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1. INTRODUCTION

The analysis of preferences towards a set of "objects" is generally obtained by 
means of surveys conducted on the consumers/users (e.g. the choice among cars, 
marketing products, financial options, political opinions, etc.). The same ap-
proach is applied in the evaluation of services both in public and private institu-
tions (e.g. teaching, sanitary services, public transportations, etc.). 

In these cases, constrained by budget limitations, it is relevant to plan adequate 
sampling experiments in order to get significant results; thus, it seems useful to 
assess the minimum size of the sample scheme that allows meaningful statistical 
inference on the parameters of interest. 

Usually, in descriptive approaches to preferences and evaluations analyses, 
people list average ranks and some measure of variability. However, a statistical 
approach to the choice mechanism seems more fruitful, since it conveys a para-
metric setting where the role of the subjects covariates could be analysed more 
usefully. In fact, by using a modelling structure we can estimate probabilities, ex-
pectations and variances, and test for relevant hypotheses; in this way, we gain 
experience and inference on the choice mechanism from the observed results, 
and we may be able to learn about future behaviours. 

In this vein, many proposals appeared in the literature as the models discussed 
by Fligner and Verducci (1993), Marden (1995), D'Elia (1999, 2003) among the 
others, and some of them have been supported by interesting applications to dif-
ferent real datasets (ranging from Sport to Economics, Politics to Psychology, 
Economics to Marketing, etc.).  

A more recent probabilistic model, which outperformed previous results in 
several contexts, has been proposed by D'Elia and Piccolo (2004): in their ap-
proach, the choice expressed by the rater is explained by a mixture random vari-
able where a weighted measure of the uncertainty is designed to take into account 
the composite nature of the elicitation mechanism. The statistical application of 
such model requires a maximum likelihood estimation via the E-M algorithm. In 

(*) We acknowledge the support received by Dipartimento di Scienze Statistiche, Università di 
Napoli Federico II (within Legge Regionale 5/2002 - Regione Campania) and the research struc-
tures of the Centro per la Formazione in Economia e Politica dello Sviluppo Rurale, Portici. 
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this way, the asymptotic results for the two parameters can be derived and effec-
tively used in many empirical datasets. Thus, it seems necessary to establish the 
finite sample performance of such asymptotic estimators in order to assess their 
validity also for the sample size of the real experiments and/or to establish a re-
quired minimum sample size for deriving acceptable results. 

The paper is organized as follows: in the next section we introduce the model, 
establish the main notation and discuss briefly the probabilistic mechanism for 
the random generation of the data. Then, in section 3 we describe a Monte Carlo 
experiment and discuss the main results we obtained. In section 4 we deal with 
the problem of the joint performance of the estimators of the model’s parame-
ters. Some concluding remarks end the paper. 

2. A PROBABILISTIC MODEL FOR THE PREFERENCES ANALYSIS

The two problems of preference and evaluation analyses are conceptually dif-
ferent: in the first case, we rank different objects/items/opinions and we may be 
interested in studying the distribution of just one of them at a time; in the second, 
we express a satisfaction degree among a list of ordered alternatives following our 
liking/disliking feeling for something. 

Also from a statistical point of view, the two issues are different. Indeed, let R be
the ranks matrix where rij is the rank assigned by the i-th rater to the j-th item; then: 
- in a preference analysis each row of R represents the preference ranking given 

by the i-th rater towards a set of items (and, in general, it is a permutation of 
the integers, since no ties are allowed among the items themselves);  

- on the other hand, in an evaluation analysis, each row of R represents the i-th
rater satisfaction degree towards different aspects of something (thus, it is not 
a permutation).  
As a consequence, in a preference study each single column of the data matrix 

is not independent from the others (each row sum is strictly defined by the num-
ber of the items), while in an evaluation survey the vector of the selected 
item/aspect exhausts all the information in the data concerning the selected item.  

