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1. INTRODUCTION

Suppose one is interested in estimating the rate of gallinule nests along a cer-
tain waterway. To thoroughly search a large area may not be possible, and if only 
a cursory search is undertaken, nests obstructed from view would be missed. 
Thus, a cursory search would very likely result in observations that are un-
counted, therefore underestimating the nest rate. Such an observation is known 
as a false-negative observation in the count. A probabilistic model suffering from 
the presence of false negatives is said to contain visibility bias.  

One method to correct for visibility bias is to use a double-sampling method. 
There are two double-sample methods in which we are interested. The first dou-
ble-sample method is the use of a training sample, which occurs when both a cur-
sory (fallible) and a thorough (infallible) search are utilized to estimate the rate of 
interest. A second double-sample procedure is the use of a calibration sample. In 
this approach one obtains information only on the probability of observation in 
the smaller sample. Under both the training-sample and the calibration-sample 
approaches, one combines the information contained in the infallible sample with 
information gleaned from a fallible sample for which only a cursory search is per-
formed. 

Different models and methods have been proposed to estimate parameters for 
counted data subject to visibility bias. Anderson, Bratcher, and Kutron (1994) 
consider a fully Bayesian analysis for estimating a Poisson rate parameter when 
the data is subject to visibility bias. In related papers Fader and Hardie (2000) ap-
ply an empirical Bayesian analysis to wine purchase behavior, and Whitemore and 
Gong (1991) and Sposto et al. (1992) use this model to estimate death rates in the 
presence of visibility bias in a categorical regression context. 

In this paper we propose two double-sample approaches for formulating ma-
ximum likelihood estimators (MLEs) for the Poisson rate parameter of interest 
and the observation probability parameter. The remainder of this paper is organ-
ized in the following manner. In section 2 we derive the MLEs of the Poisson 
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rate parameter  and probability of observation p under the two double-sample 
scenarios. We also obtain asymptotic variances of the MLEs. Section 3 is a lim-
ited simulation study for the two MLEs under the training sample and the calibra-
tion sample procedures. In section 4 we analyze a real data set using our pro-
posed double-sampling paradigm. Section 5 provides a method to determine ap-
propriate search sizes for the fallible and the infallible sample sizes. We conclude 
with some brief comments in section 6. 

2. MAXIMUM LIKELIHOOD ESTIMATORS DERIVED FROM DOUBLE-SAMPLING SCHEMES

Suppose in a search of size A (often person-years or area), one determines Tu

true occurrences such that Z of these true occurrences are uncounted. The sub-
script u is to denote that this is an unobservable quantity. Hence, we assume that 

Tu ~ Poisson ( )A  and that uZ|T  ~ binomial(tu , p), where  is the rate parame-

ter and (1 – p) is the false-negative misclassification parameter. Only Z is actually 
observed, so that, unconditionally, Z has density function  

( | , )f z p ( )
!

A p
ze

= A p
z

, (1) 

which is a Poisson distribution allowing for false-negative misclassifications. Only 
= p  is identifiable from the observed data. 

To estimate , we utilize a second sample in the form of a training sample or a 
calibration sample. For the training-sample scenario one collects data over the 
area a where t events occur and are observed by a thorough (infallible) search and 
x t events are observed by a cursory search. Therefore, in our model t ~ Pois-
son( a ) and, conditional on t, x ~ binomial( ,t p ). The joint likelihood corre-

sponding to the training sample scenario is 

( , ) (1 )z+t a A p z+x t xL p e p p  . (2) 

The MLEs result from straight-forward optimization of likelihood (2) and are: 

ˆ
( )+ ( )

( )

A t x a t + z

a a + A
 (3) 

and

p̂  =
a x + z

A t x + a t + z

( )

( ) ( )
. (4) 
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The estimator ˆ  given in (3) has an intuitive interpretation. Consider the fol-
lowing alternative representation of (3): 

1
ˆ = ( )/ ( )/t x a + t + z a , (5) 

where 1 ( )= A/ a + A  and 1 2 1 . From (5) one can see that ˆ  is a 

weighted average of the number of observations missed in the small area, (t – x),
and the total number observed in both samples, (t + z). Thus, the first compo-
nent of (5) simply “adds back” the number of observations missed proportionally 
to the size of A. We note that (5) is an improvement over the posterior mean of 
Anderson et al. (1994) and the empirical Bayes estimator of Fader and Hardie 
(2000) in terms of the computational demand and the ease of interpretation.  

