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SUMMARY

Shrinkage methods for estimating the parameters of a regression model with autoregressive in-
tegrated moving average (ARIMA) errors are presented when some regression parameters are re-
stricted to a subspace. The estimates are obtained by maximizing the likelihood function with
and without restrictions, yielding the unrestricted and restricted estimators, respectively. Shrink-
age estimators optimally combine these two estimators. To demonstrate the optimality of these
estimators, we use metrics such as asymptotic distributional bias (ADB) and asymptotic distribu-
tional risk (ADR), aiming to minimize both quantities. We show that the relative efficiency of
the shrinkage estimator is superior to that of the unrestricted estimator when the shrinkage di-
mension exceeds two. Our large-sample theory and simulation study demonstrate that shrinkage
estimators dominate the unrestricted estimator across the entire parameter space. An empirical
example using Canadian crime rate data is also provided.

Keywords. Linear regression model; ARIMA; Monte Carlo simulation; Shrinkage estimators;
Asymptotic biases and risks.

1. INTRODUCTION

In the domain of financial time series analysis, the effectiveness of time series regression
models incorporating economic variables can be compromised by the frequent pres-
ence of non-homoscedastic residuals. Hossain and Ghahramani (2016) considered this
model with GARCH errors for addressing this issue. However, in certain scenarios,
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there might be significant serial dependence among the observations of the response
variable, which violates the assumption of independence. In such cases, it is appropriate
to consider a time series regression model with ARIMA errors. When we extend pure
ARIMA models by including additional covariates that are not part of the time series
being modeled, these covariates can improve the accuracy of the forecast by capturing
additional information relevant to the response. This combination of regression and
ARIMA modeling is a versatile tool for handling a wide range of time series patterns.
While the covariates can account for trend and other non-temporal influences on the
response variable, the ARIMA component captures temporal dependence in the errors.

Regression models with ARIMA errors (RegARIMA) are frequently employed in
the analysis of real-world data. Chen ez al. (2022) used an ARIMA model in conjunction
with infectious disease reports from January 1, 2013, to December 31, 2020, to ana-
lyze epidemic characteristics and forecast incidence trends in Anhui province, China.
Xu and Qin (2021) proposed a novel hybrid model for interval-valued time series by
integrating ARIMA and regression tree models. Johansen et al. (2012) introduced C,
statistics for regression models with stationary and non-stationary ARIMA errors, pro-
viding a detailed discussion of the asymptotic properties of maximum likelihood (ML)
estimators and accompanying simulation studies. William (2011) presented a notable
implementation of linear regression models with ARIMA errors in Fortran, examin-
ing the computational and theoretical aspects of Gaussian ML estimation using three
real-world datasets. Bianco et al. (2001) employed a robust estimation technique for out-
lier detection in regression models with ARIMA errors, comparing simulation results
with classical methods based on ML estimates and Kalman filtering. Davis and Dun-
smuir (1997) utilized least absolute deviation (LAD) estimation in a linear regression
model with autoregressive moving average (ARMA) errors under general conditions,
establishing the asymptotic properties of the LAD estimator through functional limit
theorems. Otto et al. (1987) considered an iterative general least squares approach to ML
estimation of regression models with ARIMA errors.Wincek and Reinsel (1986) consid-
ered the exact ML estimation of the RegARMA model with possibly consecutive and
nonconsecutive time series data.