However, when we study the preference feeling with respect a single object or 
the result of an evaluation study we are faced with probabilistic structures which 
are completely similar. In both cases: 
- the subject is asked to select with reference to a specific question/object/item 

an integer value included in the set of the positive integer defined by the num-
ber of options;  

- the choice is the result of a composite decision which is related to the lik-
ing/agreement or disliking/disagreement with the specific option; 

- finally, the result of the decision derives from a comparison judgement among 
the alternatives. 
Then, it seems reasonable to unify both the circumstances and study them in 

an encompassing manner; in the following formal setting, for simplicity, we dis-
cuss about objects also when we are in an evaluation context, but the conclusions 
hold for both cases. 
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2.1. The probabilistic framework and main inferential developments 

In a set of m well defined objects, we let r be the rank assigned by a single rater 
to a given item (henceforth, we drop out the subscripts for shortness); through-
out the paper, we assume that r = 1 means "most preferred" while r = m means 
"least preferred". Then, we say that r is the observed value of a discrete random 
variable defined on the support {1, 2, …, m}.

Within the class of all such random variables, D'Elia and Piccolo (2004) intro-
duced the Mixture of a Uniform and a shifted Binomial (MUB) model, such that 
R ~ MUB(m, , ) if: 
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Of course, the first of these expressions shows that E(R) = (m+1)/2 in the 
symmetric situation (that is,  = 1/2). 

The parameter  weights for the first component (a shifted Binomial random 
variable where the  parameter increases with the liking towards the object) and, 

thus, (1 )/m is a direct measure of the uncertainty share. In fact, the parame-
ters are jointly related to the choice probability and it is not easy to distinguish the 
marginal contribution of each of them. However, it results that the joint increase 
of both  and  towards 1 implies a greater preference feeling, since this circum-
stance lowers the mean value of R.

For generating a sample of such random variable we refer to the interpretation 
of a mixture random variable as a two steps choice mechanism between a shifted 
Binomial and a discrete Uniform random variable. In this way: 

i) we choose the first component (random variable) with probability ;
ii) then, given this random variable, we generate a pseudo-random number 

from it. 
The code in the Appendix, written in the Gauss© language, seems to be an ef-

ficient method for generating a large number of pseudo-random numbers for 
simulation purposes. 

The information contained in the sample of the observed ranks for n subjects 
(r1, r2, …, rn,) is strictly equivalent to that contained in the reduced vector (n1, n2,
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…, nm,) of the observed frequencies for the ordered ranks. Then, from a statisti-
cal viewpoint, efficient and consistent maximum likelihood (ML) estimators for 
both  and  can be derived by an implementation of the E-M algorithm 
(McLachlan and Krishnan, 1997; McLachlan and Peel, 2000). This algorithm is 
the most efficient way to compute the maximum of the log-likelihood function 
defined by: 

1

log ( , ) log(Pr( | , )).
m

r

r

L n R r

The asymptotic properties of the ML estimators ( ˆˆ , ) are well known and 

exploiting a result valid from grouped data (Rao, 1973, pp. 367-368) we derived 
asymptotic standard errors and testing criteria for the parameters. Specifically, the 

asymptotic confidence ellipse at the 100(1 )% level is given by: 

2 2ˆ ˆˆ ˆ{( , ) : ( ) ( )( ) ( ) 2 log( )/ } .d d d n

The quantities d , d , d  are n times the estimates of the elements of the 
inverse of the asymptotic variance-covariance matrix of the ML estimators. 

Moreover, the correlation between these estimators, expressed by Corr( ˆˆ , )

=
d

d d
, is a relevant issue except when ˆ 1

0
2

 (that is, a symmetric dis-

tribution for ranks), since in this case the estimators turn out to be uncorrelated. 

