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1. INTRODUCTION

On a dark and sleepless night in Leuven, Belgium, where my wife Carlene was 
undergoing a difficult cancer treatment, I was struck by a ray of light coming 
through the window of our apartment looking onto Ladeuze Plein. The light 
striking my eyes scattered in a myriad of directions forming all sort of images as 
in a kaleidoscope. At that moment, my mind wandered to my amateurish readings 
about the theory of light and to the unexplainable finding of Quantum Electro-
Dynamics (QED) according to which the probability that a photomultiplier is hit by a 
photon reflected from a sheet of glass is equal to the square of its amplitude. The amplitude of 
a photon is an arrow (a vector) that summarizes all the possible ways in which a 
photon could have reached a given photomultiplier. 

This totally implausible discovery about light and matter was presented by Ri-
chard Feynman (1985, page 24) in clear and entertaining ways more than fifteen 
years ago: “The situation today is, we haven’t got a good model to explain partial 
reflection by two surfaces; we just calculate the probability that a particular pho-
tomultiplier will be hit by a photon reflected from a sheet of glass. I have chosen 
this calculation as our first example of the method provided by the theory of 
quantum electrodynamics. I am going to show you ‘how we count the beans’ – 
what the physicists do to get the right answer. I am not going to explain how the 
photons actually ‘decide’ whether to bounce back or go through; that is not 
known. (Probably the question has no meaning.) I will only show how to calcu-
late the correct probability that light will be reflected from a glass of given thick-
ness, because that’s the only thing physicists know how to do! … You will have 
to brace yourself for this – not because it is difficult to understand, but because it 
is absolutely ridiculous: All we do is draw little arrows on a piece of paper – that’s 
all! Now, what does an arrow have to do with the chance that a particular event 
will happen? According to the rules of ‘how we count the beans,’ the probability 
of an event is equal to the square of the length of the arrow.” But why would e-
conometric analysis have anything to do with QED? In fact, it has little to do 
with it. Except that the analogy between the theory of light and the theory of in-
formation became so irresistible in that sleepless night in Leuven. 
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The analogy can be elaborated along the following lines. Light carries informa-
tion about the physical environment. When light reaches the eyes (photomultipli-
ers) of a person, the perceived image may be out-of-focus. That person will 
squint and adjust his eyes in order to improve the reproduction of the image in 
his brain. It is an astonishing fact of life that every individual, whether wearing 
glasses or not, knows when a picture is in focus and can adjust a projector to put 
a picture in focus for an entire audience. Economic data carry information about 
economic environments and the decision processes that generated those data. As 
with any picture, the economic information reaching a researcher may correspond 
to an image that is out-of-focus. Unfortunately, our brain is not wired to recog-
nize when an economic picture is in focus. The goal of econometric analysis, 
then, is to reconstruct the best possible image of an economic decision process as 
the way to better understand the economic agent’s environment. 

This description of econometric analysis is of old vintage. The means to a-
chieving a “better” statistical image of the economic process relies heavily upon 
the estimator selected by the researcher for this purpose (along with a correctly 
specified economic model). The novelty of this paper, then, is the proposal of a 
new class of statistical estimators inspired by the theory of light. 

In the next sections, two maximum entropy Leuven (MEL) estimators will be 
presented. For convenience, they will be numbered Leuven-1 and Leuven-2. The 
MEL estimators are consistent and asymptotically normal. Properties such as as-
ymptotic unbiasedness, consistency and normality of the parameter estimates will 
be illustrated by means of Monte Carlo experiments. We will present also a pre-
liminary comparison with rival estimators such as the generalized maximum en-
tropy (GME) estimator (Golan, et al., 1996) and the ordinary least-squares (OLS) 
estimator. A particularly interesting aspect of this comparison is represented by 
the behavior of these estimators under a condition of increasing multicollinearity 
as measured according to Belsley et al. (1980) recommendation. The Leuven esti-
mators outperform the OLS estimator for all values of the condition number ex-
amined in several Monte Carlo experiments. It is also important to anticipate that, 
in contrast to the GME estimator, no subjective and a-priori information is nec-
essary in order to implement any of the Leuven estimators.  

2. LEUVEN-1 AND LEUVEN-2 ESTIMATORS

The idea of maximum entropy within the context of information was intro-
duced (Jaynes, 1957) as a way to deal with recovering of inverse images under 
limited information. The Leuven-1 and Leuven-2 estimators are based upon the 
same formalism and share the same entropy structure. The difference between 
them consists in the fact that the Leuven-2 estimator extends the entropy specifi-
cation to the error term. 

