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SUMMARY

This additional material was presented by the author during the discussion meeting on the pa-
per by Dümbgen and Davies (2024), held on October 24, 2024, at the Department of Statistical
Sciences, University of Bologna.

1. TRUTH

Truth is an essential part of statistical inference, almost all concepts of statistical infer-
ence are truth dependent. Examples are hypothesis testing, p-values and confidence in-
tervals. The most cited paper of the JRSS B is Benjamini and Hochberg (1995), where the
false discovery rate is based on hypotheses being either ‘true’ or ‘not-true’ The Bayesians
are not immune, the title of Fraser et al. (2016) is “Reputability and the quest for truth”.

Although statistical models are much too simple to be true, it is common practice to
behave as if they are true, that is, as if the data were generated as described by the model.
This implies true parameter values and these should be estimated as precisely as possible
leading to the use of optimal estimation procedures. This is standard practice and called
by Tukey the “assumed (revealed?) truth” approach (Tukey (1993d)).

2. TRUTH AND ONTOLOGY

Truth depends on existence or being and ontology is the philosophical study of existence
or being; see Merricks (2007) and the resulting discussions in various philosophical jour-
nals. The ontological question of the existence of true parameter values is never posed
in statistics, not even in the ASA statement on P -values:

https://www.amstat.org/asa/files/pdfs/P-ValueStatement.pdf
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If it were to be posed the answer would in general be negative. It could be argued that
there is a true value of the gravitational constant. Gravitational attraction and Hooke’s
law are essentially linear in Cavendish’s experiment giving an example of a linear regres-
sion with true values Falconer (1999).

In contrast the production of riboflavin using bacteria is a complicated biological
process and the model of the logarithmic rate of increase of riboflavin as linear function
of a sparse subset of the gene expressions is simply false. In spite of this P -values and
confidence intervals, both truth based concepts, are calculated as a matter of course for
this and other data sets, see Dezeure et al. (2015).

3. APPROXIMATION

John von Neumann (von Neumann (1947))

“I think that it [mathematics] is a relatively good approximation to truth
- which is much too complicated to allow anything but approximations.”

The expression “assumed (revealed?) truth” is to be found in Tukey (1993d). This was
Tukey’s response to an early version of Davies (1995), the first paper the author wrote
from the approximation point of view. Tukey writes:

“Davies’s emphasis on approximation is well chosen and surprisingly
novel. While these will undoubtedly be a place for much careful work in
learning how to describe the concept - - and its applications - - in detail, it is
clear that Davies has taken the decisive step by asserting that there must be a
formal admission that adequate approximation, of one set of observable (or
simulated) values by another set, needs to be treated as practical identity.
If, as is so convenient, we continue to use continuous models to describe
- - or perhaps only to illuminate - - observed data, we should have to say
that certain aspects of the data - - not typically, but unavoidably, including
“Most (modelled) observations have irrational values!”- - are not to be used
in relating conceptual (or simulated) samples to observed samples. Thought
and debate as to just which aspects are to be denied legitimacy will be both
necessary and valuable.”

3.1. A formalization

The concept of approximation in Davies (1995, 2014, 2018a) is the following. Given a
model PΘ generate a sample the same size as the data with a specific value θ0 of Θ and
then compare the real sample with the simulated samples. The comparison compares
the values of certain chosen features of data sets generated under the model with the
values of the same features of real data. As Tukey pointed out above, the irrationality of
data under the model will be denied legitimacy.
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A formalization is given in Chapters 2.2 and 2.3 of Davies (2014). The following is
for the specific case of the i.i.d. N (µ,σ2) model for real data. The first decision is to
decide on the statistics to be used. Suppose the standard deviation s d (x) of the data x is
chosen. Then under the model N (µ,σ2) the statistic (n−1)s d (X )2/σ has a chi squared
distribution with n− 1 degrees of freedom. Given this a lower bound Ls d and an upper
Us d can be calculated such that Ls d ≤ s d (X )/σ ≤ Us d with probability α. The value of
s d (x) for the data is regarded as consistent with σ if Ls d ≤ s d (x)/σ ≤Us d . Turning this
around gives the values of σ s d (x)/Us d ≤ σ ≤ s d (x)/Ls d which are consistent with the
data x . This is as in Section 1.4 of Davies (2014) but with the standard deviation instead
of the mean.

The standard deviation has a weakness, it is very sensitive to outliers. This can be
rectified using the median absolute deviation, the MAD. There is no exact expression
for the distribution of the MAD but it is asymptotically normal (see Segers (2014)). Sim-
ilarly the median is used and not the mean. Outliers can be included by considering the
maximum absolute deviation from the median. Finally the shape of the data can be in-
cluded using the Kuiper metric Kuiper (1962). In all four features of the data have been
taken into account. The approximation region consists of all (µ,σ) which are consis-
tent with the data for all four features. Spending α probability on each leads to (3+α)/4
being spent on all four. Replacing α by (3+ α)/4 guarantees that the probability, that
(µ,σ) lies in the approximation region for data generated under (µ,σ), is at least α.

