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SUPERIORITY OF THE STOCHASTIC RESTRICTED 
LIU ESTIMATOR UNDER MISSPECIFICATION 

M.H. Hubert, P. Wijekoon 

1. INTRODUCTION 

Misspecification of the regression model is a very serious problem in econo-
metric theory. Generally researchers are concerned with two types of misspecifi-
cation; excluding relevant variables and including irrelevant variables, where these 
two problems are treated separately. When the regression model is correctly 
specified it was shown that the Stochastic Restricted Liu estimator (SRLE) is bet-
ter than the Liu estimator under certain conditions. In 1989 Trenkler and Wije-
koon demonstrated that in the case of excluded variables, Mixed Regression Es-
timator (MRE) outperforms OLSE with respect to the mean squared error matrix 
sense. The purpose of this paper is to show that the SRLE based on the correct 
prior information is potentially better than the Liu estimator under the misspesi-
fied regression model due to the exclusion of relevant variables. 

2. MODEL SPECIFICATION AND ESTIMATION

Starting from Kadiyala’s (1986) approach we assume that the correctly speci-
fied multiple linear regression model is given by 

21 1 2 1 1Y X X X  (1) 

with 2 2X , where, Y  is an ( 1)n  vector of observations on the response 

(or dependent) variable, 1X  and 2X  are 1( )n p  and 2( )n p matrices of obser-

vations on the 1 2p p p  regressors, 1  and 2  are 1( 1)p  and 2( 1)p

vectors of unknown parameters and  is an ( 1)n  vector of disturbances with 

( )E 0  and the variance covariance matrix 2( )D I .

Suppose the model (1) is misspecified by excluding 2p  regressors as 

1 1Y X u  (2) 
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Furthermore, assume that some additional correctly specified prior informa-

tion is available on 1  in the following form;

1r R v , (3) 

where r  is an ( 1)j stochastic known vector, R  is a 1( )j p  matrix of full row 

rank j ( p1) with known elements, 1 is the 1( 1)p coefficient vector of (2) and 

v  is an ( 1)j  random vector of disturbances satisfying 

E( ) 0, ( )Dv v > 0     and     E( ) 0vu . (4) 

Given T  is a 1 1( )p p  non singular matrix such that 

* 1X X T , *R RT , 1 1T X X T I , *
1

*R R , (5) 

where  is a 1 1( )p p diagonal matrix with elements  

0i ; if i = 1, 2, . . . , j

0i ; if i = j + 1, . . . , p1, (6) 

and j  being the rank of R and 1T 1 , we rewrite (1), (2) and (3) by using 

the simultaneous spectral decomposition of the two symmetric matrices 1 1X X

and 1R R  as 

*Y X  (7) 

*Y X u  (8) 

*r R v  (9) 

The Ordinary Least Squares Estimator (OLSE) ˆ of in (8) is 

1
* * *

ˆ ( )*X X X Y X Y  (10) 

with bias 

*
ˆ( )B X  (11) 

and dispersion matrix 

2ˆ( )D
1p

I . (12) 
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Kejian Liu (1993) introduced a new biased estimator called the Liu estimator
(LE), and showed that this estimator is superior to the OLSE both in the scalar 
mean squared error and mean squared error matrix sense. 

Now the Liu estimator for the model in (8) is given by 

*
ˆ ˆ
d d dF F X Y  (13) 

where, 

1
* * *( ) ( )d*dF X X I X X I  for 0 1d  (14) 

But in this case 

1

1

2

d
kdF I I , with 1

1

2

d
k . (15) 

Thus the LE under misspecification is, 

1 *
ˆ kd X Y  (16) 

with bias 

* 1 * 2
ˆB( ) ( ) k kd d dF I F X X , (17) 

where, 2

1

2

d
k , and dispersion matrix 

2 2
1

ˆ ˆ( ) ( ) dD D kd dF F I . (18) 

Hence the Mean Squared Error matrix (MSE) of ˆ
d  is 

2 2
1 1 2 1 2

ˆMSE( ) ( )( )d k k k k k '* *I X X . (19) 

The Mixed Regression Estimator (MRE) due to Thiel and Goldberger (1961), 
for the transformed model turns out to be 

2 1 2
* *

ˆ ( ) ( )1
* I X Y R r . (20) 

The bias vector and the dispersion matrix of ˆ
*  are given by 

2 1
*

ˆB( ) ( )* I X  (21) 

and

2 2 1ˆD( ) ( )* I  (22) 
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respectively. Based on ˆ
* , now the Stochastic Restricted Liu Estimator (SRLE) 

under misspecification can be defined as 

1
ˆ ˆ ˆk* *srd dF  (23) 

Furthermore the bias vector, the dispersion matrix and the corresponding 

MSE matrix of ˆ
srd  are given by 

2 1
1 * 2

ˆB( ) ( ) ,srd k kI X  (24) 

2 2 2 1
* 1

ˆ ˆD( ) ( ) ( )sr dD kd dF F I  (25) 

and

2 2 2 1
1

2 1 2 1
1 2 1 2

ˆMSE( ) ( )

                   ( ( ) )( ( ) )

srd k

k k k k '* *

I

I X I X
 (26) 

respectively. 