Let us consider a general, linear statistical model representing some economic 
relation (production, demand, cost function) that characterizes the following set 
of data generating processes (DGP): 
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y X u , 2~ IID( , )u 0 I , (1) 

where the dimensions of the various components are 
~ ( 1),  ~ ( 1),  ~ ( 1)T T Ky u  and ~ ( )T KX . The vector y  and the ma-

trix X  constitute sample information. The vector  represents parameters to 

estimate and the vector u  contains random disturbances independently and iden-

tically distributed (IID) with zero mean and variance 2 .
In an econometric model with noise, it is impossible to measure exactly the pa-

rameters involved in the generation of the sample data. Each parameter depends 
on every other parameter specified in the model and its measured dimensionality 
is affected by the available sample information as well as by the measuring proce-
dure. Following the theory of light, it is possible to estimate the probability of 
such parameters using their revealed image. The revealed image of a parameter 
can be thought of as the estimable dimensionality that depends on the sample in-
formation available for the analysis. Hence, in the Leuven-1 estimator we postu-
late that the probability of a parameter k  (which carries economic information) 

is equal to the square of its “amplitude” where by amplitude we intend its esti-
mated normalized dimensionality. Thus, the Leuven-1 estimator is specified as 
follows:

2min ( , , ) log( ) log( )
k k

t
k t

H L u p p L L up  (2) 

subject to 

t tk k t
k

y x u

2
k

k
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k kp L

with 0
k

p , 1,..., ,  1, ...,k K t T . The amplitude (or normalized dimensional-

ity) of parameter k  is given by /k L , hence the probability of parameter 

k  is given by the square of its amplitude, as in the theory of light. The term 

log( )L L  in the objective function prevents the overflow of the L parame-

ter. The Leuven-1 estimator does not require any subjective a-priori information. 
It utilizes the components of the statistical linear model to define the relevant 
amplitude of the corresponding parameters. 

In matrix notation, the Leuven-1 estimator assumes the following specifica-
tion:
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min ( , , ) log( ) log( )H L L Lp u p p u u  (3) 

subject to 

y X u

L

/Lp

where p 0  and the symbol  indicates the element-by-element Hadamard 

product. 
The Leuven-1 estimator does not possess a closed form representation. Its so-

lution requires the use of a computer code for nonlinear programming problems 
such as GAMS (Brooke et al., 1988). In order to examine the intricate structure of 
the Leuven-1 estimator it is useful to derive the corresponding Karush-Kuhn-
Tucker (KKT) conditions. The corresponding Lagrangean function is given as 

log( ) log( ) ( )

( ) ( / )

L L

L L

p p u u y X u

p

L
  (4) 

where the symbols  are the Lagrange multipliers of the corresponding con-

straints.
The relevant KKT conditions of problem (3) are stated as follows: 

2

log( )

log( ) 1 log( ) 1 0

2 2

2

/ /

/

K

L L L L
L

L

p 0
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p

X 0

u 0
u

L

L

L

L

 (5) 

where the symbol K  represents a vector of unit elements of dimension K . The 

solution of these KKT conditions, if it exists, will produce always a vector of 
probabilities with all positive components. It is apparent that the Leuven-1 esti-
mator is nonlinear in the parameters but, in spite of its complexity, the empirical 
solution of numerous test problems was swift and efficient on the same level of 
rapidity of the least-squares estimator. 

The Leuven-2 estimator extends the probability specification to the error term 
u  resulting in the following symmetric structure: 
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min ( , , , ) log( ) log( )
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with 0
k

p  and 0
t

u
p , 1,..., ,  1,...,k K t T . Except for the probability 

specification of the error term, the Leuven-2 estimator shares the same structure 
and characteristics of the Leuven-1 estimator. Again, the Leuven-2 estimator does 
not require any subjective exogenous information as does the GME estimator. 

3. THE CLASS OF MEL ESTIMATORS AS RIVAL TO THE OLS AND GME ESTIMATORS

In 1996, Golan, Judge and Miller proposed a way to extend Jaynes’ (1957) ma-
ximum entropy formalism in econometrics to any sort of linear statistical models. 
Their assumption is that a parameter k  is regarded as the mathematical expecta-

tion of some discrete support values kmZ  such that 

1
M

k km kmm
Z p  (7) 

where 0kmp , 1,...,k K , and 1,...,m M  are probabilities and, of course, 

1 1M
kmm

p  for 1,...,k K . The element kmZ  constitutes a-priori information 

provided by the researcher, while kmp  is an unknown probability whose value 

must be determined by solving a maximum entropy problem. 
Golan, Judge and Miller (1996) present a thorough discussion of the general-

ized maximum entropy (GME) estimator. In this estimator, the error terms in 
model (1) are also reparametrized with given discrete supports tgV , 1,...,g G ,

1, ...,t T . Let 1
G

t tg tgg
u V w , with 0tgw , where the tgw  elements are re-
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garded as probabilities associated with the error support values. Then, the GME 
estimator can be stated as 

11 1max ( ) log( ) log( )1
K M T G

tkm km tg tgm gk
H p p w wp,w  (8) 

subject to 

11 1
K M G

gt tk km km tg tgk m
y X Z p V w , 1,...,t T

1 1M
kmm

p , 1, ...,k K

1 1G
tgg

w , 1, ...,t T .

The GME estimator is not sensitive to multicollinearity because the matrix X X
does not appear on the main diagonal of the appropriate KKT conditions. 

