
STATISTICA, anno LXIV, n. 1, 2004 

ESTIMATING THE PARAMETERS OF THE NORMAL, 
EXPONENTIAL AND GAMMA DISTRIBUTIONS USING 
MEDIAN AND EXTREME RANKED SET SAMPLES 

A.-B. Shaibu, H. A. Muttlak 

1. INTRODUCTION 

McIntyre (1952) intuitively introduced and applied the method of ranked set 
sampling (RSS) in estimating mean pasture yields as a more efficient and cost-
effective method than the method of simple random sampling (SRS). This 
method is useful in situations where units under consideration are easier and 
cheaper to order than to measure with respect to a characteristic of interest. The 
method draws from a population of interest, n random samples each of size n. 
The members of each random sample are ordered with respect to the characteris-
tic under study. From the first ordered set, the smallest unit is chosen for meas-
urement as is the second smallest from the second ordered sample. This contin-
ues until the largest element from the last random sample is measured. The set of 
measured elements then constitutes the ranked set sample of size n. This process 
may be repeated m times (m cycles) to yield a sample of size nm. For classified 
and extensive review of work done in RSS, see (Patil et al, 1994). However, we 
will briefly review some of the literature relevant to this study. 

Takahasi and Wakimoto (1968) independently described the method of RSS 
and presented a sound mathematical argument, which supports McIntyre’s intui-
tive assertion. (Dell and Clutter, 1972) showed that errors in ranking reduce the 
precision of the RSS mean relative to the SRS mean. However, the RSS mean re-
mains dominant over the SRS mean until ranking is so poor as to yield a random 
sample when it performs just as well as the SRS mean. 

Stokes (1980) proposed a RSS estimator of population variance analogous to 
the SRS unbiased estimator and showed it to be asymptotically unbiased and 
demonstrated its dominance over the SRS unbiased estimator. (Sinha et al, 1996) 
proposed some best linear unbiased estimators (BLUEs) of the parameters of the 
normal and exponential distributions under RSS and some modifications of it. 
(Stokes, 1995) studied the maximum likelihood estimators (mle’s) under RSS of 
the parameters of the location-scale family having cumulative distribution func-

tion (cdf) of the form 
x

F  with F known. Assuming the usual regularity 
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conditions, Stokes (1995) considered several examples and demonstrated the 
dominance of the mle’s under RSS over other estimators. BLUE’s of the location 
and scale parameters were proposed in the same study and shown to do nearly as 
well as their maximum likelihood counterparts in most cases. 

Muttlak (1997) proposed median ranked set sampling (MRSS), a modification 
of ranked set sampling, which upon picking and ordering the n random samples 
selects the median element of each ordered set if n is odd. However, if n is even, 
it selects the (n / 2)th smallest observation from each of the first n / 2 ordered 
sets and the ((n + 2) / 2)th smallest observation from the second n / 2 sets. This 
selection procedure yield a median ranked set sample of size n, and may be re-
peated m times to give a MRSS of size mn. Muttlak (1997) showed the MRSS 
mean to be an unbiased estimator when the underlying distribution is symmetric 
and biased otherwise. In both cases, his estimator has been shown under various 
distributions, to dominate the RSS sample mean. 

The method of ERSS as studied my Samawi et al. (1996) draws n times, a ran-
dom sample of size n from a population under consideration. For even set size n, 
the largest and smallest units are alternately taken from the first to the nth ran-
dom sample. The resulting sample of n /2 each of first and nth order statistics 
forms the extreme ranked set sample. On the other hand, if n is odd, the largest 
and smallest units are alternately selected from the first random sample to the 
(n – 1)th random sample. From the nth random sample, either the mean of the 
largest and smallest unit is chosen or the median of the whole set. In this study, 
we will consider taking the median from the nth sample. 

In this paper, we show that the mle’s of the normal mean (i.e. the location pa-
rameter of the normal distribution) and the scale parameters of the exponential 
and gamma distributions under MRSS dominate all other estimators. We further 
show that the mle of the normal standard deviation (i.e. the scale parameter of 
the normal distribution) under ERSS is the most efficient. We exhibit a similar 
trend in the linear unbiased estimators. In Sections 2, we present the maximum 
likelihood estimators and discuss the results in Section 3. A brief discussion of 
the two-parameter family is presented in Section 4. Section 5 considers the linear 
unbiased estimators whose results are discusses in Section 6. We conclude the 
work in Section 7. 

Throughout this work, we shall denote by ( )i r jX , the rth smallest unit from the 

ith sample of the jth cycle. 