3.2. Examples

3.2.1. The normal distribution
The data used in Figure 1 are the study times in semesters of 258 students. The histogram
is the upper figures of Figure 1. The models are i.i.d. N (µ,σ2). The lower figure shows
the 0.95 approximation region based on the features in the last paragraph. The # denotes
the standard deviation and mean of the data. which in this case do not belong to the
approximation region. A further paper on approximation is Davies (2018b) in an issue
of Statistica Sinica dedicated to the memory of Peter Hall.

For an excellent example of comparing data with simulations see Chapter 5.7 of Hu-
ber (2011) on “Modelling the length of the day”; an interplay of inspection, modelling,
simulation, comparison, model fitting, parameter estimation and interpretation. See
also Chapter 5.8 “The role of simulation” and Figure 1.7 of Davies (2014) for a compar-
ison using box plots.
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Figure 1 – The histogram and approximation region 258 student study times. The # in the bottom
figure is the standard deviation and mean of the data.

3.2.2. Non-parametric regression

The second paper on approximation Davies and Kovac (2001) was concerned with con-
trolling the number of peaks in non-parametric regression. The data were X-ray refrac-
tion data for thin films provided by Dieter Mergel, Department of Physics, University
Duisburg-Essen. The idea is as follows. Given data y(ti ) =, i = 1, . . . n with the ti ∈ (0,1)
ordered the model is

y(ti ) = f (ti )+σε(ti ), (1)

where ε is standard Gaussian white noise. For a given function fn form the residuals
rn(ti ) = y(ti )− fn(ti ). Supposing for the moment the n = 2m and calculate the multi
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resolution coefficients

w j ,k = 2− j/2
(k+1)2 j
∑

i=k2 j+1

. (2)

The residuals may be adequately approximated by white noise if

|w j ,k | ≤ σn

p

2.5 log n, (3)

where σn is an estimate of σ with default value

σn =
1.48
p

2
Median{|y(t2]− y(t1)|, . . . , |y(tn)− y(tn−1)|}. (4)

The goal is to minimize the number of local extremes of fn subject to (3). This can be
done and the function can be smoothed by minimizing the total variations of the first
and second derivatives, the third leads to numerical errors; see Kovac (2007); Dümbgen
and Kovac (2009) and the relevant R package ftnonpar which has been archived. The
algorithms are very fast, less than 0.3 seconds for the whole data set of length 7001.
The first row of Figure 2 shows the raw data and the function which minimizes the
number of peaks for the first 2000 data points. The second row shows the functions
which minimize the total variation of the second and third derivatives subject to the
constraints of the peaks. The total variation of the third derivative was minimized using
linear programming; it is very slow, requiring about 14 minutes.

3.3. Confidence regions and bands

A confidence region contains the true parameter values with a specified probability. For
real data there are no true parameter values and the concept is meaningless. In contrast
an approximation region specifies those parameter values which give an adequate ap-
proximation in a precisely defined sense to the data. This set may be empty.

Similarly in non-parametric regression a confidence bound makes no sense, there is
no true function, there are only functions which approximate the data as in Figure 2.

4. GAUSSIAN COVARIATES

The concept of approximation in Section 3 cannot be used for linear regression because
of (i) the large number of parameters and (ii) the lack of a definition of what an acceptable
approximation is.

In Chapter 11.6 of Davies (2014) logistic regression is considered using the low birth
weight data of Hjort and Claeskens (2003); Claeskens and Hjort (2003). In Davies (2014)
an acceptable approximation is one with no irrelevant covariates. Relevance is opera-
tionalized in terms of P-values and they in turn are defined by replacing the covariates
by random covariates as in the Gaussian covariate approach. In contrast to the Gaussian
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Figure 2 – X-ray refraction data for thin films provided by Dieter Merge, Physics, Universityät
Duisburg-Essen.
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covariate approach however, the random covariates were chosen to model the covariates
they replace, for example, a 0-1 dummy covariate was modelled a binomial random vari-
able. There were only 11 covariates and the method as such could not be extended to
high dimensional data.