The GME estimator, however, has important weaknesses for which the class 
of MEL estimators provides a remedy: The estimates of parameter k  and resid-

ual tu  are sensitive, in an unpredictable way, to changes in the support intervals. 

Caputo and Paris (2000) have done a general and complete analysis of this aspect. 
A concomitant but distinct weakness of the GME estimator is that the parameter 
estimates and their variances are affected by the number of discrete support val-
ues. Many traditional econometricians reject the GME estimator because of these 
unsatisfactory properties. In effect, it is somewhat disappointing to inject subjec-
tive information into the estimation and data analysis process without knowing in 
what way this exogenous information will affect the estimated parameters. Also, 
while knowledge of the bounds for some parameters may be available and, there-
fore, ought to be used, it is unlikely that this knowledge can cover all the parame-
ters of a model. In other words, the GME estimator depends crucially upon the 
subjective and exogenous information supplied by the researcher: The same sam-
ple data in the hands of different researchers willing to apply the GME estimator 
will produce different estimates of the parameters and, likely, different policy rec-
ommendations. 

The class of MEL estimators rivals also the OLS estimator because of its better 
performance under conditions of increasing multicollinearity, an empirical event 
that plagues the majority of econometric analyses. 

4. DISTRIBUTIONAL PROPERTIES OF MEL ESTIMATORS

The Leuven estimators are consistent and asymptotically normal. A proof of 
this proposition is presented in the appendix. To illustrate these properties, sev-
eral Monte Carlo experiments were performed. In particular, consistency, asymp-
totic unbiasedness and normality of the estimated parameters were considered. In 
these experiments, the value of the mean squared error criterion tends to zero for 
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a large sample size, supporting the notion that the estimators are consistent and 
asymptotically unbiased. Furthermore, the behavior of the estimators under in-
creasing levels of multicollinearity was analyzed. 

Consistency and asymptotic unbiasedness were measured by the magnitude of 
the mean squared error (MSE) criterion and of the squared bias in a risk function 

ˆ( , ) , also called mean squared error loss (MSEL), as suggested by Judge et al.

(1982, p. 558), where 

ˆ ˆ ˆ ˆ ˆ ˆ( , ) MSE( , ) E[( )( ) ] E[( ) ( )]tr tr  (9) 

            ˆ ˆ ˆCOV( ) [BIAS( ) * BIAS( )]tr tr .

Tables 1 and 2 present the results of a non-trivial Monte Carlo experiment that 
deals with a true model exhibiting the following data generating process (DGP). 
There are ten parameters 0k , 1, ...10,k  to estimate. Each parameter 0k  was 

drawn from a uniform distribution [ 1.7, 2.0]U . Each element of the matrix of 

regressors X  was drawn from a uniform distribution [1,5]U . The model has no 

intercept. Finally, each component of the disturbance vector u  was drawn from a 

normal distribution 2
0(0, ) (0,4)N N . With this specification, the dependent 

variable y  was measured in units of tens, ranging from 10 to 100 (in absolute va-

lue). Runs of one hundred samples of increasing size, from 50 to 5000 observa-
tions, were executed. The GME estimator was implemented with discrete support 
intervals for the parameters and the error terms selected as [ 5,0,5] and 

[ 10,5,10] , respectively. The condition number (CN) (Belsley et al., 1980) of the 

X  matrix is given for each sample size. 

TABLE 1 

Monte Carlo experiment N. 1: model without intercept. Asymptotic unbiasedness 
of rival estimators. 100 samples 

Estimators T=50 T=200 T=400 T=1000 T= 2000 T=5000
 CN=11.5 CN=10.3 CN=9.5 CN=9.1 CN=8.8 CN=8.1  

Leuven-1 0.03630 0.00371 0.00043 0.00078 0.00013 0.00003 
Leuven-2 0.00992 0.00179 0.00012 0.00058 0.00013 0.00003 
GME 0.04986 0.00451 0.00057 – – – 
OLS 0.00893 0.00170 0.00012 0.00056 0.00013 0.00003 

The GME estimator implemented with the optimization program GAMS fai-
led to reach an optimal solution with a sample size of 400T . This event might 
be due to the large number of probabilities that must be estimated for an increas-
ing number of error terms. The GME estimator produces results that approxi-
mate very closely uniform probabilities and this characteristic of the GME esti-
mator may make it difficult with large samples to locate a maximum value of the 
objective function. Invariably, the GAMS program terminated with a feasible but 
non-optimal solution when 400T .
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The levels reported in table 1 represent the sum of the squared bias over ten 
parameters. It would appear that the Leuven-2 estimator performs as well as the 
OLS estimator in small samples. When the sample size increases, both Leuven 
estimators rival the OLS estimator. This result is confirmed in table 2 that pre-
sents the levels of MSEL for the same experiment and sample sizes. 

