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Dümbgen and Davies (2024) provided analytical p-values for testing specific null hy-
potheses under linear models, which are of practical importance. In this discussion, we
examine a feature of p-values that could lead to conflicting conclusions within the frame-
work of linear models. The authors introduced the full model in their Equation (1) and
demonstrated that the p-value to test the hypothesis

Hpo
:β j = 0, for po < j ≤ p, (1)

is p-value(Hpo
,y) = B(n−p)/2,(p−po )/2

� ‖y−ŷ‖2

‖y−ŷo‖2

�

, where po , Ba,b , ‖ · ‖, ŷ and ŷo are defined
in the main paper. Consider two nested null hypotheses, namely, Hpo1

and Hpo2
, where

po1
< po2

. For instance, take p = 3, po1
= 1 and po2

= 2, then Hpo1
: β2 = β3 = 0

and Hpo2
:β3 = 0. The hypothesis Hpo1

imposes a more stringent constraint than Hpo2
,

since if β2 = β3 = 0, then it necessarily follows that β3 = 0 must also be true. That
is, given the same data, the observed evidence against Hpo1

must be at least as strong as

the observed evidence against Hpo2
. Measures that adhere to this logical reasoning are

said to be monotone. P-values often fail to uphold this reasoning (Schervish, 1996; Pa-
triota, 2013, 2017). In the context of linear models discussed in Dümbgen and Davies
(2024), we introduce a dataset (Table 1) with three regressors and ten observations.
From our data, the p-values for testing Hpo1

: β2 = β3 = 0 and Hpo2
: β3 = 0 are

p-value(Hpo1
,y) = 11.7% and p-value(Hpo2

,y) = 4.5%, respectively, illustrating a vio-

lation of monotonicity. These results paradoxically suggest stronger evidence against
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TABLE 1
The dataset with three regressors and ten observations.

y 0.55 0.26 3.93 1.21 1.89 3.09 2.46 1.55 2.63 1.86
x1 1 1 1 1 1 1 1 1 1 1
x2 2.37 -2.34 3.54 -0.26 5.69 -1.38 -1.34 3.03 -4.12 -5.19
x3 0.10 2.63 -2.35 3.55 1.08 -3.76 -4.76 1.78 0.88 0.84

reducing the model to ‘β1x1 +β2x2,’ than to just ‘β1x1’, posing interpretative chal-
lenges for practitioners.

To circumvent this issue, one might consider the s-value proposed by Patriota (2013).
This discussion outlines a partial solution where practitioners avoid joint testing of β
with σ2, treating σ2 as a nuisance parameter. From the derivation in Dümbgen and
Davies (2024), the p-value for testing the null hypothesis

H{β0} : β = β0 (2)

is given by p-value(H{β0},y) = B(n−p)/2, p/2

� ‖y−ŷ‖2

‖y−ŷβ0‖2

�

, where ŷβ0 =
∑p

j=1β
0
jx j . The

following alternative measure for testing the general null HC : β ∈ C , which is called
s-value in (Patriota, 2013), resolves the above logical contradiction:

s-value(HC ,y) = sup
β0∈C

p-value(H{β0},y), with C ⊆Rp , C 6=∅.

Observe that s-value(HC ,y) = B(n−p)/2, p/2

� ‖y−ŷ‖2

‖y−ŷC ‖2

�

, where ŷC = argminβ∈C ‖ y −
∑p

j=1β
0
jx j ‖2. The s-value was originally derived from confidence regions, representing

the smallest significance level (one minus the confidence) at which C intersects with the
confidence region. It is a possibility measure over the class of hypotheses and, in general,
under any hypothesis involving only β, the probability that the s-value is less than α ∈
(0,1) does not exceed α (see, e.g., Patriota and Alves, 2021). S-values are generally more
conservatives than p-values, i.e., s-value(HC ,y)≥ p-value(HC ,y). From the above data,
the s-values for testing Hpo1

and Hpo2
are s-value(Hpo1

,y) = 20.6% and s-value(Hpo2
,y) =

20.7%, respectively, maintaining a coherent conclusion. Given its broad applicability to
other scenarios, what could prevent practitioners from adopting this measure?
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