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1. INTRODUCTION 

To calculate the p-value of a permutation test, in theory one should calculate 
the test statistic for all possible permutations and then compute the proportion of 
permutations that have test statistic greater than or equal to the observed one. In 
practice, since the number of all possible permutations is generally impractically 
large, the p-value is usually estimated by taking a random sample of size B from 
all possible permutations. Let us consider, for example, the two-sample location 

problem. Let 
111 12 1( , , ..., )nX X X  and 

221 22 2( , , ..., )nX X X  be random samples 

taken from populations that may differ only in their locations 1 and 2. Let 
n = n1+n2 and = 1- 2. A permutation test for testing 

H0: = 0 against H1: > 0 

is based on the statistic 
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where *
iY  denotes the i-th element of a permutation *Y  of the pooled sample 
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where Tb denotes the value of T in the b-th (b = 1, …, B) permutation of Y and (.)I

denotes the indicator function: 0( ) 1bI T T  when Tb T0 and 0( ) 0bI T T  oth-

erwise. To estimate LT we use the conditional Monte Carlo method (CMC) described 
in Pesarin (1992, 2001)1. It should be noted that we use the term conditional Monte 
Carlo (CMC) to underline that we perform an ordinary Monte Carlo simulation with 

conditioning on Y. Since *T  is not affected by changing the order of added ele-

ments, the permutation distribution of *T  consists of 
1

n
C

n
 elements instead of 

n!. However, except for very small sample sizes, C remains a rather unmanageable 
number. For example, when n1 = n2 = 10 C = 184756, but when n1 = 20 n2 = 10 
C >3 millions and when n1 = n2 = 20 C = 137846 millions. We would like to mention 
that for some univariate problems and some statistics based on data sums, there are 
available fast methods for the exact calculation of tail distribution of permutation 
tests (Mehta and Patel 1980; Pagano and Tritchler 1983; Mehta et al. 1988). These 
methods have been coded by Cytel® Software Corporation. We will use the corre-
sponding package, called StatXact®, in section 4. According to the theory, and in par-

ticular to the Glivenko-Cantelli theorem, ˆ
TL  is a strong-consistent estimator of LT.

But in practice, when we want to perform a permutation test, how many permuta-
tions should be used to obtain a reliable estimate of LT? Although now fast and rela-
tively cheap computing facilities are at our disposal, this problem is still interesting, in 
particular for applied statisticians. The problem should be addressed when a Monte 
Carlo study for estimating the power of a permutation test is performed as well. 

The main idea is that it is not necessary to compute all possible permutations 
to obtain a good p-value estimate. This paper deals just with the choice of B.
First, we discuss the approach of Edgington (1995) to this problem and the 
choice of B made by many authors in their papers. Then, we perform a Monte 
Carlo study of the power of T for many values of B and discuss the simulation 
results. Finally, we present two applications in which LT is estimated for many 
values of B and then calculated exactly using all permutations. 

2. THE APPROACH OF EDGINGTON (1995) AND THE VALUE OF B USED IN MANY PAPERS

For tackling the problem of fixing B, Edgington (1995) suggests to calculate 
the limits within which the estimated significance value will lie 99% of the time 
for a given significance level p from the full permutation distribution. When B is 
large, the p-value estimator is approximately normally distributed with mean p and 

variance p(1-p)/B. Then (1- )100% of estimated significance levels will be within 

1 /2 (1 )/p z p p B  and 1 /2 (1 )/p z p p B , where 0 <  < 1 and z1- /2

denotes the (1- /2)100-th percentile of the standard normal distribution. 

1 The method is commercially available from Methodologica® via NPC Test® package. In this 
paper we do not use NPC Test®, we just coded the CMC algorithm in R Environment. 
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From tables 1 and 2 it can be seen that if the observed result is just significant 
at the 5% level compared with the full permutation distribution then, 1000 per-
mutations will “almost surely” give a significant or near-significant result. On the 
other hand, when the result is just significant at the 1% level, 5000 may be a real-
istic number. It seems therefore that 1000 is a reasonable number of permuta-
tions for a test at the 5% level of significance, whereas 5000 permutations are rea-
sonable when the level is 1%. Edgington (1995) obtained the same results. 