3. THE MONTE CARLO EXPERIMENT

Generally, in the preference and/or evaluation surveys the number m of 
objects or values to be compared is fixed and known in advance. Thus, the ratio 
k = n/m, where n is the number of raters for the designed experiment, is a rele-
vant issue for the analysis. In a sense, k measures the worst preference situation 
since it is the relative frequency of each rank for r = 1, 2, …, m when we are in 
the case of equi-preference, that is when the choice among the items is absolutely 
random: of course, in this case  = 0, and R is a discrete Uniform random vari-
able over the support {1, 2, …, m}.

We generated nsimul = 10000 experiments for varying ratios k = 10, 15, 20, 25, 
30, 40, 50, 100, 200 when R ~ MUB(m, , ), and m = 5, 7, 12. Indeed, these val-
ues seem to be modal choices in the current literature on these issues and also in 
our experiences from several researches areas. 

Although the experiment was conducted for all such models, for shortness we 
limit ourselves to discuss only the results for m = 7, reporting that in the other 
cases the same conclusions apply, since there is a substantial coincidence of pat-
terns and performances. 
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As a preliminary choice, we selected a large number of models for varying pa-
rameters over the admissible parameters space, but the choice of the results we 
present here is dictated by the final discussion. 

Table 1 synthesizes the main features of the parametric models we selected for 
our experiment and Figure 1 shows their probability distributions emphasizing 
their diversity in location, variability and skewness aspects. 

TABLE 1 

Models selected for the Monte Carlo experiment (m=7) 

Model E(R) Var(R) Mode(R)

A 0.1 0.1 4.24 4.17 7 
B 0.1 0.4 4.06 3.78 5 
C 0.2 0.2 4.36 3.91 6 
D 0.4 0.1 4.96 4.00 7 
E 0.4 0.5 4.00 3.00 4 
F 0.7 0.3 4.84 2.38 5 
G 0.3 0.8 3.46 3.77 2 
H 0.7 0.6 3.58 2.28 3 
I 0.9 0.9 1.84 1.40 1 

Figure 1 – Probability distributions for the models in Table 1. 



A. D’Elia 46

The following tables show the main results concerning the finite bias (Table 2) 
and relative efficiency (Table 3) of the ML estimators, respectively. 

TABLE 2 

Bias of the ML estimators for  and  (m=7) 

k

M
o

d
el

 