2. MAXIMUM LIKELIHOOD ESTIMATION

In this section, we consider the maximum likelihood estimation of the location 
and scale parameters under MRSS and ERSS paying attention to the odd and 
even set sizes. 
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2.1. Maximum likelihood estimation under MRSS

Case 1. Odd set sizes 

Suppose ( ){ , 1, 2, ..., ; 1, 2, ..., }i p jX i n j m  is a MRSS from a population 

with cdf and pdf of the form 
x

F  and 
1 x

f respectively, where 

p = (n + 1) / 2. Further, let ( )
( )

i p j

i p j

X
Z . Then the ( )i p jZ ’s are independ-

ent and identically distributed with pdf see David (1981) 

1 11 1( ) ( )[1 ( )] ( )
( , )

p p
f z F z F z f z
p B p p

 (1) 

Thus, the log likelihood function of the MRSS of odd set size is 

1 1 ( ) ( )
1 1

( )
1 1

1
ln {ln ( ) ln[1 ( )]}

2

ln ( ) 

m n

MRSS i p j i p j
j i

m n

i p j
j i

n
L K mn F Z F Z

f Z

 (2) 

where K1 is a constant. 
If  is known, then the mle of  is the solution of the equation 

( ) ( ) ( )

1 1 1 1( ) ( ) ( )

( ) ( ) ( )1
0

2 1 ( ) ( ) ( )

m n m n
i p j i p j i p j

j i j ii p j i p j i p j

f Z f Z f Zn

F Z F Z f Z
. (3) 

Also, the Fisher information of  from the sample is 

2
1 2

2 2 2

2 2 2

( ) ( )
( ) ( ) (

( ) ( )

( 1) [2 ( ) 1] ( ) [ ( ) (1 ( )) ] ( )
            ( )

( )[1 ( )]2 [1 ( )] ( )

mn

f z f zmn
I E g z

f z f z

mn n F z f z F z F z f z
E g z

F z F z F z F z

 (4) 

where 

1 11
( ) ( )[1 ( )]

( , )
p pg z F z F z

B p p
. (5) 

To compare the resulting mle with that from a SRS of the same size, we define 
following (Stokes, 1995), the asymptotic relative precision 
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1
1ˆ ˆ

( )
lim ( , )

( )
mn

mle ML
m

mn

I
RP

I
, (6) 

where ( )mnI  is the Fisher information of  from the SRS. 
Similarly, if  is known, then the mle of  is the solution of the equation 

( ) ( ) ( ) ( )

1 1 ( ) ( )

( ) ( )

1 1 ( )

( ) ( )1

2 ( ) 1 ( )

( )
0

( )

m n
i p j i p j i p j i p j
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Z f Z
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 (7) 

and the Fisher information of  from the MRSS is 

2 2

2

2

2

( ) ( ) 2 ( )
( ) E ( ) 11 ( ) ( )

[2 ( ) 1][ ( ) 2 ( )]( 1)
 E

[1 ( )] ( )2
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r r
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I g zmn

f Z f Z

F Z Z f Z Z f Zmn n

F Z F Z
(8)

2 2 2 2
( )

2 2

[ ( ) (1 ( )) ] ( )
( ) .

( )[1 ( )]

r r i p j r

r

F Z F Z Z f Z
g z

F Z F Zr

The comparison between the mle of  under MRSS and the SRS maximum 
likelihood estimator is done using the asymptotic relative precision 

1
1ˆ ˆ

( )
lim ( , )

( )
mn

mle ML
m

mn

I
RP

I
. (9) 

Case 2. Even set sizes 

Let ( ) 1 ( 1) 1{{ } { } ; 1, 2, ..., ,  where 2}q n
i q j i i q j i qX X j m q n  be a MRSS 

from the type of distribution considered in case 1, where n and m are the set size 
and the cycle size respectively. Let ( )i q jZ  and ( 1)i q jZ  be the corresponding stan-

dardized order statistics. Then their respective pdf’s are 

( 2 ) 2 21
( ) ( )[1 ( )] ( )

( , 1)
n n

qf z F z F z f z
B q q

 (10) 

and
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2 ( 2) 2
1

1
( ) ( )[1 ( )] ( )

( 1, )
n n

qf z F z F z f z
B q q

. (11) 

The log likelihood function is 

2 2 ( ) ( ) ( )
1 1

( 1) ( 1) ( 1)
1

2
ln ln ( ) ln[1 ( )] ln ( )
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ln ( ) ln[1 ( )] ln ( )
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where K2 is a constant. The MRSS mle of  when  is known is the solution of 
the equation 

( ) ( ) ( )
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The corresponding Fisher information is 

2
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where 2 ( 2) 2
1

1
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2
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relative precision with respect to the SRS mle is 
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On the other hand, if  is known and  is of interest, we can obtain the MRSS 
maximum likelihood estimator of  as the solution of the equation 

( ) ( 1) ( ) ( 1) ( ) ( 1)
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The corresponding Fisher information and the asymptotic relative precision 
with respect to the corresponding SRS mle of  are respectively given by 
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and
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I
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2.2. Maximum likelihood estimation under ERSS

We now consider the maximum likelihood estimation of the location and scale 
parameters using ERSS in the spirit of the previous section. 