TABLE 1 

95% probability intervals for estimated p-values 

B p = 0.01 p = 0.05 

100 0.00000-0.02950 0.00728-0.09272 
200 0.00000-0.02379 0.01979-0.08021 
500 0.00128-0.01872 0.03090-0.06910 

1000 0.00383-0.01617 0.03646-0.06351 
2000 0.00564-0.01436 0.04045-0.05955 
5000 0.00724-0.01276 0.04396-0.05604 

10000 0.00805-0.01195 0.04573-0.05427 
20000 0.00862-0.01138 0.04698-0.05302 
50000 0.00913-0.01087 0.04809-0.05191 

100000 0.00938-0.01062 0.04865-0.05135 
200000 0.00956-0.01044 0.04904-0.05096 
500000 0.00972-0.01028 0.04940-0.05060 

1000000 0.00980-0.01020 0.04957-0.05043 

TABLE 2 

99% probability intervals for estimated p-values 

B p = 0.01 p = 0.05 

100 0.00000-0.03567 0.00000-0.10623 
200 0.00000-0.02815 0.01024-0.08976 
500 0.00000-0.02148 0.02485-0.07515 

1000 0.00188-0.01812 0.03222-0.06778 
2000 0.00426-0.01574 0.03743-0.06257 
5000 0.00637-0.01363 0.04205-0.05795 

10000 0.00743-0.01257 0.04438-0.05562 
20000 0.00818-0.01182 0.04602-0.05398 
50000 0.00885-0.01115 0.04749-0.05251 

100000 0.00919-0.01081 0.04822-0.05178 
200000 0.00943-0.01057 0.04874-0.05126 
500000 0.00964-0.01036 0.04920-0.05080 

1000000 0.00974-0.01026 0.04944-0.05056 

Keller-McNulty and Higgins (1987) concluded, on the basis of their simulation 
study, that there is a little reason to base a permutation test on all possible permu-
tations. They suggest to use 800 permutations to estimate the power of the test 
and 1600 permutations in actual applications (at  = 5%). 

We reviewed the number of permutations considered in many interesting pa-
pers. We noted that in the majority of them, 1000 permutations are used for es-
timating the power of a permutation test: see Anderson and Legendre (1999), 
Bailer (1989), Hayes (1997), Kennedy (1995), Marozzi (2002), Neuhaus and Zhu 
(1999), Pesarin (1997), Shipley (2000), Smith (1998) and Wan et al. (1997). Ernst 
and Schucany (1999) and Pesarin (1994) used 500 permutations, while O’Gorman 
(2001) used B = 2000 and Cade and Richards (1996) used B = 5000. 
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Kim et al. (1991), McQueen (1992) and Venkatraman and Begg (1996) used 
B = 1000 in their practical studies but the number of permutations computed in 
actual applications is often greater than that usually used in simulations experi-
ments. For example, Ernst and Schucany (1999) used B = 2000, Kazi-Aoual 
(1995) used B = 5000 and Kennedy (1995) and Cade and Richards (1996) used 
10000 permutations. 

3. A MONTE CARLO POWER STUDY

We perform a Monte Carlo study of the power of the test described in section 
1 to investigate how the choice of B affects the estimation procedure. To this 
end, we consider four sample size settings (n1, n2) = (10, 10), (20, 20), (10, 20) and 
(20, 10), and four positive values of the location shift . One value is determined 
by the null hypothesis (  = 0) and the other values are specified so that the power 
of T (at  = 5%) is near 25%, 50% and 75%. For each sample size configuration, 
50000 datasets are generated from the standard normal distribution. It should be 
noted that there is no loss of generality in using normal sampling for what con-
cerns the problem addressed in this section. The permutation tests were based on 
subsets of 100, 200, 500, 1000, 2000, 5000 and 10000 permutations. 

TABLE 3 

Percent power estimates of T for = 1% 

B

100 200 500 1000 2000 5000 10000 

n1=10 n2=10 
0.000   1.050   1.054   0.988   0.972   0.972   0.956   0.988 
0.450   7.452   7.872   7.780   8.082   8.064   8.008   7.962 
0.765 19.574 20.732 21.878 22.422 23.062 23.054 23.054 
1.080 39.292 42.586 45.048 45.216 46.150 45.592 46.382 

n1=20 n2=20 
0.000   0.992   0.984   1.009   0.992   0.926   0.998   0.952 
0.315   7.758   8.038   8.342   8.452   8.320   8.612   8.616 
0.530 20.488 22.384 22.982 23.094 23.142 23.814 23.854 
0.745 41.142 44.214 46.204 46.714 47.152 47.970 47.532 

n1=10 n2=20 
0.000   0.998   0.914   0.998   1.012   0.926   0.964   1.026 
0.385   7.400   7.852   8.246   8.350   8.058   8.114   8.244 
0.655 20.140 21.502 23.034 23.136 23.390 23.758 23.424 
0.925 41.028 44.020 46.548 46.988 47.458 47.554 47.546 

n1=20 n2=10 
0.000   0.988   1.004   0.948   1.032   0.984   0.994   1.032 
0.385   7.336   7.956   8.204   8.278   8.144   8.288   8.316 
0.655 20.312 22.066 22.522 23.186 23.264 23.340 23.300 
0.925 41.056 44.206 46.670 47.104 47.548 48.076 47.728 

