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1. DISCUSSION

Dümbgen and Davies (2024) propose a fascinating new framework that leverages ran-
dom rotations and exact Beta distributions to tackle the problem of separating signal
from noise in matrix data. The presentation highlights several key aspects of their
methodology and offers intriguing connections to both classical and modern statisti-
cal tools. A central theme of the paper is the notion of using random rotations as am
alternative to the more traditional permutation-based tests. These random rotations can
reveal how subspace alignments (or angles) between an estimated signal and the truth be-
have under the null hypothesis, leading to exact or near-exact Beta distributions for cer-
tain traditional test statistics. This is particularly remarkable because permutation tests
are themselves widely respected for their exactness under exchangeability assumptions
and yet the proposed tests based on rotations often provide a compelling, theoretically
elegant alternative.

Beyond that, the emphasis on angles — e.g., the use of principal angles or directional
angles between estimated and true signals — underscores an under-appreciated aspect of
statistical inference. While singular value decomposition (SVD), principal components,
and related methods are mainstays, explicit angle-based inference has not received com-
mensurate attention. The paper argues that systematically studying these angles can
offer clearer insights into how accurately estimated subspaces align with the true un-
derlying structure of data. This is especially relevant in large-scale, high-dimensional
problems in bioinformatics and machine learning, where one seeks to distinguish gen-
uine patterns (low-rank signal) from noise.

1 Corresponding Author. E-mail: jan.hannig@unc.edu

https://doi.org/10.60923/issn.1973-2201/22034


94 J. Hannig

My question is whether the work can be extended to improve on common approaches
in matrix denoising and low-rank approximation (e.g., via shrinkage estimators of sin-
gular values). I can see at least two current approaches to this problem that may benefit
from having a closed form null distribution of a test statistics. The first is the Jackstraw
procedure Chung and Storey (2014), which tests the significance of traits (rows) in the
SVD using permutations of selected raws of data. Jackstraw can be computationally
expensive especially when the analyzed dataset is large, as is the case in genomics ap-
plications. However, there is no inherent need to favor permutation over rotation and
rotation based version of Jackstraw could be very useful.

The second problem in this space is estimating the perturbation angle. Assume that
we have X=A+E, where X is observed data matrix, A is a low rank signal matrix and
E is a full rank noise matrix. Let Â be estimator of A obtained by truncated SVD. While
the problem of estimating singular values of A is well studied and solved by shrinkage
Gavish and Donoho (2014) the angular deviation of Â from A is less understood. The
main theoretical contributions are due to Cai and Zhang (2018); Wedin (1972). However
these results can be quite conservative for use in statistical uncertainty quantification.
An angle bootstrap approach was proposed by Prothero et al. (2024) where one simu-
lates new data by randomly rotating the estimated signal components while preserving
the structure of the residuals. While this somewhat mitigates the heavy computational
demands of full permutation tests and does not rely on normality assumptions, it still
can be quite computationally costly. The question is, whether there is a closed formed
formula similar to the magic beta formula in this case.

2. CONCLUSION

Dümbgen and Davies (2024) provide a fresh perspective on signal extraction and uncer-
tainty quantification in high-dimensional data matrices. Their emphasis on geometry
— specifically angles and subspaces — offers both theoretical depth and computational
practicality. The interplay between exactness (through Beta distributions) and resam-
pling (via random rotations) opens up a rich avenue of research. Not only do these
ideas complement classical hypothesis testing methods, they also suggest new frontiers
in statistical inference where geometry, randomization, and computational efficiency
can jointly yield more transparent insights.

I look forward to seeing how this line of work evolves. In particular, it will be in-
teresting to track whether the angle-based bootstrap machinery spurs further method-
ological developments, or finds immediate traction in applied fields like bioinformatics,
image processing, and latent space modeling. In any case, this paper underscores just
how pivotal angles and rotations can be in statistical problems — a notion that will likely
spark significant and sustained interest in the years to come.
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