The inverse of Fisher’s information matrix gives the asymptotic covariance 
matrix

Cov( ˆ , p̂ )

( (1 )) (1 )

( )

(1 ) (1 ( )

( ) ( )

a + A p Ap p

a(a + A) a a + A

Ap p p p) a + Ap

a a + A a a + A

. (6) 

The diagonal elements of (6) yield the asymptotic variance expressions 

Var ( ˆ )
( ( ))

( )

a + A p
=

a a + A
 (7) 

and

ˆ
( )( )

Var ( )
( )

p p a + Ap
p

a a + A
. (8) 

One can easily show that (7) is the variance of ˆ  for all sample sizes a and A.
We can estimate the variance expressions (7) and (8) by substituting the esti-

mators (3) and (4) into the variance expressions (7) and (8) for the corresponding 

parameters. We also note the following properties of ˆ :

i) ˆ  is unbiased; 

ii) If p = 1, Var( ˆ ) =
a + A

, which is the variance of the Poisson rate MLE 

for  without misclassified data; 

iii) For small values of p, Var( ˆ ) a ; that is, essentially all information for es-

timating  is from the training sample when p is small. 
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We next formulate MLEs for  and p under a different sample-use scenario. 
Suppose that instead of using a training sample, one has only information on the 
probability of observance p through a second sample. We refer to this estimation 
paradigm as a calibration sample. For instance, Whittemore and Gong (1991) ana-
lyze a similar model in the regression context to estimate cervical cancer death 
rates for varying age groups and geographic regions. In Whittemore and Gong 
(1991) a case history is provided to a sample of physicians, and each is asked to 
complete a death certificate. The probability of observance p is estimated by the 
number of correctly classified counts divided by the calibration sample size. Thus, 
in the context we are considering, there are t known occurrences and we use only 
the fallible search and observe x occurrences.  

We can combine the information gained via the calibration sample with the 
larger fallible search through the likelihood function in a fashion similar to the 
training-sample case described above. The joint likelihood function correspond-
ing to the calibration sample is 

( , ) ( )
z A p z+x t xL p e p p . (9) 

One can readily show that the MLEs for p and  derived from (9) are xp =
t

 and 

z=
Ap

, respectively, and their asymptotic covariance matrix is 

( (1 ) ) (1 )

Cov(
(1 ) (1 )

t + A p p

Apt t
p),

p p p

t t

. (10) 

Recall that t is a constant in the calibration sample case. The diagonal elements of 
(10) yield the asymptotic variances 

Var( )
( (1 ) )t + A p

Apt
 (11) 

and

(1 )
Var( )

p p
p =

t
. (12) 

We note, however, that (12) is the variance of p  for all sample sizes and that 

does not exist if x = 0. 
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3. A SIMULATION STUDY

We now compare the efficacy of the training-sample and the calibration-
sample MLE procedures derived and discussed in section 2 using a simulation 
study. We use the rate of occurrence  = 20 for all simulation configurations. To 
put the study in a context, one could view  = 20 as the rate of an illness per 
1000 person-years. For the larger fallible sample, we consider sizes of A = 2,500, 
10,000, 50,000. For the training sample we consider sizes of a = 1000, 2000. Note 
that the sample sizes are in terms of thousands. For the calibration sample we use 
values of t = 20, 40, and we use the cases where p = .4, .7, and .9 for both the 
training and the calibration sample. The average mean square errors (MSE) for 
the two simulation experiments are given in tables 1 and 2.  

We performed the simulation using S-Plus. For each parameter configuration 
1000 simulations of 1000 data sets were generated. Thus, each configuration MSE 
value is the result of 1000 simulations of 1000 iterations each. The reported val-
ues are the average MSEs and their estimated standard errors over the 1000 simu-
lations.

