( ) ( ) ( ) ( )

n

T q T q

c n
K c q c G c q B T

n
k z 1 1

In order to minimize the r.h.s. of this inequality, set  
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1 12

1

( ) ( ) ( )2
( ) ( )

( )

n

q T q q T q

c q c G c n
B T B T

c q n
1 1 1 1
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RIASSUNTO

Convergenza all'approssimazione normale degli stimatori dei minimi quadrati in un modello di regres-
sione multipla con errori fortemente dipendenti 

Nel presente lavoro si analizza la convergenza all'approssimazione normale degli stima-
tori a minimi quadrati in un modello di regressione multipla con errori fortemente dipen-
denti. Il metodo di studio è basato sull'analisi asintotica di espansioni ortogonali di fun-
zionali non lineari di processi Gaussiani stazionari e sulla distanza di Kolmogorov. 

SUMMARY

On the rate of convergence to the normal law of LSE in regression with long range dependence 

In this paper we study the rate of convergence to the normal approximation of the 
least squares estimators in a regression model with long range dependent errors. The 
method of investigation used is based on the asymptotic analysis of orthogonal expan-
sions of non linear functionals of stationary Gaussian processes and on Kolmogorov's 
distance.  