TABLE 2 

Monte Carlo experiment N. 1: model without intercept. MSEL for rival estimators. 100 samples 

Estimators T=50 T=200 T=400 T=1000 T=2000 T=5000
 CN=11.5 CN=10.3 CN=9.5 CN=9.1 CN=8.8 CN=8.1  

Leuven-1 0.5448 0.1334 0.0709 0.0295 0.0132 0.0052 
Leuven-2 0.5661 0.1347 0.0714 0.0294 0.0132 0.0052 
GME 0.5469 0.1341 0.0715 – – – 
OLS 0.5882 0.1351 0.0715 0.0294 0.0132 0.0052 

The MSEL values of the Leuven estimators in table 2 tend to zero as T  in-
creases at the same rate as the MSEL value of the OLS estimator. This evidence 
supports the proposition that the Leuven estimators are consistent.  

The hypothesis that the parameter estimates are distributed according to a 
normal distribution was tested by the Bera-Jarque (1981) statistic involving the 
coefficients of skewness and kurtosis that the authors show to be distributed as a 

2  variable with two degrees of freedom. In all the runs associated with tables 1 

and 2, the normality hypothesis was not rejected with ample margins of safety. 
The above results provide evidence that the Leuven-1 and Leuven-2 estimators 

perform as well as the OLS estimator, under a well-conditioned X X  matrix. The 
Leuven estimators out-perform the OLS estimator under a condition of increas-
ing multicollinearity. Following Belsley et al. (1980), multicollinearity can be de-
tected in a meaningful way by means of a condition number computed as the 
square root of the ratio between the maximum and the minimum eigenvalues of a 
matrix X X  (not a moment matrix) whose columns have been normalized to a 
unit length. These authors found that the negative effects of multicollinearity be-
gin to surface when the condition number is around 30. A Monte Carlo experi-
ment was conducted to examine the behavior of the MSEL criterion under in-
creasing values of the condition number with a given sample size of 50T . The 
experiment’s structure is identical to that one associated with tables 1 and 2. The 
results are presented in table 3. 

The Leuven-1 estimator reveals a remarkable stability as the condition number 
increases. On the contrary, and as expected, the OLS estimator shows a dramatic 
increase in the MSEL levels for values of the condition number that can be easily 
encountered in empirical econometric analyses. The Leuven-2 estimator reveals a 
slightly less stable behavior although it seems to converge to the same level of 
MSEL achieved by the Leuven-1 estimator for higher values of the condition 
number. Also the Leuven-2 estimator outperforms the OLS estimator uniformly. 
The GME estimator was implemented in two versions with two different support 
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TABLE 3 

Monte Carlo experiment N. 1: model without intercept. MSEL of rival estimators 
for an increasing condition number. T=50, 100 samples 

Condition Estimators 

Number Leuven-1 Leuven-2 GME(-5,5) GME(-20,20) OLS 

       11 0.545 0.576 0.547 0.584     0.588 
       30 0.800 1.016 0.773 1.059     1.092 
       60 0.922 1.832 0.858 2.195     2.561 
     101 0.876 2.457 0.818 3.890     6.120 
     203 0.792 2.169 0.758 5.316   23.009 
     304 0.768 1.667 0.742 4.424   50.908 
     508 0.754 1.183 0.733 2.694 117.601 
  1,018 0.749 0.898 0.730 1.346 219.350 
  4,478 1.120 1.123 1.103 1.155 560.338 
42,187 1.126 1.133 1.108 1.109 601.108 

intervals of the parameters.1 The first version of GME, with narrow support in 
tervals, reveals a stability comparable to that of the Leuven-1 estimator. The sec-
ond version of GME, with wider support intervals, exhibits a significant increase 
in MSEL values. When the number of repeated samples was increased to 300, the 
results were very similar to those given in tables 1, 2 and 3. 

5. SCALING PROPERTIES OF MEL ESTIMATORS

With regard to scaling, the Leuven estimators are “invariant” to an arbitrary 
change of measurement units of the sample information in the same sense that 
the OLS estimator is “invariant” to a change of scale of either the dependent va-
riable or the regressors. In reality, a more proper characterization of the OLS and 
Leuven estimators under different scaling is that their estimates change in a 
known way due to a known (but arbitrary) choice of measurement units of either 
the dependent variable or regressors or both. Because of this knowledge, it is al-
ways possible to recover the original estimates obtained prior to the scale change 
and, in this sense, both the OLS and the Leuven estimators are said to be scale 
invariant. 