Case 1. Even set sizes 

Suppose that we have an even set size. Then the m-cycle ERSS in set notation is 

(1) ( ){ ; 1, 2, ..., ; 1, 2, ..., } { ; 1, 2, ..., ; 1, 2, ..., }i j i n jX i n j m X i n j m .
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It us no difficult to obtain the log likelihood function as 

1
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Suppose that  is known. Then the mle of ,
1

ˆ
EML  is the solution of the 

equation
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We obtain the Fisher information for  for the ERSS as 
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where 1
1( ) [1 ( )]nh z n F z  and ( 1)

2 ( ) ( )nh z nF z . Thus we can find the asymp-

totic relative precision of the ERSS estimator relative to that of the SRS, ˆ
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Similarly, if  is known, then the ERSS mle of ,
2
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and the Fisher information about  from the ERSS is 
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where h1 and h2 are as previously defined. Hence, we find the asymptotic relative 
precision of the ERSS estimator to that of the SRS by 
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Case 2. Odd set sizes 

Suppose now that we have an odd set sized ERSS with m cycles from the loca-
tion-scale family of distributions. Then the ERSS is the set 
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The log likelihood function of the ERSS is 
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where ( 1) 2n n  and ( 1) 2p n .
Therefore, the mle of  when  is known, is the solution of the equation 
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The Fisher information for  from the ERSS when  is known is 
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where h1(z) and h2(z) are as previously defined and 
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Therefore, the asymptotic relative precision of the ERSS estimator with re-
spect to that of the SRS is 
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Similarly, the ERSS mle of ,
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and the ERSS Fisher information for  is 
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Hence the asymptotic relative precision is 
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3. RESULTS I

In this section, we present the asymptotic relative precision of the mle’s for 
MRSS and ERSS in comparison with the asymptotic relative precision derived by 
Stokes (1995) and other relative precision values under the normal, exponential 
and gamma distributions. We will present one illustration of how the values are 
computed for the various distributions. 

Let X1, X2, …, Xmn be a random sample of size mn from a normal population 
with unknown mean,  and unit variance. We know that the mle of  from this 
random sample is the sample mean (i.e. ˆ

ML X ) with Fisher information, 

( )mnI mn . For the MRSS with odd set size n, we can find the mle of  using 
equation (3) as the solution of the equation 
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where (.) and (.) respectively denote the cumulative distribution function and 
the probability density function of the standard normal variable. Using equations 
(4) and (5), the Fisher information is 
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where 11
( ) ( )[1 ( )]

( , 1)
p n pg z z z

B p n p
 and p = (n + 1) / 2. 

From equation (9), the asymptotic relative precision of the MRSS with respect 
to the SRS is 
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We compute the above expectations and all other expectations that follow by 
numerical integration using Mathematica 2.2. 

For the MRSS with even set size, n, the mle, using equation (13), is the solution 
of the equation 
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and from equation (14), the Fisher information is given by 
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Thus, the asymptotic relative precision 
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Using the derived results of Section 2.2, this problem can similarly be considered 
under ERSS. In a similar fashion, we use the derived results in obtaining the ap-
propriate asymptotic relative precision in the estimation of  from the normal, 
exponential and gamma distributions using MRSS and ERSS. 

Table 1 compares the asymptotic relative precision values for mle’s of  from 
N ( , 1) under each of RSS Stokes (1995), MRSS and ERSS. It also displays the 
relative precision values for the corresponding non-parametric estimators of 
under each of RSS Dell and Clutter (1972), MRSS Muttlak (1997) and ERSS com-
puted following the methods of Samawi et al. (1996). We observe that the MRSS 
mle of  dominates all the other estimators beside the non-parametric estimator 
proposed by Muttlak (1997). 

TABLE 1 

The asymptotic relative precision and relative precision values for estimators of  from N ( , 1) 

Asymptotic relative precision 
(Maximum likelihood) 

Relative precision 
(Non-parametric methods) Set size 

RSS MRSS ERSS RSS MRSS ERSS 
2 1.48 1.48 1.48 1.47 1.47 1.47 
3 1.96 2.23 1.96 1.91 2.23 1.91 
4 2.44 2.78 2.10 2.35 2.77 2.03 
5 2.92 3.49 2.56 2.77 3.49 2.41 
6 3.40 4.07 2.53 3.19 4.06 2.40 
7 3.88 4.75 3.00 3.59 4.75 2.73 
8 4.36 5.34 2.87 4.00 5.34 2.68 

In Table 2, we show the relative precision values for the mle’s under RSS 
Stokes (1995), MRSS and ERSS. We also show that for the RSS non-parametric 
estimator Stokes (1980). Clearly, the ERSS mle dominates the other methods in 
estimating  from the normal distribution. 

