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1. ASSUMED MODELS DO NOT NEED TO BE TRUE

A major feature of Diimbgen’s and Davies’s (DD) paper (Diimbgen and Davies, 2024)
is the provision of probabilistic theory for least squares regression that does not rely on
any model assumptions concerning a data generating process (DGP) behind the data. P-
values of the classical F test, based on model assumptions including linearity and Gaus-
sian errors, are given a model-free meaning.

Although the discussion paper itself does not criticise the model-based approach very
explicitly, Laurie Davies does so in closely related work (Davies, 2024), where he argues
that it makes little sense for statisticians to behave as if a certain probability model were
true given that they know perfectly well that “all models are wrong” as George Box
stated.

In Hennig (2023) I advocate an attitude to statistical models that acknowledges ex-
plicitly that such models are potentially helpful thought constructs, and that their job
is not to be “true”. Different from DD, however, my focus is on a re-interpretation of
the classical results involving assumptions regarding the DGPs that brought forth the
observations, whereas DD’s model-free view uses a probability distribution to create
artificial random variation that is separated from the observed data.

Having classical theory based on model assumptions regarding methods of statistical
inference does not mean that we need model assumptions to be “true” in reality. It rather
means that we can investigate the workings of the methods in an artificial benchmark
situation in which we can control the mathematical truth that a method is meant to get
at. Even though the model assumptions will not hold in reality, it is reasonable to use
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methods that are guaranteed to perform well in such an idealised situation. Such theory
has also been very stimulating for the creation of statistical methodology, often through
optimisation.

Of course a theoretical performance guarantee of a method under certain model
assumptions does not guarantee a good performance where the model assumptions do
not hold, and it is rather subtle and strongly dependent on the situation whether such
a method will perform well or not. But in any case the model-based theory contributes
to the understanding of the method’s characteristics in a valuable way.

Model-based simulations as used in Sec. 3.3 of DD’s paper are informative in the
same way; even though DD derive theory that does not come with model assumptions
for the DGP, it is of interest to ask how well a method performs in a situation where we
know what it should optimally do, and statistical models just provide such situations.
Without assuming “true” parameter values, for example there is no such thing as a type
I or type II error or mean squared error, but these concepts help to measure how well
our methods do.

2. INTERPRETATION OF EQUIVALENCE REGIONS AND CONFIDENCE SETS

It is a well known issue with confidence sets that the confidence level 8 =1—a isa per-
formance characteristic referring to repeating the real experiment of interest infinitely
often, which in reality of course cannot be done.

After observing data x, say, even assuming that a true parameter ¢ exists, the proba-
bility that 0 is in a confidence set C5(x) is not 3, although practitioners tend to interpret
it like that.

DD do not define equivalence regions in a fully general manner, they rather present
examples. In general I guess that their interpretation should be something like this
(Cp(x) denotes the equivalence region here):

Let {Py,0 € O} be a set of parametric distributions with parameter set ©. W.lo.g. let
the statistic S be a non-negative function of x and 6 so that smaller values of S indicate a
better “fit” (in some sense to be defined) of x by Py. Let Cs 4 5 =[0,q4 5] with B-quantile
q9,3 of Py» i.e., Py(Cs 4 5) = .

Then, 0 € C(x) means that S(x,0) € Cg g 5. This indicates that Py fits x so well that
x looks like a “realistic” outcome (at level [3) if Py were the DGP.

Some observations:

e Note that this actually does refer to Py as potential DGP for x. It is still “model-
free” in the sense that x is treated as fixed and no DGP or “true §” is assumed to
have generated x.

e This is probably somewhat hard to grasp for the non-expert.
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o It does not involve infinite repetition of a real experiment.

e It also is a valid interpretation for many classical confidence intervals, namely
those based on statistics S of the given kind.

o Inearlier work Davies (2014) used the terms “adequacy region” or “approximation
region”. It seems to me that these capture the meaning somewhat better than
“equivalence region”.
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