10 15 20 25 30 40 50 100 200 

 0.05562  0.03696  0.02544  0.02038  0.01677  0.01173  0.00975  0.00511  0.00444 
A

 0.21220  0.17429  0.15109  0.12750  0.10561  0.08483  0.06309  0.02349  0.00753 

 0.08857  0.06625  0.05332  0.04545  0.03857  0.03190  0.02659  0.01678  0.01165 
B

 0.04559  0.03711  0.02930  0.02660  0.02022  0.01683  0.01416  0.00942  0.00510 

 0.03506  0.02267  0.01713  0.01387  0.01099  0.00889  0.00669  0.00303  0.00145 
C

 0.04452  0.02371  0.01357  0.00972  0.00496  0.00348  0.00247  0.00111  0.00021 

 0.00727  0.00643  0.00448  0.00334  0.00228  0.00175  0.00149  0.00077  0.00028 
D

 0.00162  0.00097  0.00038  0.00032  0.00013 -0.00023  0.00020  0.00003  0.00005 

 0.02439  0.01720  0.01225  0.00950  0.00822  0.00639  0.00468  0.00193  0.00139 
E

-0.00118 -0.00012 -0.00112 -0.00003  0.00033 -0.00050 -0.00016  0.00045 -0.00015 

 0.00799  0.00485  0.00521  0.00387  0.00261  0.00156  0.00171  0.00102 -0.00003 
F

 0.00069 -0.00006  0.00004  0.00025  0.00025  0.00004  0.00004 -0.00012  0.00000 

 0.01936  0.01328  0.01009  0.00644  0.00540  0.00497  0.00451  0.00107  0.00098  
G

-0.00868 -0.00240 -0.00098 -0.00074 -0.00067 -0.00002 -0.00063 -0.00028 -0.00038 

 0.00898  0.00714  0.00584  0.00385  0.00331  0.00177  0.00228  0.00089  0.00118 
H

-0.00025 -0.00034 -0.00006  0.00011  0.00015  0.00002 -0.00015 -0.00003 -0.00005 

 0.00167  0.00137  0.00060  0.00026  0.00062  0.00073  0.00076  0.00023  0.00011 
I

-0.00008 -0.00025  0.00010 -0.00032  0.00011 -0.00015 -0.00010  0.00008 -0.00001 

It seems evident that the bias is generally limited and the asymptotically unbi-
ased nature of the ML estimators is confirmed. Indeed, it appears that the bias 
decreases when k becomes large, for both the parameters. Thus, as far as it con-
cerns the unbiasedness, a ratio of k greater than 30 seems to be an acceptable 
bound for inferring on both the parameters. The worst performance of the es-
timator happens for low values of k and of the parameter itself (e.g. model A, 
where  = 0.1). In finite sample we always find a positive bias for the parameter 

, while for the parameter  a negative bias is recognisable in model G, and in 
minor extent in models E, H and I.  

In Table 3 we compare the finite variability of the estimators with the asymp-
totic ML variances. The relative efficiency (which should converge to 1) is meas-
ured as the ratio between the asymptotic variance (as computed by D'Elia and 
Piccolo, 2004) and the observed MSE in the simulated data. 



Finite sample performance of the E-M algorithm for ranks data modelling 47

TABLE 3 

Relative efficiency of the ML estimators for  and  (m=7) 

k

Model  10 15 20 25 30 40 50 100 200 
0.96672 1.00558 1.06324 1.01714 1.04553 1.01199 1.01101 0.99122 1.05841 

A
0.15209 0.12656 0.11208 0.10935 0.11453 0.11115 0.12905 0.20921 0.58245 

1.20468 1.21728 1.22561 1.24161 1.28932 1.24280 1.25548 1.22042 1.17294 
B

1.42554 1.15715 1.04724 0.98225 0.95008 0.91831 0.90498 0.90974 1.00567 

1.14987 1.10395 1.07305 1.07563 1.05331 1.04323 1.04296 1.07010 1.01510 
C

0.37656 0.45698 0.51425 0.63612 0.68234 0.77924 0.85671 0.93504 0.98342 

0.98864 0.98611 0.98515 0.99237 1.00036 1.01417 1.01556 1.03373 1.01300 
D

0.81141 0.90268 0.92968 0.97213 0.96137 0.97388 0.99735 0.99088 1.02480 

1.07762 1.05729 1.04023 1.01218 1.01432 1.02130 1.00211 0.99544 1.01150 
E

0.77584 0.86511 0.90835 0.91755 0.92588 0.95403 0.97962 0.98650 0.97664 

0.97474 0.97952 0.99286 1.01200 1.01546 0.98419 1.00305 1.00055 0.98024 
F

0.94366 0.98436 1.01271 0.98617 0.99956 0.99480 1.00827 0.95721 0.98149 

1.02959 1.03221 0.99432 1.01042 1.02864 0.98940 0.99479 0.98519 1.00874 
G

0.53174 0.74920 0.85016 0.87374 0.90555 0.92237 0.95039 0.98734 0.99204 

0.99448 0.98501 0.99359 0.99671 0.99922 0.99069 1.00389 0.98868 0.99565 
H

0.93565 0.96613 0.98003 0.98317 1.00927 0.99318 0.99596 0.96965 1.01942 

1.01631 0.98552 0.99144 0.98211 1.01215 0.99235 0.99478 1.00807 1.00179 
I

0.96659 0.99041 0.96727 0.97032 0.97135 0.99534 1.01565 0.99905 1.01519 

The results show a different performance of the two estimators. As matter of 
fact, the  estimator exhibits a larger efficiency over the whole parameter space. 
On the contrary, for the ML estimator of , we observe a very poor efficiency for 
the model A, and also a limited performance for the model C and G; however in 
these last two cases, increasing values of k affect positively the observed effi-
ciency.