The proof of scale invariance for the Leuven estimators requires a discussion 
of the relevant KKT conditions because these estimators lack a closed form solu-
tion. The main line of reasoning runs as follows: if the KKT conditions corre-
sponding to two different and arbitrary scaling schemes of the sample informa-

1 Golan et al. in their 1996 book (Chapter 8) analyze the behavior of the GME estimator against 
the OLS estimator using the wrong notion of condition number. Although they quote Belsley et al.
(1980), their condition number is simply the ratio of the maximum to the minimum eigenvalues of 
the X X  matrix (not the square root of this ratio, as indicated by Belsley et al.). In their empirical 
analysis, they selected values of the condition number that varied from 1 to 100 which correspond 
to values of Belsley’s condition number from 1 to 10. Because multicollinearity begins to signal its 
deleterious effects when Belsley’s condition number is around 30, the discussion of Golan et al.
(1996) does not involve empirical problems that are ill-conditioned. The rapidly rising values of the 
MSEL detected for the OLS estimator are due to the rather small sample size (T=10) selected for 
their Monte Carlo experiment. 
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tion produce solutions that can be interchanged in the respective KKT condi-
tions by means of an arbitrary and known linear operator, the Leuven estimators 
are said to be scale-invariant. The KKT conditions for the Leuven-1 estimator 
corresponding to an unscaled model are given in system (5). 

Notice that the fourth equation of (5) involving only the variables u  and 
establishes the symmetric duality between error terms and the Lagrange multipli-
ers of the linear statistical model: in the unscaled Leuven-1 model, therefore, the 
Lagrange multipliers  are always twice as large as the estimated residuals. With 
such a general result, the fourth equation can be eliminated and the third equation 
of (5) can be rewritten as 

/LX u 0 . (10) 

We will regard the first two equations of system (5) plus equation (1) as repre-
senting the relevant KKT conditions for deriving the scale-invariance property of 
the Leuven-1 estimator.  

We now scale the dependent variable y  of the linear statistical model in equa-

tion (1) by an arbitrary but known scalar parameter R  and the matrix of regres-
sors X  by an arbitrary but known linear operator S  regarded as a non-singular 
matrix of dimensions ( )K K . Under this scaling scheme, the linear statistical 

model given by equation (1) assumes the following representation: 

1

1 * *

R R R

R R

y X u
S S

y X
S u

 (11) 

where *
S  and * /Ru u . The specification of the optimization model that 

will produce scale-invariant estimates of the Leuven-1 estimator can then be sta-
ted as 

2 * *min ( , , ) log( ) log( )H L L L Rp u p p u u  (12) 

subject to 

1 * *
R R

y X
S u

1 1* *L S S

1 1* * /Lp S S .
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If the scalar R  is equal to one and the matrix S  is taken as the identity matrix, the 
model specified in equation (12) is identical to the model exhibited in equation 
(3). We need to show that the KKT conditions of model (12) produce a solution 
of the scaled model that can be used to recover a solution of the unscaled model 
which satisfies the two KKT equations of system (5) plus equation (1). 

After setting up the Lagrangean function corresponding to model (12), the 
KKT conditions are derived as follows: 

1 1 2

1 1 1 1 1

2

log( )

* *log( ) 1 log( ) 1 0

* *2 2
*

*2
*

/ /

/

K

L L L L
L

L
R

R

p 0
p

S S p

X
S S S S S 0

u 0
u

L

L

L

L

 (13) 

Now, let us assume that the vector ˆ ˆ ˆˆ ˆˆˆ( , , , , , , )Lu p  represents a solution of 

the system of KKT conditions (13). We will show that this solution can be used 
to recover a vector of the same parameters that solves the first two equations of 
the KKT system (5) and equation (1). First of all, the first two equations of sys-
tem (13) have a structure that is identical to the structure of the first two equa-

tions of system (5). Hence, the values of ˆ ˆˆ , , Lp  and ˆ  that satisfy the first 

two equations of system (13) by assumption, satisfy also the first two equations of 

system (5). We can thus state that ˆ̂ ˆp p ,
ˆ̂ ˆL L , ˆ̂ ˆ  and ˆ̂ ˆ , where a 

double hat indicates a solution of the unscaled model. Furthermore, using the 

identity * /Ru u  we can obtain an estimate of the unscaled residuals as 
ˆ̂ ˆRu u  or ˆˆ ˆ /Ru u . The fourth equation of system (13) can then be re-stated 

as

2 2ˆ ˆ ˆ
ˆ̂

ˆˆ ˆ2 2 2R R R
R

u
u u 0  (14) 

to signify that the Lagrange multiplier in the scaled linear model is R  times as 
large as the corresponding Lagrange multiplier in the unscaled model since we 

know that, in unscaled models, 2u . We thus have 
ˆ̂ ˆ /R= . The solution 

value of the Lagrange multiplier ˆ  can be replaced by its equivalent expression 
[equation (14)] in the third equation of system (13) after pre-multiplying it by the 
matrix S  to obtain 
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1 1ˆ ˆˆˆˆ ˆˆ2 2 2 /R L
R

X
u S S 0 . (15) 

Finally, equation (15) reduces to equation (10) after using the identity *
S

from which we can obtain an estimate of the unscaled parameter  as 1ˆ̂ ˆS .

To be explicit, 

ˆ ˆˆˆ ˆˆ
ˆˆˆ ˆˆˆ /LX u 0  (16) 

by making use also of the equalities dealing with parameters ,L  and  as sta-

ted above. Equation (16) has the same structure of equation (10) and, further-
more, we have found an unscaled solution (based upon the solution of the scaled 
model) that satisfies it. This completes the proof of the scale-invariance property 
of the Leuven-1 estimator. 