TABLE 1 

MSE ( ˆ ) for the training sample scenario 

a = 1, A = 2.5 a = 1, A = 10 a = 1, A = 50 

p = .4 14.33 (.021) 12.75 (.020) 12.18 (.017) 
p = .7 10.00 (.015) 7.27 (.011) 6.29 (.009) 
p = .9   7.14 (.011) 3.64 (.005) 2.35 (.004) 

    
a = 2, A = 2.5 a = 2, A = 10 a = 2, A = 50 

p = .4   7.77 (.011) 6.67 (.010) 6.16 (.010) 
p = .7   6.12 (.009) 4.16 (.006) 3.28 (.005) 
p = .9   5.01 (.007) 2.50 (.004) 1.35 (.002) 

TABLE 2 

MSE( ) for the calibration sample scenario

t = 20, A = 2.5 t = 20, A = 10 t = 20, A = 50 

p = .4 102.10 (.592) 80.80 (.522) 75.73 (.526) 
p = .7 23.64 (.050) 14.42 (.036) 11.91 (.032) 
p = .9 11.64 (.020)   4.84 (.009)   3.03 (.006) 
    

t = 40, A = 2.5 t = 40, A = 10 t = 40, A = 50 
p = .4 44.23 (.108) 27.15 (.072) 22.58 (.068) 
p = .7 16.74 (.028)   7.84 (.014)   5.48 (.010) 
p = .9 10.17 (.015)   3.43 (.005)   1.64 (.003) 

Although the corresponding MSE values in the two tables are not directly 
comparable, we gain some information by comparing the corresponding MSEs of 
the two double-sampling paradigms. The calibration sample sizes t in table 2 are 
the expected number of true occurrences in the training sample for a rate of  = 
20 in a training sample of sizes a = 1000, 2000, respectively. For all combinations 
of parameters considered here, the MSE of the rate estimator involving a training 
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sample is less than the MSE of the rate estimator using the calibration sample. As 
one might anticipate, this difference in corresponding MSEs decreases as the 
sample sizes a and A and probability of observance p increase. 

Generally, the training-sample approach is more expensive to implement than 
the calibration sample. Because of the large difference in MSEs, we recommend 
the use of a training sample when p is small. However, if p is thought to be rela-
tively large, the fallible sample size A is large, and resources are not available to 
easily implement the training-sample scheme, the calibration-sample approach 
can be used with only a relatively small increase in MSE over the training-sample 
scenario for the configurations considered here. 

4. AN APPLICATION

We analyze data from Anderson et al. (1994) for which the parameter of inter-
est is the rate of gallinule nests along the water of Lacassine National Wildlife 
Refuge in southern Louisiana. A cursory (fallible) search along the waterway is 
conducted along with a thorough (infallible) search by airboat over a smaller area. 
The fallible search is over the area A = 4300 linear feet, and the infallible search 
is applied over the smaller area a = 500 linear feet. In the thorough search, 11 
nests are spotted, 7 of which were in using a cursory search over the same area. 

For the larger area for which only a cursory search was applied, 21 nests were 

spotted. Using (3), one gets the resulting estimate of the Poisson rate to be ˆ  = 
19.21 nests per 1000 linear feet with an estimated standard error of 5.40. In addi-

tion, the estimated probability of observance is p̂ 0.27 with an estimated stan-

dard error of .084.
If one uses only the infallible data to estimate the nesting rate, one gets the es-

timate  = 22 nests per 1000 linear feet with an estimated standard error of 
6.63. For this data we note that using the fallible data in conjunction with the 
training data yields only a modest 19% reduction in the estimated standard error 

of ˆ . This modest reduction in the dispersion of ˆ is caused by the relatively 

small value of the probability of observance p. We also note that ˆ , which is an 

unbiased estimator, corrects for the bias in due to misclassification. 

5. SAMPLE SIZE DETERMINATION

A possible concern prior to implementing our proposed training-sample-based 
MLE for  is determining appropriate sample sizes of a and A. The quantity 

Var( ˆ ) is a function of both the fallible sample size A and the infallible sample 

size a. We consider the case where the cost per unit sampled from a is ac  units 

and the cost per unit sampled from A is Ac  units. 
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One might wish to determine the sample-size allocation that minimizes the 

variance of ˆ  when the researcher has a budget of C dollars. The sample-size de-
termination problem can be stated explicitly as the constrained minimization 
problem  

minimize 
( (1 ))

( )

a + A p

a a + A
 subject to a Ac a c A C .