3. MSE MATRIX COMPARISONS OF SRLE AND LE

Now we investigate under which conditions ˆ
srd  is superior to ˆ

d  in the MSE 

matrix criterion. That is we need to find conditions, which ensure the nonnega-

tive definiteness (n.n.d.) of ˆ ˆ( ) ( )d srdMSE MSE .

Let us use the following notations: 

2I and * .X  (27) 

After some straightforward calculations, we obtain 

2 4 1
1 1 2 1 2

1 1
1 2 1 2

ˆ ˆMSE( ) MSE( ) ( )( )

                                                     ( )( )

d srd k k k k k '

k k k k '
 (28) 

Trenkler and Wijekoon (1989) discussed the dominance of ˆ
*  over ˆ  using 

the following lemma derived by Baksalary and Trenkler (1988). We use the same 
lemma to obtain a necessary and sufficient condition for the superiority of the 
SRLE over the LE. 

Lemma 1. (Baksalary and Trenkler 1988) 

Let 0A  of type n n , let 1a  and 2a  be vectors of type 1n  and let 1  and 

2  be positive scalars. Then 



Superiority of the Stochastic Restricted Liu Estimator under misspecification 157

1 1
1 21 1 2 2A a a a a   (29) 

is nonnegative definite if and only if the following conditions hold: 
either

( ),    iia A 1,2 (30) 

and

2
1 1 2 2 2( )( ) ( )1 2 1a A a a A a a A a  (31) 

or ( ),      1a A i = 1, 2 and 2 1A AQ Qa a for some (32)

where  ,    AQ I AA and

2
1 1 2 1 2 1( ) ( )a a A a a  (33) 

with the inequalities (31) and (33) being independent of the choice of a general-

ized inverse A  of A , where ( )A  stands for the column space of the matrix 

A , and A + is the Moore-Penrose inverse of A .

Note that 2 4 1
1k  is non negative definite. To apply this lemma, let 

2 4
1k 1A  (34) 

1 1 2k ka  (35) 

2 1 2k k1a  (36) 

1  for  1, 2i i  (37) 

Case I

If ( )1a A  then 2 ( )a A , since 1  and  commute. After some 

straightforward calculations, we obtain 

1 1 1 2 1 22 4
1

1
( ) ( )k k k k

k
a A a , (38) 

2 2 1 2 1 22 4
1

1
( ) ( )k k k k

k

1 1a A a  (39) 

and

1 2 1 2 1 22 4
1

1
( ) ( )k k k k

k

1a A a . (40) 
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Then by Lemma 1, 

ˆ ˆMSE( ) MSE( )d srd  0, if and only if 

2 4
1 2 1 2 1

2 4
1 2 1 2 1

2
1 2 1 2

{( ) ( ) }

                                   {( ) ( ) }

                                   {( ) ( )}

k k k k k

k k k k k

k k k k

1 1

1

 (41) 

Note that when d = 1, k1 = 1 and k2 = 0. Then the LE ˆ
d = OLSE ˆ  and the 

SRLE ŝrd = MRE ˆ
* , and hence equation (41) is equal to the condition ob-

tained by Trenkler and Wijekoon (1989). 

Case II

If 1 ( )a A  then 

1

1
0 0

( )
0A

j p

Q I AA I I
I

 (42) 

and, consequently 

2 1A AQ Qa a  with 1 . (43) 

Further it can be also shown that  

2 1 2 1( ) ( ) 1a a A a a . (44) 

Hence to satisfy condition (33) in lemma 1 we must have 

01 . (45) 

Note that this is the same condition obtained by Trenkler and Wijekoon (1989) 
when comparing the OLSE with MRE under misspecification. 

Theorem 1 

The SRLE ˆ
srd  dominates the LE ˆ

d  under misspecification with respect to 

the MSE-matrix criterion if and only if, 
(i) either 

2 4
1 2 1 2 1

2 4
1 2 1 2 1

2
1 2 1 2

{( ) ( ) }

                                    {( ) ( ) }

                                   {( ) ( )}

k k k k k

k k k k k

k k k k

1 1

1
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when ( ),   ia A  for   1, 2i

(ii) or 

01 , which is equivalent to 0,   1, ,i i j , where i  denote the 

ith component of the vector  when 1 ( ).a A

4. MSE MATRIX COMPARISONS OF PREDICTORS

We assume that (1) holds for further realizations of the dependent variable. In 

other words if 0Y and 0 are ( 1)m  vectors and 10X  and 20X are 1( )m p  and 

2( )m p  matrices then 

0 10 ,1 0Y X  with  20 2X  (46) 