In this paper, we examine the James-Stein shrinkage estimation procedure for
RegARIMA models in situations where numerous potential covariates are being con-
sidered. Including a large number of insignificant covariates can significantly hinder the
model’s forecasting performance. Researchers face a common challenge in model build-
ing: balancing the need for accurate predictions of forecasting with the desire to use only
the most relevant variables. Selecting only statistically significant covariates can lead to
underfitting, while including too many variables results in overfitting. To overcome this
dilemma, researchers aim to maximize predictive power while minimizing the number
of covariates. James-Stein shrinkage estimation provides a solution by leveraging in-
formation from insignificant covariates to achieve this balance. This method effectively
shrinks the coefficients of less impactful variables, reducing their influence on the model
while preserving the contributions of truly relevant ones.
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Consider the study analyzing the impact of various macroeconomic indicators (co-
variates) — including inflation, interest rates, unemployment, exchange rates, debt lev-
els, and political instability—on a country’s GDP growth rate. Because GDP growth
often exhibits autocorrelation, an ARIMA model will be employed to account for tem-
poral dependencies. Not all macroeconomic indicators will significantly influence GDP
growth. Therefore, the goal is to maximize the predictive ability of the GDP growth
rate while minimizing the number of insignificant covariates in the time series regres-
sion model. We can identify insignificant covariates using classical model selection pro-
cedures or adaptive LASSO. James-Stein shrinkage estimation allows us to achieve this
goal by utilizing information from the insignificant covariates. Specifically, let & be
the & x 1 regression and ARMA time series parameters, which are partitioned into
two sub-vectors as & = (£1T,£2T )T, where &, and &, are assumed to have dimensions
(k4 p+qg+1)x 1and k, x 1, respectively, such that k =k, + &k, + p + g + 1. Here,
&, is the coefficient vector for significant covariates and ARMA time series parameters,
and &, is a coefficient vector for insignificant covariates. We are interested in the esti-
mation of &; using the auxiliary information about the parameter vector &, when their
values are near some specified value. Without loss of generality, we consider the hy-
pothesis H, : &, =0, the k, x 1 null vector. This parameter partition strategy was used
by Hossain and Ghahramani (2016) for a linear regression model with GARCH errors
and employed shrinkage techniques to estimate the regression parameters when other
parameters were considered as nuisance.

Recent literature has investigated James Stein’s shrinkage method to regression model
suitable for stationary time series data, incorporating various error structures such as
AR, ARMA, and GARCH. We extend these methods to effectively handle non-stationary
time series by appropriately differencing the data within the framework of linear regres-
sion with ARIMA errors. In the recent literature, researchers have shown significant in-
terest in the usefulness of James-Stein shrinkage method for parameter estimation in the
linear regression model with AR, ARMA, and GARCH errors. Paolella (2019) worked
on the application of shrinkage estimator for linear models with ARMA and GARCH
errors. Hossain and Ghahramani (2016) considered shrinkage and positive shrinkage
estimators in linear regression with GARCH error. Thomson et al. (2015) developed
shrinkage estimation in a linear regression model with AR errors. In addition, the au-
thors studied the asymptotic features of the estimators in the context of risks and biases.
The utility of the proposed estimators was tested on Los Angeles pollution mortality
data. Wu and Wang (2012) proposed a shrinkage procedure for a linear regression model
with ARMA error. This procedure simultaneously estimates the parameters and selects
the informative variables in the regression, autoregressive, and moving average compo-
nents. Chan and Chen (2011) applied the adaptive LASSO method to a linear regression
model with ARMA errors. This method achieves model selection consistency and pro-
duces asymptotically unbiased estimators for the nonzero coefficients. Wang et al. (2007)
introduced a modified LASSO for regression models with AR errors and its superiority
compared with a traditional LASSO in the context of the BIC. This was done through
a simulation study and a practical example of an electricity demand data set.
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The paper is structured as follows. In Section 2 we present the model specification,
parameter estimation, score vector and Hessian matrix of the RegARIMA model. Sec-
tion 3 reviews the asymptotic distributional biases and risks of the proposed estimators.
In Section 4 we consider a Monte Carlo simulation study to evaluate the numerical per-
formance of the proposed estimators with respect to the maximum likelihood estimator.
An application of RegARIMA models is represented in Section 5. Section 6 closes the
article with concluding remarks.

2. MODELS AND ESTIMATION STRATEGY

2.1.  Linear regression model with ARIMA(p,d,q) errors

We assume a multiple linear regression model as
yt::c;rﬁ-l—r]t, t=12,...,N=n+d, 1)

where y, be the response, &, = (x,1,%,5,---,%,;)| be a k& x 1 predictor vector and
B=(B1B»B,)" isak x 1 vector of unknown regression coefficients.