In the OLS estimator, the parameter estimates are affected in a known way by 
arbitrary changes in the measurement units of both the dependent variable and 
the regressors (except for the special case in which both sets of variables change 
in the same way). On the contrary, the parameter estimates of the Leuven estima-
tors do not change for an arbitrary variation of the measurement units of the de-
pendent variables. They change only for a scale variation of the regressors. 

The scale invariant specification of the Leuven-2 estimator assumes the follow-
ing structure: 

min ( , , , ) log( ) log( ) log( ) log( )u u uH L L L L L L
u u u

p p p p p p  (17) 

subject to 

1 * *
R R

y X
S u

1 1* *L S S

1 1* * /Lp S S

2 * *
uL R u u

2 * * /u uR Lp u u .

The proof of scale invariance of the Leuven-2 estimator follows a line of reason-
ing that is similar to that developed for the Leuven-1 estimator. 
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6. CHANGE OF ORIGIN

The change of origin of the sample information (deviations from the mean, for 
example) produces two opposite results depending on whether or not the linear 
model has an intercept. For models without intercept, the parameter estimates of 
the Leuven estimators are invariant to a change of origin of the measurement u-
nits. In order to prove this result it is sufficient to show that a solution derived 
from a model whose sample information is defined in deviations from the mean 
satisfies also the KKT conditions of a model whose sample information is meas-
ured in natural units. The relevant KKT conditions of this latter model are given, 
again, by system (5). 

In order to set up a model defined in deviations from the mean, it is conven-

ient to define a deviaton operator T T
T

T
D I  that will generate a depend-

ent variable and regressors in deviations from their respective means. The vector 

T  has T  unit elements. The D  operator is an idempotent symmetric matrix. 

Operating on vectors y , u  and matrix X , the model in deviations from the 

mean is stated as 

min ( , , ) log( ) log( )H L L Lp u p p u u  (18) 

subject to 

Dy DX Du

L

/Lp .

The relevant KKT conditions of problem (18) are given by 

2

log( )

log( ) 1 log( ) 1 0

2 2

2

/ /

/

K

L L L L
L

L

p 0
p

p

X D 0

u D 0
u

L

L

L

L

 (19) 

Now, let us assume that the vector ˆ ˆ ˆˆˆ ˆˆ( , , , , , , )Lu p  represents a solution of 

the system of KKT conditions (19). By replacing D  in the third equation of 
system (19) by its equivalent expression given in the fourth equation of (19), the 
KKT conditions of the model in deviations from the mean have a structure that 
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is identical to the KKT conditions (5). Hence, the solution ˆ ˆ ˆˆˆ ˆˆ( , , , , , , )Lu p

of system (19) will satisfy also system (5). 
For models with intercept, the parameter estimates of the Leuven estimators 

are not invariant to a change of origin of the measurement units. This implies that 
the familiar practice of defining regressors and dependent variables in deviations 
from their mean is not admissible. The reason for this result depends upon the 
different dimension of the parameter space in the two specifications. The KKT 
conditions of the model estimated with an explicit intercept are articulated in six 
sets of relations (associated with 1 1, , , , ,G Gp Lp ub , where 1  is the intercept 

and G  is the vector of the remaining parameters) whereas the KKT conditions 

of the model defined in deviations from the mean exhibits only five sets of rela-
tions (associated with 1, , , ,G Gp Lp ub ). In other words, in models with intercept, 

the parameter space collapses by one dimension when the sample information is 
defined in deviations from the mean and no information is available to recover 
the parameter of the lost dimension.2 The same reduction in the dimension of the 
parameter space occurs also in the OLS estimator but with it there exists a spe-
cific relation (based upon average sample information) that recovers the “miss-
ing” parameter 1 .

7. MODELS WITH INTERCEPT

The Monte Carlo experiment presented above dealt with a model without in-
tercept. The nature of an intercept in a linear statistical model is different from 
the nature of all the other slope parameters. While slope parameters may be in-
terpreted as elasticities (in a double logarithmic model), the intercept term is a 
catch-all parameter related, for example, to regressors that, for lack of sample in-
formation, are assumed to be kept at some unknown constant level. In principle, 
completely specified econometric models have no intercept since the great major-
ity of economic relations (cost, profit, demand, and supply functions), are homo-
geneous (of either degree one or zero). In reality, many empirical econometric 
studies present large intercept values that are order of magnitude larger than the 
value of the remaining slope parameters. Aside from ignorance about relevant re-
gressors, a large value of the intercept suggests that the dependent variable was 
not scaled properly. Whatever the reasons for the presence of an intercept, we 
now assume a model with an intercept that is order of magnitude larger (in abso-
lute value) than the other slope parameters. In this case, it is convenient to sepa-
rate the intercept from the other parameters and to define the probability relation 
only for these slope parameters. The intercept is regarded as the first parameter 