The error vector 0  satisfies the following conditions: 

E( 0 ) = 0,     and 2E( )  m0 0 I  (47) 

Also 0  and  are uncorrelated such that 0( )E 0. We further assume that 

10X  is fixed, and 10X , 20X  are known. Then again rewriting model (46) using the 

transformation, we obtain 

0 *Y X  (48) 

Now the Liu Predictor (LP) and the Stochastic Restricted Liu Predictor (SRLP) 
is defined as 

*
ˆ ˆ
d dY X  (49) 

and

*
ˆ ˆ
srd srdY X  (50) 

respectively. 
The MSE matrix of the Liu predictor is 

* * 1 * 2 *

* 1 * 2

ˆ ˆMSE( ) MSE( ) ( )

                              ( )

d d k k '

k k

Y X X X X

X X
. (51) 

Similarly the MSE matrix of SRLP turns out to be 
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1
* * 1 * 2 *

1
* 1 * 2

ˆ ˆMSE( ) MSE( ) ( )

                                    ( )

srd srd k k '

k k

Y X X X X

X X
. (52) 

After some straightforward calculations we can obtain 

ˆ ˆMSE( ) MSE( )d srdY Y D  (53) 

where 

2 4
* 1

ˆ ˆ(MSE( ) MSE( )) k 1 1
* * * * *d srdD X X X X X X

and 2
1k 1

* *X X  respectively. To study the MSE-matrix superior-

ity of SRLP over LP we can use the following lemma. 

Lemma 2 (Baksalary and Kala 1983)

Let 0B of type n n  matrix, b  is an 1n  vector and  is a positive real 
number. Then the following conditions are equivalent. 

(i) 0B bb

(ii) 0,  ( )  and  B b B b B b

where ( )B  stands for the column space of B , and the latter inequality is inde-

pendent of the choice of a g-inverse B of B
According to this lemma now we can state the following theorem. 

Theorem 2 
The following two statements are equivalent. 

(i) ˆ ˆMSE( ) MSE( ) 0d srdY Y

(ii) 0,  ( )  RD D and 1D .

Note that in section 3 conditions were derived under which 

ˆ ˆMSE( ) MSE( )d srd  is n.n.d.. Obviously these conditions are sufficient for 

0D . Therefore we can conclude that there are situations where ˆ
srdY  outper-

forms ˆ
dY  with respect to the mean squared error matrix criterion. 

Also when 1d , then k1 = 1, *
ˆ ˆ
srd , and ˆ ˆ

d . In this case the matrix D

and vector  correspond to the predictors of *
ˆ  and ˆ  obtained by Trenkler and 

Wijekoon (1989). 
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5. CONCLUSION

Theorem 1 gives the conditions, in which the SRLE ˆ
srd  dominates the LE ˆ

d

under misspecification with respect to the MSE-matrix criterion. To compare the 
corresponding predictors the results given in theorem 2 can be used. We also 

note that in both cases when 1d , then k1 = 1, *
ˆ ˆ
srd , and ˆ ˆ

d , and 

hence the results obtained by Trenkler and Wijekoon (1989) can nicely be pre-
sented.
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RIASSUNTO

Superiorità dell’Estimatore Stocastico Ristretto di Liu sotto l’ipotesi di non-specificazione 

Questo sommario tratta l’uso delle corrette antecedenti informazioni nella stima dei 
coefficienti di regressione quando il modello di regressione è non-specificato a causa del- 
l’esclusione di qualche rilevante regressore variabile. In particolare l’attenzione è focalizza-
ta sull’Estimatore Stocastico Ristretto di Liu, introdotto da Hubert e Wijekoon (2004), 
che supera lo stimatore Liu rispetto al criterio dell’errore quadratico medio della matrice. 
Inoltre la superiorità del calcolatore “Estimator Stocastico Liu” sul calcolatore Liu è stata 
anche esaminata e si è concluso che vi sono situazioni dove l’Estimatore Stocastico Ri-
stretto di Liu è superiore al calcolatore Liu rispetto al criterio dell’errore quadratico medio 
della matrice anche se il modello è non-specificato. 
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SUMMARY

Superiority of the Stochastic Restricted Liu Estimator under misspecification 

This paper deals with the use of correct prior infromation in the estimation of regres-
sion coefficients when the regression model is misspecified due to the exclusion of some 
relevant regressor variables. In particular, the attention is focused on the Stochastic Re-
stricted Liu estimator introduced by Hubert and Wijekoon (2004), which outperforms Liu 
estimator with respect to the matrix mean squared error matrix criterion. Further the su-
periority of the Stochastic Restricted Liu predictor over the Liu predictor is also exam-
ined, and concluded that there are situations where the Stochastic Restricted Liu predictor 
outperforms the Liu predictor with respect to the mean squared error matrix criterion 
even the model is misspecified. 