We assume that error terms 7, in Eq. (1) is generated by an ARIMA model of order
(p,d,q), where p is the order of autoregressive part, d is the degree of differences, and ¢
is the order of moving average part. From 7,, we can modify error term c, of (n+d)—d
differences w,w,, -+ ,w,. where w, = V¥7,. While the differences are appeared in 7,
of Eq. (1), all corresponding series (both of the dependent and the explanatory variables)
should occurs the difference (Pankratz, 1991). Differencing is very useful technique be-
cause it helps address specific types of mean non-stationarity. Thus, we applied d dif-
ferences to the error term in Eq. (1) to make it follows an ARMA(p, q) process. So the
multiple linear regression model in Eq. (1) can be re-written as

yi=a Btw,, t=1,2,...,n, @)

wherey,* = det, :I:jT = dej, w, = Vdnt, and V = 1—B, with B being the backward
shift operator. George ez al. (2008) mentioned that the general problem of fitting the
parameters ¢ = (¢, Py, - 5 qﬁp)T and 0 =(0,,0,,---, (9q)T of the ARIMA error (,) is

equivalent to fitting c, as stationary ARMA(p, q) error which can be written as

W= =, == P, =a,+0,a,_+0a, 5+ +0,a,_, )
or, inshort, ¢(B)w, = O(B)a,, where p(z) =1—p z—-- -—¢pzp isthe AR polynomial,
and 0(z) = 1—0,z—---—0, 27 is the MA polynomial. We assume that {a,} is a sequence

of 1.1.d. random variables with mean O, common variance o2, and finite fourth moment.
We also assume that the polynomials ¢(z) and 6(z) have no common roots and that
all their roots lie outside the unit circle in the complex plane. Moreover, we assume
that {, } is a strictly stationary and ergodic process with finite second moment. Hence,
linear regression with ARIMA(p,d, q) errors in Eq. (1) is equivalent to linear regression
with stationary ARMA(p, g) errors in Eq. (2).
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2.2, Estimation of parameters

In the past, researchers studied the linear regression models with ARMA and ARIMA
errors using maximum likelihood estimation. For instance, Furno (1996) proposed an
information matrix approach to study the linear regression model with ARMA errors,
maximizing the likelihood function with respect to regression parameters 3 and un-
known variance parameters ) = (¢',0",0?)". Wincek and Reinsel (1986) introduced
an exact maximum likelthood method for estimating the parameters of regression model
with ARMA errors. We use the same method for estimating the parameters. In matrix
form, the model in Eq. (2) can be written as:

where Y = (y;,... ,y:)T, X =(xj,... ,w;)T, and W =(w,,... wn)T and the vector W
has a zero mean and covariance matrix I" with (z, ¢’)th element cov(w,, w, ) = y(t —t'),
where the autocovariances are functions of unknown parameters 7. We want to estimate
the regression parameter vector £ by maximizing the Gaussian log-likelihood function
in Eq. (5). The log-likelihood function of Eq. (4) can be written as

(&)= —%log|1’|—%WTI‘_1W, G)

where W = Y — X3, I' is a covariance matrix of W and ¢ = (87,77)" be the
(k4 p+q+1)x 1 vector of unknown parameters. The log-likelihood function in Eq.
(5) is a complicated function of the unknown parameters. To maximize this function,
the iterative Newton-Raphson method is needed, requiring the evaluation of the score
vector and Hessian matrix of the log-likelihood. Getting accurate parameter estimates
depends critically on choosing appropriate initial values or conditions. These starting
values are crucial for the optimization process, significantly influencing both the final pa-
rameter estimates and the overall model fit. Appropriate initial conditions are essential
for the convergence of the optimization algorithm, as they initiate the recursive calcula-
tions required for maximizing the log-likelithood function. Different assumptions about
these initial values lead to variations in the calculated log-likelihood and, consequently,
different parameter estimates. A common approach is to treat the initial values as fixed,
drawing them from the unconditional distribution implied by the model.

An innovation transformation of I' facilitates the calculation of the exact
log-likelihood and its derivatives through a convenient recursive procedure. Wincek
and Reinsel (1986) used the innovation transformation of I' to evaluate the score vec-
tor and Hessian matrix of log-likelihood /(£). For a covariance matrix I, there exists
a unique lower triangular matrix P with ones on the diagonal such that PTI'P = D,
where D is a diagonal matrix of positive values. The specific prediction errors, denoted
by a,,_ = w, —w,),_,, are called the innovations of the w,. Hence, the vector form

of innovations a = (“:|o’”t|1"“’“t|z—1>T and W are linearly related with a = P'w.
Thus, the second term of Equation (5) can be written as W' I'''W = a'V~'a/0?,
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where I' = 02V, V = diag(v), v = (vl,vz,vt,...,vﬂ)T, v, = 0?/0?, with v, are func-
tions of 7. The log-likelihood in Eq. (5) can be expressed in innovations form as

Z(E):—%nlog(az)— %log|V|—(2az)_1aTV_la, (6)

where a = PT(Y — X 3).

