DISCUSSION OF THE PAPER "CONNECTING MODEL-BASED AND MODEL-FREE APPROACHES TO LINEAR LEAST SQUARES REGRESSION" BY LUTZ DÜMBGEN AND LAURIE DAVIES (2024): THE MONOTONICITY PROBLEM

Alexandre G. Patriota 1

Department of Statistics, University of São Paulo, São Paulo, Brazil

Andrey B. Sarmento

Department of Statistics, University of São Paulo, São Paulo, Brazil

Dümbgen and Davies (2024) provided analytical p-values for testing specific null hypotheses under linear models, which are of practical importance. In this discussion, we examine a feature of p-values that could lead to conflicting conclusions within the framework of linear models. The authors introduced the full model in their Equation (1) and demonstrated that the p-value to test the hypothesis

$$H_p: \beta_j = 0, \text{ for } p_o < j \le p, \tag{1}$$

is p-value(H_{p_o} , \boldsymbol{y}) = $B_{(n-p)/2,(p-p_o)/2}(\frac{\|\boldsymbol{y}-\hat{\boldsymbol{y}}\|^2}{\|\boldsymbol{y}-\hat{\boldsymbol{y}}_o\|^2})$, where p_o , $B_{a,b}$, $\|\cdot\|$, $\hat{\boldsymbol{y}}$ and $\hat{\boldsymbol{y}}_o$ are defined in the main paper. Consider two nested null hypotheses, namely, $H_{p_{o_1}}$ and $H_{p_{o_2}}$, where $p_{o_1} < p_{o_2}$. For instance, take p=3, $p_{o_1}=1$ and $p_{o_2}=2$, then $H_{p_{o_1}}:\beta_2=\beta_3=0$ and $H_{p_{o_2}}:\beta_3=0$. The hypothesis $H_{p_{o_1}}$ imposes a more stringent constraint than $H_{p_{o_2}}$, since if $\beta_2=\beta_3=0$, then it necessarily follows that $\beta_3=0$ must also be true. That is, given the same data, the observed evidence against $H_{p_{o_1}}$ must be at least as strong as the observed evidence against $H_{p_{o_2}}$. Measures that adhere to this logical reasoning are said to be monotone. P-values often fail to uphold this reasoning (Schervish, 1996; Patriota, 2013, 2017). In the context of linear models discussed in Dümbgen and Davies (2024), we introduce a dataset (Table 1) with three regressors and ten observations. From our data, the p-values for testing $H_{p_{o_1}}:\beta_2=\beta_3=0$ and $H_{p_{o_2}}:\beta_3=0$ are p-value($H_{p_{o_1}},\boldsymbol{y}$) = 11.7% and p-value($H_{p_{o_2}},\boldsymbol{y}$) = 4.5%, respectively, illustrating a violation of monotonicity. These results paradoxically suggest stronger evidence against

¹ Corresponding Author. E-mail: patriota@ime.usp.br

$oldsymbol{y}$	0.55	0.26	3.93	1.21	1.89	3.09	2.46	1.55	2.63	1.86
$oldsymbol{x}_1$	1	1	1	1	1	1	1	1	1	1
x_2	2.37	-2.34	3.54	-0.26	5.69	-1.38	-1.34	3.03	-4.12	-5.19
				3.55						

TABLE 1
The dataset with three regressors and ten observations.

reducing the model to ' $\beta_1 x_1 + \beta_2 x_2$,' than to just ' $\beta_1 x_1$ ', posing interpretative challenges for practitioners.

To circumvent this issue, one might consider the s-value proposed by Patriota (2013). This discussion outlines a partial solution where practitioners avoid joint testing of β with σ^2 , treating σ^2 as a nuisance parameter. From the derivation in Dümbgen and Davies (2024), the p-value for testing the null hypothesis

$$H_{\{\boldsymbol{\beta}^{0}\}}: \boldsymbol{\beta} = \boldsymbol{\beta}^{0} \tag{2}$$

is given by p-value($H_{\{\beta^0\}}, y$) = $B_{(n-p)/2, p/2}(\frac{\|y-\hat{y}\|^2}{\|y-\hat{y}_{\beta^0}\|^2})$, where $\hat{y}_{\beta^0} = \sum_{j=1}^p \beta_j^0 x_j$. The following alternative measure for testing the general null $H_C: \beta \in C$, which is called s-value in (Patriota, 2013), resolves the above logical contradiction:

$$\operatorname{s-value}(H_C, \boldsymbol{y}) = \sup_{\boldsymbol{\beta}^0 \in C} \operatorname{p-value}(H_{\{\boldsymbol{\beta}^0\}}, \boldsymbol{y}), \quad \text{with } C \subseteq \mathbb{R}^p, \ C \neq \varnothing.$$

Observe that s-value(H_C, y) = $\mathrm{B}_{(n-p)/2, p/2}(\frac{\|y-\hat{y}\|^2}{\|y-\hat{y}_C\|^2})$, where $\hat{y}_C = \mathrm{arg\,min}_{\beta \in C} \parallel y - \sum_{j=1}^p \beta_j^0 x_j \parallel^2$. The s-value was originally derived from confidence regions, representing the smallest significance level (one minus the confidence) at which C intersects with the confidence region. It is a possibility measure over the class of hypotheses and, in general, under any hypothesis involving only β , the probability that the s-value is less than $\alpha \in (0,1)$ does not exceed α (see, e.g., Patriota and Alves, 2021). S-values are generally more conservatives than p-values, i.e., s-value(H_C, y) \geq p-value(H_C, y). From the above data, the s-values for testing $H_{p_{o_1}}$ and $H_{p_{o_2}}$ are s-value($H_{p_{o_1}}, y$) = 20.6% and s-value($H_{p_{o_2}}, y$) = 20.7%, respectively, maintaining a coherent conclusion. Given its broad applicability to other scenarios, what could prevent practitioners from adopting this measure?

REFERENCES

- L. DÜMBGEN, L. DAVIES (2024). Connecting model-based and model-free approaches to linear least squares regression. Statistica, 84, no. 2, pp. 65–81.
- A. PATRIOTA (2013). *A classical measure of evidence for general null hypotheses*. Fuzzy Sets and Systems, 233, pp. 74–88.

Discussion Contribution 111

A. PATRIOTA (2017). On some assumptions of the null hypothesis statistical testing. Educational and Psychological Measurement, 77, pp. 507–528.

- A. PATRIOTA, J. ALVES (2021). A monotone frequentist measure of evidence for testing variance components in linear mixed models. Journal of Statistical Planning and Inference, 219, pp. 43–62.
- M. SCHERVISH (1996). P values: what they are and what they are not. The American Statistician, 50, pp. 203-296.