TABLE 2 

The asymptotic relative precision and relative precision values for estimators of  from N (0, 2)

Asymptotic relative precision 
(Maximum likelihood) 

Relative precision 
(Non-parametric methods) Set size 

RSS MRSS ERSS RSS 
2 1.14 1.14 1.14 1.00 
3 1.27 0.98 1.27 1.08 
4 1.41 1.08 1.74 1.18 
5 1.54 0.98 1.85 1.27 
6 1.68 1.05 2.40 1.38 
7 1.81 0.99 2.49 1.48 
8 1.95 1.04 3.06 1.57 

Table 3 displays the asymptotic relative precision for mle’s of  from the ex-
ponential distribution ( ( ) 1 exp[ ]F x x ) under RSS Stokes (1995), MRSS 
and ERSS. It also shows the relative precision values for the non-parametric es-
timators under RSS Dell and Clutter (1972), MRSS Muttlak (1997) and ERSS 
computed following Samawi et al. (1996). Again, we see that the MRSS mle’s are 
the dominant estimators. 
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TABLE 3 

The asymptotic relative precision and relative precision values for estimator 
of the scale parameter of the exponential distribution 

Asymptotic relative precision 
(Maximum likelihood) 

Relative precision 
(Non-parametric methods) Set size 

RSS MRSS ERSS RSS MRSS ERSS 
2 1.40 1.40 1.40 1.33 1.33 1.33 
3 1.81 1.92 1.81 1.64 2.25 1.64 
4 2.21 2.37 2.06 1.92 2.44 1.17 
5 2.62 2.88 2.44 2.19 2.23 1.32 
6 3.02 3.33 2.58 2.45 2.14 0.75 
7 3.42 3.83 2.96 2.70 1.80 0.81 
8 3.83 4.29 3.03 2.94 1.67 0.46 

In Tables 4 and 5, we show the results for the estimators of  from Gamma 

(2) and Gamma (3) distributions (i.e. from 1

0

1
( ) ,  0

( )

x tF x t e  with 

 = 2 and 3 respectively). 
The values for the RSS maximum likelihood estimators were computed follow-

ing Stokes (1995). The values for the non-parametric RSS and MRSS estimators 
were obtained from Dell and Clutter (1972) and Muttlak (1997) respectively. We 
computed the values for the ERSS non-parametric estimators following Samawi 
et al. (1996). We observe here that the MRSS maximum likelihood estimators do 
better than all the other estimators except for set size of 3 when the MRSS non-
parametric estimators do better. 

TABLE 4 

The asymptotic relative precision and relative precision values for estimators 
of the scale parameter Gamma (2.0) 

Asymptotic relative precision 
(Maximum likelihood) 

Relative precision 
(Non-parametric methods) Set size 

RSS MRSS ERSS RSS MRSS ERSS 
2 1.44 1.44 1.44 1.39 1.39 1.39 
3 1.88 2.07 1.88 1.75 2.23 1.75 
4 2.32 2.56 2.08 2.10 2.56 1.45 
5 2.76 3.16 2.50 2.42 2.64 1.66 
6 3.20 3.67 2.56 2.74 2.70 1.09 
7 3.64 4.26 2.98 3.05 2.48 1.18 
8 4.07 4.78 2.95 3.35 2.40 0.72 

TABLE 5 

The asymptotic relative precision and relative precision values for estimators 
of the scale parameter from Gamma (3.0) 

Asymptotic relative precision 
(Maximum likelihood) 

Relative precision 
(Non-parametric methods) Set size 

RSS MRSS ERSS RSS MRSS ERSS 
2 1.45 1.45 1.45 1.41 1.41 1.41 
3 1.90 2.12 1.90 1.80 2.24 1.80 
4 2.36 2.63 2.08 2.16 2.62 1.60 
5 2.81 3.26 2.52 2.52 2.85 1.84 
6 3.26 3.80 2.55 2.87 3.01 1.32 
7 3.71 4.42 2.98 3.20 2.91 1.44 
8 4.17 4.96 2.92 3.54 2.90 0.94 
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4. THE TWO-PARAMETER FAMILY

From all the work above, we assumed one of the parameters known and esti-
mated the other. That is to say we were dealing with the one-parameter family of 
distributions. The obvious question now is what if both the location and scale pa-
rameters are unknown. This gives rise to the two-parameter problem. In this case, 
the usual principle of maximum likelihood requires us to obtain the first deriva-
tive of the appropriate log likelihood function with respect to each parameter, set 
each result equal to zero, and simultaneously solve the resulting equations for the 
parameters. For instance, if  and are not known and we have a MRSS of odd 
set size, we obtain their maximum likelihood estimates by simultaneously solving 
equations (3) and (7) for  and . Similarly, if we have an even set size, we set 
equation (2) equal to zero and solve simultaneously with equation (16) as in the 
case of the odd set size. 

We will now investigate the performance of these estimators for the case of 
odd set sizes against the performance of the corresponding SRS estimators. We 
will do this using the Fisher information matrix, which has 1( )mnI  and 

1( )mnI (equations (4) and (8) respectively) as its diagonal elements. The off di-
agonal elements are given by 

22

2

2 2 2

2 2 2

( ) ( ) ( )1E E ( )
( ) ( )

( 1) [2 ( ) 1][ ( ) ( )] [ ( ) (1 ( )) ] ( )
         E ( )

( )[1 ( )]2 ( )[1 ( )]

L mn f z zf z f zMRSS z g z
f z f z

mn n F z zf z f z z F z F z f z
g z

F z F z F z F z
.

where 11
( )[1 ( )]

( , )
p n pF z F z

B p p
 and 

1

2

n
p . Just as in the case of RSS 

Stokes (1995), it has been verified that the off-diagonal elements are zero for 
symmetric distributions. Note that 

2 2
1 1MRSS MRSSL L

.