By inspecting table 3 we conclude that to estimate the size and power of T at 
the  = 1% significance level 2000 permutations suffice. Table 4 shows that 500 
iterations appear to be enough for size/power estimation at  = 5%. These re-
sults are consistent with those obtained in section 2, in which the focus were on 
the estimate of p-values in actual applications rather than on power estimations 
which clearly requires a minor number of permutations. 
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TABLE 4 

Percent power estimates of T for = 5% 

B

100 200 500 1000 2000 5000 10000 

n1=10 n2=10
0.000   4.958   4.934   4.942   5.162   4.924   4.974   5.026 
0.450 24.430 24.654 24.590 24.736 24.832 24.662 25.006 
0.765 47.970 48.712 49.592 49.838 50.036 50.376 50.312 
1.080 73.196 74.082 74.880 74.762 75.194 74.742 75.076 

n1=20 n2=20
0.000   4.968   5.040   5.006   4.886   4.796   5.132   4.876 
0.315 24.768 24.826 25.294 25.048 24.844 25.188 25.262 
0.530 48.302 49.394 49.458 49.430 49.494 50.196 50.026 
0.745 72.686 73.584 74.436 74.332 74.482 74.916 74.556 

n1=10 n2=20
0.000   4.886   4.870   5.008   5.064   4.648   4.876   5.026 
0.385 23.728 24.226 24.960 25.038 24.990 24.408 24.618 
0.655 47.960 49.230 49.992 49.962 49.864 50.232 50.090 
0.925 73.194 74.314 74.910 74.956 75.012 75.194 75.402 

n1=20 n2=10
0.000   4.934   4.884   4.950   4.980   5.056   5.160   4.930 
0.385 24.128 24.312 24.932 24.862 24.820 24.814 24.810 
0.655 48.396 49.656 49.462 49.714 50.166 50.182 50.130 
0.925 72.920 74.154 75.144 75.180 75.442 75.546 75.200 

4. TWO ACTUAL APPLICATIONS

We applied T to two actual data sets. In order to explore how stable the p-
values of T are to the number of considered permutations, we tried B values of 
100, 200, 500, and of 1000 to 20000 with an increment of 1000. Then we also 
compute the exact p-value through considering all possible permutations. 

Hollander and Wolfe (1999) report the data of a study conducted to see if chil-
dren who watched TV violence were significantly more tolerant of “real-life” vio-
lence than children who instead watched a nonviolent TV show. 21 children (first 
group) were shown a violent TV show, whereas 21 children (second group) were 
shown a nonviolent TV show. Then each child was shown an act of “real life” 
violence (two younger children fighting). Toleration of violence was measured by 
the time (in seconds) each children stopped watching the fight. The data are re-
ported in table 5. Were the children who viewed the violent TV show more toler-
ant of violence than those who viewed the nonviolent TV show? We report in 
table 6 the estimated p-values of T.

As shown in table 6, where m stands for 1000, the estimated p-values are be-
tween 10% and 13%. Moreover, they are between 10.25% and 11.23% for B
greater than 500. It should be noted that the estimated p-values are comparable 
among themselves and they suggest the same decision about H0. Consideration of 
all permutations leads to an exact p-value of 10.65% (we used StatXact® package 
from Cytel®). 
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TABLE 5 

Toleration of violence 

First group         
37 39 30     7   13 139   45 25 16 146 94 
16 23   1 290 169   62 145 36 20   13  

Second group         
12 44 34 14   9 19 156 23   13   11 47 
26 14 33 15 62   5     8   0 154 146  

Source: Hollander & Wolfe (1999). 

TABLE 6 

First application: resulting estimated percent p-values 

B 100 200 500 m 2m 3m 4m 5m 6m 7m 8m 9m
ˆ

TL 13.00 11.00 10.00 10.70 10.70 10.98 11.23 11.14 10.30 10.60 10.79 10.43 

B 10m 11m 12m 13m 14m 15m 16m 17m 18m 19m 20m
ˆ

TL 10.63 10.28 10.50 10.25 10.56 10.46 10.79 10.49 10.71 11.06 10.83  

Eidelman et al. (1991) measured the score of an index of lung destruction over 
16 smokers (first group) and over 9 nonsmokers (second group). 

TABLE 7 

Lung destruction index scores 

First group      
16.6 13.9 11.3 26.5 17.4 15.3 15.8 12.3 
18.6 12.0 24.1 16.5 21.8 16.3 23.4 18.8 

Second group      
18.1 6.0 10.8 11.0 7.7 17.9 8.5 13.0 
18.9        

Source: Eidelman et al. (1991). 