More thought on high dimensional regression lead to the concept of a Gaussian
P -value. Given a subset S a covariate x i ∈ S is replaced by a Gaussian covariates Z .
On denoting by rssS the sum of squared residuals when the dependent variable y is re-
gressed on all covariates in S , by rssS\x i

when y is regressed on all covariates in S exclud-
ing x i and by RSSZ∪S\x i

when y is regressed on Z and all covariates in S but exclud-
ing x i . The Gaussian P -value of x i is the probability that Z is better than x i , that is
PG,S (x i ) = P (RSSZ∪S\x i

< rss). The first attempt at a theory was based on somewhat in-
tuitive mathematics. The paper was sent to Lutz Dümbgen, who replaced the intuitive
mathematics by theorems and proved

RSSZ i∪S\x i
/rssS\x i

∼ Beta((n− k)/2,1/2), (5)

where k is the size of S and Beta((n − k)/2,1/2) denotes the Beta distribution with
(n− k)/2,1/2) degrees of freedom. It is Lemma 1 of Dümbgen and Davies (2023) with
p0 = p − 1. The proof is about two pages long. All the work in Dümbgen and Davies
(2023) is due to Lutz Dümbgen. A proof based on Cochran’s theorem has been given
by Joe Whittaker (Whittaker (2015)). This is the most important result in the theory of
Gaussian P-values as it implies that the distribution is independent of the data, the subset
S and the covariate x i . In other words, it is universally valid. The Gaussian P -value is
given by

PG,S (x i ) = Beta(n−k)/2,1/2(rssS/rssS\x i
), (6)

which inherits the universal validity of (5). From (6) it follows that

PG,S (x i ) = PF ,S (x i ), (7)

where PF ,S (x i ) is the standard F distribution P -value. Both P -values are deduced from
a standard Gaussian variable. In the case of Gaussian P -values it is Z , in the case of F
P -values it is ε in the standard model

y =
∑

i

βi x i +σε. (8)

The F P -value also requires that the covariates x i are given, are independent of ε and
that the data were in fact generated under the model (8). Thus F P -values are valid only
for carefully designed simulations whereas Gaussian P-values are universally valid.

5. APPROXIMATION BASED INFERENCE

5.1. Approximation regions

An approximation base statistical inference will contain no truth based concepts such
as F distribution P-values, confidence regions, likelihood, consistency, efficiency. In
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Section 3 approximation regions require a P-value, the probability that a random sample
generated under the model is accepted as being generated under the model as defined by
the approximation, see Davies (2018b). The idea can be extended: an approximation
region for the difference of the means of two samples is given by the differences of the
means in the corresponding approximation regions. This requires a model to perform
the simulations.

In Chapter 5 of Davies (2014) the location-scale is addressed without an explicit
model. The approach is a functional one where location and scale values are defined
by M-estimators: outliers are explicitly allowed. The discussion in Davies (2014) is not
satisfactory but it does make the case for Fréchet differentiability, equation (5.18) of
Davies (2014). Given data Pn one could specify a Kuiper metric ball of size δ and then
defined the approximation region as the set of all (µ,σ)which are the location-scale val-
ues for some probability measure P with dk u (P,Pn) < δ.. The choice of δ reflects the
range of plausible samples.

For linear regression the situation is more complicated. A valid approximation is
the least squares approximation when all Gaussian P-values are less than p0. Altering
the least squares coefficients by a sufficiently small amount will also give a valid approx-
imation. The author has some ideas how this can be done but the work is unpublished.

6. INDOCTRINATION

In the Cambridge English Dictionary we read:

indoctrination : the process of repeating an idea or belief to someone
until they accept it without criticism or question

The first paper the author wrote on approximation is Davies (1995). It was rejected
several times, in all there were about 12 referees’ reviews of which only one was positive.
Richard Gill, the editor of Statistica Neerlandica at the time , had two negative reviews
and one positive. He published in any case.

Various versions of the present paper have also had multiple rejections, about eight
in all including twice by the AoS and twice by the JRRS B . One Associate Editor of
the AoS was at complete loss as were five statisticians who reviewed for the JRSS, they
asked what the point of it was. It was also sent to several statisticians working in the
area of high dimensional regression. Apart from Lutz Dümgen (see above) there was no
response apart from emails thanking me for sending it.

In contrast to all this, two of the world’s most eminent statisticians, John Tukey
and Peter Hall, responded very positively. A first version of Davies (1995) was sent to
Tukey who replied with the four papers Tukey (1993b), Tukey (1993d), Tukey (1993c)
and Tukey (1993a). Part of Tukey (1993d) is cited in Section 3. I had several conversa-
tions with Peter Hall about statistical inference with the result that he arranged Davies
(2008).

A student studying statistics will learn the “assumed (revealed?) truth” concepts of
statistics, hypothesis testing, confidence intervals, significance, Bayesian statistics, prior



Statistics: Truth, Ontology, Approximation, Honesty and Indoctrination 91

distributions, likelihood, AIC, BIC and so on, and this is all they will learn. Exercises
and examinations will be formulated using these concepts and these concepts alone. De-
grees will only be awarded to candidates who use this language, papers will only be
accepted which are written in this language, and the successful students will have their
own students and so on. At no point will there by any criticism or questioning All this
is reflected in the language of statistics. In other words they have been indoctrinated,
see above.
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