In the case of SRS, the diagonal elements are given by ( )mnI  and ( )mnI , the 
Fisher information for  and  respectively from a SRS. The off-diagonal ele-
ments are given by 

22 ( ) ( ) ( )
E E

( ) ( )

zf z f z f zL
z

f z f z
.

This is also zero for symmetric distributions. 
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Thus, to compare the MRSS estimators with those of the SRS, we compare the 
determinants of the information matrices 

2
1

1

2
1

1

( )

( )

MRSS
mn

MRSS
mn

L
I E

L
E I

 and 

2

2

( )

( )

mn

mn

L
I E

L
E I

,

which are the information matrices for the MRSS and RSS estimators respec-
tively. This clearly shows that the trend observed in the relative precision values 
in the case of the one-parameter family also holds here even though the actual 
estimates may differ. This observation agrees with Stokes (1995) in the case of 
RSS. The analysis for even set sizes follow similarly. 

5. LINEAR UNBIASED ESTIMATORS

The results of the maximum likelihood estimators apart from being asymptotic 
may be difficult to find as they involve numerically solving complicated equa-
tions. In this section, we propose some unbiased estimators of the parameters 
considered in the previous sections in terms of the MRSS and ERSS, which are 
relatively very easy to compute. 

Following Lloyd (1952) as in Stokes (1995), we define 

(. : ) (.) (. : ) (.)E[ ] and Var[ ]n i n iZ Z , where (.)
(.)

i

i

X
Z  and (.)iX is the (.)th

order statistic in the ith set. Thus, it follows that (. ) (. : )E[ ]i nX  and 
2

(..: ) (. : )Var[ ]i n nX .

5.1. Linear Unbiased Estimation under MRSS

We maintain as in the previous sections that p = (n + 1) / 2 and q = n / 2.

Case 1. Odd set sizes 

Suppose that we have an odd set size, n, and that  is known. Then the pro-
posed estimator of  from a MRSS with m cycles is 

1 ( ) ( : )
1 1

ˆ
1 m n

UB i p j p n
j i

X
mn

. (34) 

It is easy to verify that this estimator is unbiased for  and has variance 
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1

2

( : )ˆVar[ ]UB p n
mn

. (35) 

Suppose now that  is known and we wish to estimate  using MRSS. Then 
for odd set sizes, the proposed unbiased estimator of  is 

1 ( )
1 1( : )

ˆ
1 1 m n

UB i p j
j ip n

X
mn

, (36) 

This estimator has variance 

1

2
( : )

2
( : )

ˆVar[ ] p n

UB

p nmn
. (37) 

It is clear that the results of equation (36) and (37) cannot be used if the under-
lying distribution is symmetric, as in this case, (p:n) = 0 for all odd set sizes. 

Case 2. Even set sizes 

For even set sizes with known , the unbiased estimator of  is give by 

2 ( ) ( 1) ( : ) ( 1: )
1 1 1

ˆ
1

( )
2

qm n

UB i q j i q j q n q n
j i i q

X X
mn

, (38) 

with variance 

2

2

( : ) ( 1: )ˆVar[ ] ( )
2UB q n q n

mn
. (39) 

On the other hand, the unbiased estimator of  when  is known is 

2 ( ) ( 1)
1 1 1( : ) ( 1: ) ( : ) ( 1: )

ˆ
1 1 1 1 1

2

qm n

UB i q j i q j
j i i qq n q n q n q n

X X
mn

, (40) 

which has variance 

2

2
( : ) ( 1: )

2 2
( : ) ( 1: )

ˆVar[ ]
2

q n q n

UB

q n q nmn
. (41) 
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5.2. Linear unbiased estimation under ERSS

Case 1. Odd set sizes 

For an odd set size n, the ERSS of m cycles in set notation is 

(1)

( ) ( )

{ ; 1, 2,...,( 1) 2; 1, 2,... }

{ ; (( 1) 2) 1,..., 1; 1, 2, ... } { ; 1, 2,... }

i j

i n j n p j

X i n j m

X i n n j m X j m

where p = (n+1)/2.
Suppose  is known and n is odd, then the ERSS unbiased estimator 1ˆ  of  is 

1
(1: ) ( : ) ( : )

1 (1) ( ) ( )
1 1 1

ˆ
( 1)( ) 21

2

pm n
n n n p n

i j i n j n p j
j i i p

n
X X X

mn n
, (42) 

where ( 1)/2p n  and ( 1)/2p n . This estimator has variance 

2
(1: ) ( : ) ( : )

1 2
ˆ

[( 1)( ) 2 ]
Var[ ]

2
n n n p nn

mn
. (43) 

If  is unknown and the underlying distribution is symmetric, then 

1

1 (1) ( ) ( )
1 1 1

ˆ
1 pm n

i j i n j n p j
j i i p

X X X
mn

, (44) 

which coincides with the estimator proposed by Samawi et al. (1996) and 

2
(1: ) ( : )

1 2
ˆ

[( 1) ]
Var[ ] n p nn

mn
. (45) 

From equation (44), it is clear that knowledge of the nuisance parameter is not 
required in the estimation of  when  is known and the underlying distribution 
is symmetric. 