At this regard, it seems important to notice that the models A, C and G are all 
characterised by low values of the parameter (that are: 0.1, 0.2, 0.3, respec-
tively). This evidence may support the idea that the problem for the efficiency of 

the  estimator originates when the  parameter is small. In fact, when  0, we 
are moving from a genuine mixture distribution to an almost Uniform discrete 
random variable: in this case (equipreference or equiprobability) for all the alternatives 
it is quite natural to expect that the inference drawn from a finite sample is more 
difficult, since the Uniform random variable maximises the entropy, among all 
the discrete distributions with finite support {1,2, …, m}, for a fixed m (Papoulis,
1984, pp. 514-515). 

Finally, we would stress the acceptable performance of the ML parameter for 
the E model which derives from a symmetric distribution; further studies should 
confirm that the uncorrelation among the estimators improves their finite per-
formances. 

For enhancing the univariate assessment of the parameters performance, we 
report also some of the results from the simulation experiments in a graphical 
format. In Figure 2, the box-plots for the estimators simulated distributions are 
shown only for the models A, E, and I, for increasing k values (from 10 to 200). 
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Figure 2 – Box-plots for the ML estimators (models A, E and I). 
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As a consequence of the previous evidence, we could conclude that, in order 
to achieve adequate results in finite samples, we should collect as many data as 
requested by at least k = 30. Of course, this bound may be lowered when we 
have a priori information that the object/item possesses a relatively high degree of 
preference or disliking; on the contrary, it should be increased if we suspect that 
the experiment concerns an object/item with an equipreference pattern. 

4. THE JOINT PERFORMANCE OF THE ML ESTIMATORS

It is not strictly correct to assess the quality of the ML estimators in a finite 
sample without an adequate judgement of their bivariate distributions. 

If we had unbiased estimators, we should compare the asympotic variance-

covariance matrix V with the finite sample variance-covariance matrix Vn,h for a 
sample size of n and the h-th replication of the Monte Carlo experiment. Indeed, 
their inverse elements characterize the confidence ellipse previously defined, both 
in the asymptotic and finite sample cases. 

In the literature, some joint measures are derived for this aim, as the trace tr(V)
or the determinant |V|. In fact, the trace is just the sum of the variances, and 
thus it seems unable to take into account the correlations between the estimators, 
which is a relevant issue for judging the adequacy of their performance. On the 
contrary, the determinant is a synthesis of both the variances and covariance of 
the estimators and it is immediately related to the area of the confidence ellipse. 
But, although one should prefer in this kind of comparisons the determinant with 
respect to the trace, we think that a simple inspection of the area could be mis-
leading since a similar measure could result also for ellipses displaced with respect 
to the true parameter values. 

Thus, among the many approaches to this kind of comparisons, we choose to 
study the joint performance of the estimators with respect to the asymptotic ellip-
ses which should include 95% of them (if we let  = 0.05). In this way, we con-
trol both the single placement of the parameters’ estimators (bias and variability 
with respect to the true values) and their correlations (with respect to the ellipse 
orientation). 

Table 4 shows the percentages of correct inclusions of the ML estimators 

( ˆˆ , ) into the asymptotic ellipse, for each of the selected models and for varying 

k. Such results show a uniform and adequate convergence of the observed values 

towards the nominal one, starting for values of k as lows as k 15. Noticeable 
exceptions are models C and, especially, model A where the same convergence is 
significantly slower. Thus, when both parameters are small, both joint and uni-
variate performances are expected to be good only for very large sample size. Fi-
nally, we note that for all the models (except for B and I) the convergence to-
wards the nominal confidence coefficient stems from values less than 95%. 
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TABLE 4 

Percentages of correct inclusion (m=7) 

k

M
o

d
el

 