We use the method of Lagrange multipliers to determine the optimal sample-
size allocations 

( ) (1 ) ( ) (1 )

( ) (1 )

2
a A a A A

a A A a

c c C p + c c c C p p
a =

c c c c p

for the infallible sample size and (13) 

2 2( ) (1 )

( ) (1 )

A A A A

A A

a a

a a

c c C c c c C p p c C
A =

c c c c p

for the fallible sample size. One drawback to this sample-size determination ap-
proach is that the allocations are functions of the reporting probability p that is 
generally unknown. However, a researcher can possibly have an a priori estimate 
p0. An alternative approach is to take a pilot sample of size a0 to estimate p and 
then use the allocation formulas (13) to determine the opportunity sizes a and A.

Consider the following as an example application of the sample-size determi-
nation method derived in section 4. Suppose the 500 linear feet in the gallinule 

example is a pilot study; then, p̂  = .34. Also, suppose that the cost to infallibly 

search the area is $75 per 1000 linear feet, the cost to fallibly search the area is $8 
per 1000 linear feet, and we have a budget of $750. Evaluating the allocation 
formulas (13) for these values results in the sample sizes a = 8.97 and A = 9.66. 
Consequently, the allocation formula proposes that one should use approximately 
the same number of infallible data as fallible data in the case where p is small. For 

comparison purposes, if p̂  had been .85, then the infallible and fallible sample 

sizes would have been a = 6.14 and A = 36.17, respectively. 

6. COMMENTS

In this paper we have derived MLEs of the rate parameter of a Poisson model 
subject to visibility bias of the counted data. These estimators compare favorably 
with two other estimators previously presented in the literature. However, the 
fully Bayesian estimators given in Anderson et al. (1994) can be computationally 
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demanding for large sample sizes. These estimators also do not have a simple and 
intuitive interpretation as the MLE estimators. The empirical Bayes estimation 
approach of Fader and Hardie (2000) suffers the same difficulty.  

An additional problem of the empirical Bayes approach is the identifiability of 
parameters. By using the data to estimate the prior parameters, Fader and Hardie 
(2000) overlook a fundamental issue of parameter identifiability. For instance, 
consider the case with when 10 , p = .2 and when 4 , p = .5. For both of 
these parameter configurations we have that 2p . Thus, two different sets 

of parameters could generate essentially equivalent observable data. Conse-
quently, Fader and Hardie’s approach could result in roughly the same estimates 
for the two different parameter configurations. The training sample approach we 
suggest overcomes these difficulties.  

Last, we note that we can readily construct confidence intervals for  and p for 
both the training-sample and calibration-sample double-sampling paradigms us-
ing the properties of MLEs and estimates of the asymptotic variances given in (7) 
and (8) and in (11) and (12).  
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RIASSUNTO

Un metodo di campionamento doppio per la stima di massima verosimiglianza del parametro di una di-
stribuzione di Poisson quando una parte della popolazione non è visibile all’osservatore 

Nel lavoro si propone un modello poissoniano che usa sia dati precisi che dati impreci-
si, ovvero soggetti ad errata classificazione in quanto parte della popolazione non è visibi-
le all’osservatore (visibility bias). Vengono quindi derivati gli stimatori di massima verosimi-
glianza del parametro della distribuzione poissoniana e del parametro di errata classifica-
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zione in presenza di due scenari differenti. Sono inoltre derivate analiticamente le matrici 
di informazione e le varianze asintotiche degli stimatori di massima verosimiglianza di en-
trambi i parametri. Infine, il modello proposto viene analizzato sulla base di un esperi-
mento di simulazione e quindi applicato ad un problema concreto. 

SUMMARY

A double-sampling approach for maximum likelihood estimation for a Poisson rate parameter with visi-
bility-biased data 

We propose a Poisson-based model that uses both infallible data and fallible data sub-
ject to misclassification in the form of false negatives that yield visibility bias. We then 
derive maximum likelihood estimators for the Poisson rate parameter of interest and the 
misclassification parameter under two different sampling scenarios. We also derive ex-
pressions for the information matrices and the asymptotic variances of the maximum like-
lihood estimators for the rate parameter and the maximum likelihood estimators for the 
false-negative parameter. Finally, we also study our new models via a simulation experi-
ment and then apply our new estimation procedures to a real data set. 