Now if  is known, then the unbiased estimator of  is 

1

1 (1) ( ) ( )
1 1 1(1: ) ( : ) ( : )

ˆ
2 1

( 1)( ) 2

pm n

i j i n j n p j
j i i pn n n p n

n
X X X

n mn
,

 (46) 

with variance, 

2
(1: ) ( : ) ( : )

1 2
(1: ) ( : ) ( : )

ˆ
2[( 1)( ) 2 ]

Var[ ]
[( 1)( ) 2 ]

n n n p n

n n n p n

n

m n
. (47) 
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Equations (46) and (47) are undefined where the underlying distribution is 
symmetric, as the denominators vanish in that case. The use of the partial ERSS 
or PERSS in Section 5.3 remedies this situation. 

Case 2. Even set sizes 

For an even set n, the m-cycle ERSS in set notation is 

(1) ( ){ ; 1, 2,..., /2; 1, 2,..., } { ; ( /2) 1,..., ; 1, 2,..., }i j i n jX i n j m X i n n j m

Suppose that we have an even set size, n, with  known. Then the unbiased es-
timator of  is 

2 (1) ( ) (1: ) ( : )
1 1 1

ˆ
1

( )
2

qm n

i j i n j n n n
j i i q

X X
mn

, (48) 

where /2q n . This estimator has variance 

2

2 (1: ) ( : )ˆVar[ ] ( )
2 n n n

mn
. (49) 

For symmetric distributions, equation (48) reduces to 

2 (1) ( )
1 1 1

ˆ
1 qm n

i j i n j
j i i q

X X
mn

, (50) 

which again coincides with the estimator in (Samawi et al, 1996) and 

2 2
(1: ) ( : )

2ˆVar[ ] n n n

mn mn
. (51) 

Conversely, if  is known, then the unbiased estimator of  and its variance are 
respectively given by 

2 (1) ( )
1 1 1(1: ) ( : ) (1: ) ( : )

ˆ
1 1 1 1 1

2

qm n

i j i n j
j i i qn n n n n n

X X
mn

 (52) 

and

2
(1: ) ( : )

2 2 2
(1: ) ( : )

ˆVar[ ]
2

n n n

n n nmn
. (53) 

If the underlying distribution is symmetric, then equation (52) simplifies to 
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2 (1) ( )
1 1 1(1: )

ˆ
1 qm n

i j i n j
j i i qn

X X
mn

, (54) 

and equation (53) to 

2 2
(1: ) ( : )

2 2 2
(1: ) ( : )

ˆVar[ ] n n n

n n nmn mn
. (55) 

5.3. Estimation under partial extreme ranked set sampling (PERSS)

We will now propose partial extreme ranked set sampling (PERSS), a modifica-
tion of ERSS for odd set sizes. In this method, if n is odd, (n –1) random samples 
are taken from the population of interest. From the first (n -1)/2 sets, the smallest 
observation is selected for measurement and the largest observation from each of 
the remaining (n – 1)/2 sets. This yields a sample of size (n – 1) units. The cycle 
may be repeated m times to give a sample of size m (n –1). This modification is 
necessary for two reasons; first, the proposed ERSS linear unbiased estimator of 

 when  is known and n is odd is inapplicable when the underlying distribution 
is symmetric. Second, the performance of ERSS for odd set sizes involves the se-
lection of the median from one of the sets, which calls for proper ranking of the 
observations in that set, whereas the partial ERSS does not. Thus, for odd set 
sizes, the m-cycle PERSS as described is the set 

(1)

( )

{ ; 1, 2,...( 1)/2; 1, 2,..., }

{ ; ( 1)/2 1,..., 1; 1, 2,..., }.

i j

i n j

X i n j m

X i n n j m

We note from the algorithm that even though PERSS is applied to odd set 
sizes, it yields samples of even sizes. For example, PERSS performed on set sizes 
of 3, 5, 7 and 9 will respectively yields samples of size 2, 4, 6 and 8 per cycle. 