1 . Then, the Leuven-1 estimator of this model with intercept is stated as 

2 Presumably, the same result applies to the GME estimator. In this case, the variant of the 
GME estimator proposed by van Akkeren and Judge (2000) is in jeopardy when dealing with mod-
els that exhibit an intercept because its implementation depends on defining the regressors and the 
dependent variable in deviations from the mean. 
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2

2
min ( , , ) log( ) log( )

k k

K

t
k t

H L p p L L up u  (20) 

subject to 

1
2

K

t tk k t
k

y x u

2

2

K

k
k

L

2 /
k

kp L

with 0
k

p , 2,..., ,  1, ...,k K t T . As we will illustrate by means of a second 

Monte Carlo experiment, the Leuven-1 estimator specified in (20) performs very 
well when a large intercept is present. A similar specification can easily be ex-
tended to the Leuven-2 estimator. 

The second Monte Carlo experiment was generated by the following DGP: 
There are ten parameters 0k , 1, ...10,k  and 01  is considered the intercept 

with a true value of 15. Each remaining parameter 0k , 2,...,10k , was drawn 

from a uniform distribution [ 2,3]U . Each element of the matrix of regressors 

X  (other than the first column which has all unit values) was drawn from a uni-
form distribution [1,10]U . Finally, each component of the disturbance vector u

was drawn from a normal distribution 2
0(0, ) (0,4)N N . With this specifica-

tion, the dependent variable y  was measured in units of tens, ranging from 10 to 

100. One hundred samples of size =50T  were replicated. The GME estimator 
was implemented with discrete support intervals for the parameters and the error 
terms selected as [-20,0,20] and [-10,0,10], respectively. The condition number 

(CN) of the X  matrix is given for each sample size. 

TABLE 4 

Monte Carlo experiment N. 2: model with intercept. MSEL and squared bias of rival 
estimators for an increasing condition number. T=50, 100 samples 

Estimators CN=23 CN=55 CN=135 CN=539 CN=898 CN=2,692 

MSEL 
Leuven-1   4.862   3.780   4.460   4.606     4.593     4.573 
Leuven-2   5.023   3.952   5.312   5.217     5.016     4.843 
GME 15.508 13.707 15.916 15.891   15.014   14.966 
OLS   5.061   4.253   8.972 93.053 212.582 488.583 

Squared Bias 
Leuven-1   0.0053   0.5368   1.2814   1.5419   1.5368   1.5206 
Leuven-2   0.0130   0.1260   0.6595   1.6257   1.6628   1.6333 
GME 12.8909 10.9858 10.8893 11.6888 12.0451 12.3789 
OLS   0.0187   0.1401   0.2251   1.8467   6.5685 32.5240 
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The main information presented by table 4 is that, given the DGP of this 
Monte Carlo experiment, the GME estimator exhibits MSEL values that are three 
times as large as the Leuven estimators. Furthermore, the levels of squared bias of 
the GME estimator are very large in comparison to those of the Leuven estima-
tors. This evidence suggests that, in the presence of a model with a large value of 
the intercept (relative to the value of the other slope parameters), the use of the 
GME estimator may be unnecessarily too risky. Considerable level of risk can be 
avoided in this case by using one of the Leuven estimators. The OLS estimator 
outperforms the GME estimator for levels of multicollinearity associated with a 
condition number smaller than 150. 

8. CONCLUSION

The class of MEL estimators is inspired by the theory of light and rivals the 
GME estimator of Golan et al., (1996) by performing very well under the MSEL 
risk function while avoiding the requirement of subjective exogenous information 
that is a necessary component of the GME estimator. In a specific Monte Carlo 
experiment they outperform the GME estimator when a model has an intercept 
measured by orders of magnitude larger than the other slope parameters. The 
Leuven estimators are invariant to a change of scale in the sense of the OLS es-
timator. Furthermore, they are consistent and asymptotically normal. 

In comparison to the GME estimator, the class of Leuven estimators is parsi-
monious with respect to the number of parameters to be estimated. For example, 
the solution of the Leuven-1 estimator has (2 + )K T  components ( K  parameters 

k , K probabilities
k

p , and T  error terms tu ). The solution of the GME es-

timator for a similar model has ( + )MK GT  components, where M  is the num-

ber of discrete supports for the parameter k  and G  is the number of discrete 

supports for the error term L . The empirical GME literature indicates that, in 

general, =5 M  and =3G .
The Leuven estimators appear to succeed where the ridge estimator failed: 

Under any levels of multicollinearity, the Leuven estimators uniformly dominate 
the OLS estimator according to the mean squared error criterion. For small sam-
ples ( =50)T  or ( =100)T , the Leuven estimators produce estimates that are dif-

ferent from those of the OLS estimator. These estimates are radically different 
under multicollinearity as the MSEL of the Leuven estimators is stable and very 
small relative to the MSEL of the OLS estimator. 
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APPENDIX 

The goal of this appendix is to prove that the Leuven-1 estimator is consistent 
and asymptotically normal. The strategy is based upon the realization that, in the 
limit, the objective function of the Leuven-1 estimator converges to the limit va-
lue of the objective function of the OLS estimator. This implies that the Leuven-
1 estimator converges to the OLS estimator. 