Of course, Eidelman et al. (1991) assumed that the scores of smokers tended 
to be greater than those of nonsmokers. To tackle this problem we use T test. 
Table 8 contains the resulting estimated p-values. 

As shown in table 8, the estimated p-values ranged from 0.8% and 1.1%. 
Moreover, they ranged from 0.877% to 0.956% for B greater than 3000. We note 
again that the estimated p-values are comparable among themselves and they sug-
gest the same decision about H0. Consideration of all permutations leads to an 
exact p-values of 0.88%. 

TABLE 8 

Second application: resulting estimated percent p-values 

B 100 200 500 m 2m 3m 4m 5m 6m 7m 8m 9m
ˆ

TL 1.000 1.000 0.800 1.100 0.950 1.067 0.900 0.980 0.900 0.986 0.950 0.944 

B 10m 11m 12m 13m 14m 15m 16m 17m 18m 19m 20m
ˆ

TL 0.920 0.936 0.950 0.900 0.886 0.960 0.956 0.877 0.883 0.947 0.930  
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5. CONCLUDING REMARKS

By using the approach of Edgington (1995), one can conclude that for permu-

tation testing at  = 5% 1000 permutations substantially suffice, and that 5000 

permutations suffice when  = 1%. Keller-McNulty and Higgins (1987) sug-
gested to use 800 permutations to Monte Carlo estimate the power of a permuta-

tion test and 1600 in actual applications (at  = 5%). By reviewing the number of 
permutations used by various authors, we concluded that generally 1000 permuta-
tions are used in simulation study of the power, while a larger value (i.e. 2000 or 
5000) is used in actual applications. The results of our Monte Carlo study of the 
power of T suggest that 500 permutations are substantially enough for testing at 

 = 5%, and that 2000 iterations are enough when  = 1%. 
Summarizing, on the basis of this research, we conclude that for estimating the 

power of a permutation test at  = 5% one should use a number of permutations 
between 500 and 1000 and a number of permutations between 2000 and 5000 

when  = 1%. As regards actual applications, we concluded that 5000 permuta-
tions are enough for testing at the significance level of 5%, and that 10000 are 

enough when  = 1%. 
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RIASSUNTO

Qualche annotazione sulla scelta del numero di permutazioni da considerare per effettuare un test di per-
mutazione

Il principale inconveniente pratico dei test di permutazione è che, eccetto per campioni 
molto piccoli, il numero di tutte le possibili permutazioni è in genere troppo alto. Sebbene 
siano adesso a nostra disposizione computer veloci e relativamente poco costosi, questo 
problema è ancora di interesse, soprattutto per gli statistici applicati. L’idea principale è 
che non sia necessario calcolare tutte le possibili permutazioni per ottenere una buona 
stima del p-value del test. Il problema viene affrontato approssimando il p-value dopo aver 
considerato un campione casuale di permutazioni. Lo scopo del lavoro è rispondere a 
questa domanda: quante permutazioni è bene considerare nella procedura di stima del p-
value? Si suggerisce di usare dalle 500 alle 1000 permutazioni quando si effettua una stima 
Monte Carlo della potenza di un test di permutazione con un livello di significatività  del 
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5% e un numero compreso tra 2000 e 5000 quando  = 1%. Si suggerisce inoltre di usare 
5000 permutazioni nelle applicazioni empiriche quando  = 5% e 10000 quando  = 1%. 
Queste indicazioni sono fornite sulle basi di una rassegna di diversi articoli pubblicati, di 
uno studio di simulazione e di due applicazioni a dati reali. 

SUMMARY

Some remarks about the number of permutations one should consider to perform a permutation test 

The main practical drawback of permutation testing is that, except for very small sam-
ple sizes, the number of all possible permutations is usually impractically large. Although 
now fast and relatively cheap computing facilities are at our disposal, this problem is still 
interesting, in particular for applied statisticians. The main idea is that it is not necessary 
to compute all possible permutations to obtain a reliable p-value estimate of the test. To 
deal with this problem, one may approximate the exact p-value of the test by using a ran-
dom sample from all permutations. The aim of this paper is to reply to this question: how 
many permutations should be considered in the p-value estimation procedure? We suggest 
to use 500-1000 permutations to estimate the size and power of a permutation test, via 
Monte Carlo simulations, at the  significance level of 5% and 2000-5000 when = 1%.
Moreover, we suggest to use 5000 permutations in actual applications when = 5% and 
10000 when = 1%. These suggestions are based on a review of many papers, a simula-
tion study and two applications to actual data sets. 