Suppose we have a PERSS as described above. Then the linear unbiased esti-
mator of , assuming that  is known, is given by 

1

1 (1) ( ) (1: ) ( : )
1 1 1

ˆ
1

( )
( 1) 2

pm n

i j i n j n n n
j i i p

X X
m n

 (56) 

with variance, 

2

1 (1: ) ( : )ˆVar[ ] ( )
2 ( 1) n n n

m n
. (57) 

On the other hand, if  is known, then the linear unbiased estimator of  is 
given by 
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1

1 (1) ( )
1 1 1(1: ) ( : ) (1: ) ( : )

ˆ
1 1 1 1 1

( 1) 2

pm n

i j i n j
j i i pn n n n n n

X X
m n

 (58) 

and

2
(1: ) ( : )

1 2 2
(1: ) ( : )

ˆVar[ ]
2 ( 1)

n n n

n n nm n
. (59) 

It is clear from equations (56) and (58) that if the underlying distribution is 
symmetric, then the nuisance parameter is not required in the estimation of the 
parameter of interest. 

6. RESULTS II

In this section, we compare the proposed linear unbiased estimators in Section 
5 with the best SRS estimators. ‘Best’ here implies estimators that have achieved 
the lower bound variance, which is the reciprocal of the Fisher information. Re-
sults are presented for the estimation of  from N( , 1) and  from N(0, 2),
Exp( ), gamma(2, ) and gamma(3, ).

Let X1, X2, …, Xmn be a random sample of size mn from a distribution with cdf 
x

F . It is easy to show that the Fisher information of  and  from this 

sample under the usual regularity conditions see Stokes (1995) are respectively 
given by 

2

2

( )
( )

( )
r

mn

r

f Zmn
I E

f Z
 (60) 

and

2

2

( )
( ) 1

( )
r r

mn

r

Z f Zmn
I E

f Z
, (61) 

where ( )r rZ X .
Thus, the respective lower bound variance of the SRS unbiased estimators of 

and  are given by the reciprocals of the last two equations. Therefore, the pro-
posed ERSS estimators are compared with the SRS best estimators using the rela-
tive precision 
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ˆ ˆ
ˆ

1
( )

( , )
[ ]

mn
ML

I
RP

Var
 and ˆ ˆ

ˆ

1
( )

( , )
[ ]

mn
ML

I
RP

Var
,

where  = 1, 2 and ˆ
ML  and ˆ

ML  denote the best SRS estimators of  and  re-
spectively. In a similar fashion, the MRSS and the PERSS estimators are com-
pared with the ‘best’ SRS estimators. 

Table 6 shows the results for odd set sizes. Clearly, all the estimators under 
RSS, MRSS and ERSS estimators of  from N( ,1), and of  from Exp( ),
gamma(2, ) and gamma(3, ) are more efficient than the corresponding best SRS 
estimators. The gain in using the proposed ERSS estimators is moderate as com-
pared to that using MRSS, but the proposed estimators will serve as the best al-
ternatives where complete and accurate ranking of observations is difficult as 
compared to picking the smallest and the largest units. 

TABLE 6 

The relative precision of the RSS, MRSS and ERSS linear unbiased estimators for odd set sizes 

Sample Size per Cycle 
Distribution 

  Sampling 
  Scheme 3 5 7 9 11 
  RSS 1.93 2.94 3.82 4.77 5.75 
  MRSS 2.23 3.49 4.75 6.02 7.29 N ( , 1) 
  ERSS 1.91 2.41 2.73 2.98 3.17 
  RSS 1.80 2.59 3.39 4.19 4.99 
  MRSS 1.92 2.87 3.83 4.79 5.75 Exp ( )
  ERSS 1.63 2.05 2.42 2.75 3.04 
  RSS 1.86 2.73 3.59 4.46 4.93 
  MRSS 2.07 3.16 4.26 5.36 6.46 Gamma (2, )
  ERSS 1.75 2.17 2.48 2.74 2.96 
  RSS 1.89 2.77 3.67 4.56 5.46 
  MRSS 2.12 3.26 4.42 5.57 6.73 Gamma (3, )
  ERSS 1.80 2.23 2.53 2.77 2.97 

In Table 7, results are presented for the RSS, MRSS ERSS and PERSS estima-
tors of  from N( , 1) and  from N(0, 2), Exp( ), gamma(2, ) and gam- 
ma(3, ) for even set sizes per cycle. Note that in the case of RSS, MRSS and 
ERSS, the sample size per cycle is the same as the set size, but for the PERSS, the 
sample size per cycle is the set size minus one as explained earlier. 

It is clear from Table 7 that the PERSS estimator of  from N(0, 2) is the 
most efficient for when the set size per cycle is greater than two. In estimating the 
other parameters, the trend is similar to that observed in Table 6 except that the 
PERSS estimators dominate all the rest when the sample size per cycle is two. We 
finally note that PERSS has improved the efficiency of ERSS. 
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TABLE 7 

The relative precision of the RSS, MRSS and ERSS linear unbiased estimators 
and that for the corresponding PERSS for even set sizes per cycle 

Sample Size per Cycle 
Distribution 

  Sampling 
  Scheme 2 4 6 8 10 
  RSS 1.47 2.40 3.35 4.30 5.25 
  MRSS 1.47 2.77 4.06 5.34 6.62 
  ERSS 1.47 2.03 2.40 2.68 2.90 