The Monte Carlo experiment N. 1 reported above provides empirical evidence 
that the Leuven-1 estimator might be consistent and asymptotically unbiased. 
Since it is well known that the OLS estimator is consistent and asymptotically 
normal, it will be sufficient to show convergence of the Leuven-1 estimator’s ob-
jective function to the limit value of the OLS objective function in order to attain 
our stated goal. In other words, we will demonstrate that the sequence of random 
variables representing the objective function of the Leuven-1 estimator converges 
to the limit value of the objective function of the OLS estimator as the sample 
size tends to infinity. The simplest way to obtain this result is to make sure that 
the model’s parameters of the Leuven-1 estimator are bounded by finite values so 
that, when the sample size will tend to infinity, the probability limit of certain ex-
pressions in the objective function will tend to zero. We must recall that the Leu-
ven-1 estimator does not have a closed form solution and, therefore, the structure 
of the Leuven-1 estimator is given by its nonlinear optimization program or, 
equivalently, its set of KKT conditions. For convenience we restate the Leuven-1 
estimator and its associated KKT conditions: 

2min ( , , ) log( ) log( )
k k

t
k t

H L p p L L up u  (21) 

subject to 

t tk k t
k

y x u t  (22) 

2 /
k

kp L k  (23) 

2
k

k

L  (24) 

with 0
k

p , =1, , , =1, ,k K t T , and where t , k  and  are Lagrange mul-

tipliers of the corresponding constraints. We will assume that the above specifica-

tion follows from a specific DGP where 2
0~ (0, )tu N .

In order to establish finite bounds on the parameters and the Lagrange multi-
pliers we need to state the KKT conditions of this problem: 
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log( ) 1 0
k

k

k

p
p
L  (25) 

2 2log( ) 1 log( ) 1 0/ /
k

k k k
k k

L L L p L
L
L  (26) 

22 2 0/tk t k k k
tk

x LL  (27) 

2 0t t
t

u
u
L . (28) 

Now we assume that, for any randomly selected sample of data, a feasible 
solution exists for both the primal and dual problems. This means that the 
Leuven-1 estimator has an optimal solution and all the unknown variables 
are bounded away from infinity. Then, from (23) and (24) we have 

2 2
1 1 1/ 1

k

K M K
k k jk jp  while, from (25), each probability 

k

p  is strictly 

positive since (1 ) 0k

k

p e  and since the Lagrange multiplier k  is bounded 

by the assumption of a feasible primal problem. Hence, we conclude that 

1 0
k

p  (29) 

for each 1,...,k K . Using (23) again, we also conclude that each term 2
k  can-

not be equal to zero and cannot assume the value of infinity because either event 
violates relation (29). The second part of this result is equivalent to an upper 
bound on the parameter L .

Having established finite bounds on every component of the Leuven-1 estima-
tor, we are ready to take the probability limit for T  of the entropy criterion 
(21) and prove the proposition that 

1 1lim ( , , , ) lim ( , )T T T T T T T T

T T

p T H L p T SSRy p y  (30) 

where 2( , ) ( )T T T T K
t kt tk kSSR y xy  represents the sum of squared re-

siduals of the linear model (22). The superscript “T ” on every argument of (30) 
indicates its dependence on the sample sizeT . We thus have 

1

1
lim log( ) 0

K
T T
k k

kT

p T p p

1lim log( ) 0T T

T

p T L L  (31) 

1 2 2
0

1
lim

T

t
tT

p T u
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This result demonstrates that the probability limit of the entropy objective func-
tion (21) converges to the limiting value of the objective function of the OLS es-
timator, QED. Thus, the asymptotic properties of the OLS estimator carry over 
to the Leuven-1 estimator. A similar development can be elaborated for the Leu-
ven-2 estimator. 

RIASSUNTO

Stimatori di Leuven di massima entropia e multicollinearità 

Si presenta una nuova classe di stimatori, denominati stimatori di Leuven di massima 
entropia (MEL). Tali stimatori sono consistenti e asintoticamente normali. Essi sono ispi-
rati alla teoria della luce. Gli stimatori MEL rivaleggiano con lo stimatore di massima en-
tropia generalizzata (GME). Usando il criterio dello scarto quadratico medio, tali stimatori 
sono superiori allo stimatore dei minimi quadrati quando l’informazione campionaria è 
affetta da multicollinearità. 

SUMMARY

Maximum entropy Leuven estimators and multicollinearity 

A novel class of estimators, called maximum entropy Leuven (MEL) estimators, is pre-
sented and its performance is illustrated by Monte Carlo experiments. These estimators 
are inspired by the theory of light. The MEL estimators are consistent and asymptotically 
normal. They rival the generalized maximum entropy estimator (GME). Based on the 
mean squared error criterion, the MEL estimators outperform the ordinary least-squares 
estimator in the presence of multicollinerity. 