10 15 20 25 30 40 50 100 200 

A 0.6683 0.7006 0.7244 0.7500 0.7732 0.8055 0.8355 0.8983 0.9539 
B 0.9857 0.9683 0.9577 0.9547 0.9536 0.9501 0.9527 0.9537 0.9597 
C 0.8904 0.9113 0.9216 0.9282 0.9358 0.9388 0.9409 0.9473 0.9494 
D 0.9394 0.9407 0.9440 0.9490 0.9470 0.9470 0.9493 0.9515 0.9523 
E 0.9355 0.9429 0.9440 0.9434 0.9452 0.9469 0.9505 0.9461 0.9487 
F 0.9389 0.9449 0.9511 0.9476 0.9493 0.9511 0.9491 0.9471 0.9462 
G 0.9217 0.9340 0.9385 0.9396 0.9434 0.9458 0.9471 0.9443 0.9483 
H 0.9473 0.9474 0.9468 0.9480 0.9494 0.9482 0.9504 0.9472 0.9499 
I 0.9518 0.9488 0.9492 0.9470 0.9515 0.9490 0.9515 0.9495 0.9503 

5. CONCLUDING REMARKS

The paper has shown that the performances of the ML estimators derived by 
an E-M algorithm for a mixture model for preference/evaluation analyses are sat-
isfactory when the sample size is at least 30 times the number of objects/items to 
be compared/evaluated. This bound may be lowered when there is a priori infor-
mation about the presence of a strong liking/disliking feeling towards the consid-
ered item; viceversa, the bound should be increased if an equipreference pattern 
in expected. 

Then, this kind of evidence may be usefully exploited for planning adequate 
sample sizes in surveys and researches, where the available budget and time are 
quite limited.  

Dipartimento di Scienze Statistiche ANGELA D’ELIA

Università di Napoli Federico II 

APPENDIX 

Gauss© code for generating pseudo-random numbers from the random variable 
R~MUB(m, , ).

PROC SIMULMUB(nsimul,m,pai,csi); 
LOCAL vett0,vett1,vett2,vett; 
 vett0=(rndu(nsimul,1).<=pai); 
 vett1=1+sumc((floor(1-csi+rndu(nsimul,m-1))')); 
 vett2=floor(m*rndu(nsimul,1))+1; 
 vett=vett0.*(vett1-vett2)+vett2; 
RETP(vett); 
ENDP; 
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RIASSUNTO

La performance in campioni finiti dell’algoritmo E-M per un modello per variabili rango 

Nell'articolo si valuta la performance in piccoli campioni degli stimatori di massima ve-
rosimiglianza dei due parametri di un modello mistura, recentemente introdotto per va-
riabili rango. Da un punto di vista computazionale, le stime sono ottenute mediante l'algo-
ritmo E-M, ed il loro comportamento è considerato sia in termini univariati che congiun-
tamente. I risultati ottenuti, mediante un ampio esperimento Monte Carlo, evidenziano 
che le performance degli stimatori dei due parametri sono entrambe soddisfacenti per 
quanto concerne l'assenza di distorsione; viceversa, in termini di efficienza, si mette in lu-
ce un comportamento differenziato, che sembra dipendere dalla rispettiva posizione nello 
spazio parametrico. Alcuni considerazioni e suggerimenti operativi concludono il lavoro. 

SUMMARY

Finite sample performance of the E-M algorithm for ranks data modelling 

We check the finite sample performance of the maximum likelihood estimators of the 
parameters of a mixture distribution recently introduced for modelling ranks/preference 
data. The estimates are derived by the E-M algorithm and the performance is evaluated 
both from an univariate and bivariate points of view. While the results are generally ac-
ceptable as far as it concerns the bias, the Monte Carlo experiment shows a different be-
haviour of the estimators efficiency for the two parameters of the mixture, mainly de-
pending upon their location in the admissible parametric space. Some operative sugges-
tions conclude the paper. 