N ( , 1) 

  PERSS 1.79 2.23 2.55 2.80 3.00 
  RSS 0.23 0.60 0.92 1.21 1.50 
  MRSS 0.23 0.12 0.08 0.06 0.05 
  ERSS 0.23 1.08 1.93 2.72 3.44 

N (0, 2)

  PERSS 0.64 1.51 2.33 3.09 3.78 
  RSS 1.40 2.19 2.99 3.79 4.59 
  MRSS 1.29 2.30 3.28 4.25 5.22 
  ERSS 1.29 1.51 1.60 1.66 1.69 

Exp ( )

  PERSS 1.42 1.56 1.63 1.68 1.71 
  RSS 1.43 2.29 3.16 4.03 4.90 
  MRSS 1.37 2.52 3.64 4.76 5.87 
  ERSS 1.37 1.75 1.96 2.10 2.20 

Gamma (2, )

  PERSS 1.59 1.86 2.03 2.15 2.24 
  RSS 1.44 2.33 3.22 4.11 5.01 
  MRSS 1.40 2.60 3.78 4.94 6.11 
  ERSS 1.40 1.84 2.09 2.27 2.41 

Gamma (3, )

  PERSS 1.65 1.98 2.19 2.34 2.46 

7. CONCLUSIONS

In this paper, we have proposed maximum likelihood estimators (mle’s) of the 
parameters of the normal, exponential and gamma distributions in the light of the 
location-scale family of distributions, using median ranked set sampling (MRSS) 
and extreme ranked set sampling (ERSS). Under these sampling schemes, we 
have also proposed some linear unbiased estimators (lue’s) of the same parame-
ters, which are a lot more easily computable than the mle’s. 

The mle’s of the normal mean, , and the scale parameters of the exponential 
and gamma distributions under MRSS are found to dominate all other estimators. 
Similarly, the lue’s of these same parameters under MRSS are the most dominant 
among all the lue’s considered. 

The mle’s of the normal standard deviation under ERSS are the most efficient 
among the mle’s while the PERSS lue of the same parameter dominates all the 
lue’s. The PERSS scheme is generally seen to be an improvement of the ERSS 
scheme.
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RIASSUNTO

Stime dei parametri della distribuzioni normale, esponenziale e gamma basate sulla mediana e sugli 
estremi

In questo lavoro vengono presi in considerazioni gli stimatori di massima verosimi-
glianza (mle’s) come stimatori lineari corretti dei parametri delle distribuzioni normale, 
esponenziale e gamma, considerate nel contesto delle distribuzioni di locazione e scala, 
cioè di distribuzioni con funzione di ripartizione del tipo F((x- )/ ), utilizzando un meto-
do di campionamento caratterizzato da un ordinamento basato sulla mediana (MRSS) e 
sugli estremi (ERSS). I metodi MRSS e ERSS rappresentano una variazione del campio-
namento ordinale RRS e risultano di più facile applicazione e meno esposti ai problemi di 
errata classificazione. Gli mle’s della media della normale e dei parametri di scala della di-
stribuzione esponenziale e gamma, determinati secondo il metodo MRSS, mostrano com-
portamenti migliori degli altri stimatori, mentri quelli della deviazione standard basati sul 
metodo ERSS sono i migliori. Un comportamento analogo si osserva per i lue. Si propone 
inoltre una modifica degli ERSS relativamente al campionamento basato sull’ordinamento 
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parziale degli estremi per campioni di numerosità dispari per generane di numerosità pari. 
È mostrato come il lue per la deviazione standard della normale sia il più efficiente di tutti 
i lue per gli stessi parametri. Inoltre i lue PERSS sono i più efficienti quando la dimensio-
ne campionaria per ciclo è pari a due. 

SUMMARY

Estimating the parameters of the normal, exponential and gamma distributions using median and 
extreme ranked set samples 

In this paper, we propose maximum likelihood estimators (mle’s) as well as linear un-
biased estimators (lue’s) of the parameters of the normal, exponential and gamma distri-
butions in the light of the location-scale family of distributions - i.e. distributions with 
cumulative distribution functions of the form F ((x – µ)/ ), using median ranked set sam-
pling (MRSS) and extreme ranked set sampling (ERSS). MRSS and ERSS are modifica-
tions of ranked set sampling (RSS), which are more practicable and less prone to prob-
lems resulting from erroneous ranking. The mle’s of the normal mean and the scale pa-
rameters of the exponential and gamma distributions under MRSS are shown to dominate 
all other estimators, while the mle of the normal standard deviation under ERSS is the 
most efficient. A similar trend is observed in the lue’s. A modification of ERSS namely 
partial extreme ranked set sampling (PERSS) is proposed for odd set sizes to generate 
even-sized samples. The lue of the normal standard deviation under this modification is 
shown to be the most efficient of all the lue’s of the same parameter. Among the lue’s 
considered, the PERSS lue’s are the most efficient when the sample size per cycle is two. 