The components of score vector of Eq. (5) are 31(5) o 2U'V~'a and %f) =
FTN"'g,whereU=P'X, g=[a"(a"a—c?v)" ] ,FT = [ 3871 a’ ;n(az'uT) ],
and N = diag(c?V,20*V V).

The Hessian matrix of from the log-likelihood in Eq. (6) is

221(&) 221(&) 2%1(&)
&) _ | zgapr Fpan |_| spasr O @)
JeaeT | LMo due | T T, 2w |

Indpl  Indn' Indn’

’1(€) __FTN—IF 2%1(&) —0. and *1(&) =0
andn' — - -

e _ _ oprTy—
whereW_—o Uu'v s 80T T35

2.3.  Modified Newton Raphson procedure for ML estimates

Based on Wincek and Reinsel (1986), the approximate Hessian matrix in the Newton-
Raphson procedure yields the modified Newton-Raphson equations

~

+[OTVOT' OV 'a=[0"V OOV Py, ®)
H+[FTNTFFTN 3, ©)

Il
‘Qz

B
4

where F, V, &, U, g, P, N are evaluated at the £ = (,5'1—,77T)T of the parameter vector
at the previous iteration of modified Newton-Raphson procedure. The estimator Bin
Eq. (8) is the weighted least squares estimate of 3 of model in Eq. (6) and also called
the unrestricted maximum likelihood estimator (URE). This estimator é is expressed
in terms of the transformed variables U = PT X and PTY with V! as the diagonal
matrix of weights. A suitable estimation procedure is to obtain /3 in Eq. (8) and then use
a=PT(Y—XB)and da/Idn = (QPT/Qn)| (Y X3)in Eq. (9) when obtaining #.
Similar to Eq. (8), Equation (9) for the adjustment 17—} in the time series parameters also
has the form of a weighted least squares estimator. Although we obtained the estimate
7), we consider it a nuisance parameter, and primarily focus on B

The above weighted least squares procedure described by Equations (8) and (9) needs
to use for calculating a = P'"W.,U = PTX, and P'Y, as well as the derivatives of
da/dn=(dP"/In)W and dv/In. To obtain these quantities with recursive proce-
dure, see details in Wincek and Reinsel (1986).
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2.4.  Restricted estimator

Sometimes, we are interested in estimating the regression parameters in Eq. (2) when
some of the regression parameters may be linearly related. Instead of deleting the in-
significant covariate parameters, Hossain and Lac (2018) incorporated the information
from insignificant covariates as auxiliary information, in the form of linear restrictions,
to obtain an improved estimator.

We can define the hypothesis as

H,:&=0 vs. H, :£,#0. (10)

Researchers typically test the above hypothesis in Eq. (10), as they are believed to be a
reasonable reduction of the unrestricted model. Using these restrictions, we can con-
struct a modified log-likelihood that is, maximize /() subject to R3 = h is equivalent
to finding

£ =(8],A) = argmax{I(¢): ¢, =0}, (11)
B,¢,0,02

where é . is the restricted maximum likelihood estimator(RE). The objective function in
Eq. (11) can be maximized by using the Newton Raphson method discussed in previous
Section.

For testing the particular hypothesis H : &, = 0, we need the following partition of
the expected information matrix

2%(g) 2%1(g)

_ g de] g d¢E
I€)=E| Fe e
606, 20

(12)

We may consider testing the restriction by testing the null hypothesis Hy : £, =0
using the likelihood ratio statistic

A=21()—21(¢,), (13)

where [(-) is the logarithm of the maximum likelihood function, and é, and £ are the
corresponding maximum likelihood estimates under the null and alternative hypothe-

ses, respectively. Under H, and for large 7, the statistic Aapproximately follows the X
2

distribution with k, degrees of freedom.

2.5.  Shrinkage and positive shrinkage estimators

The shrinkage estimator (SE) of £ is defined as

€s=€ +(1—(ky—2)A)E—E)), k253
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This comes down to a convex combination function with the form é = Aé +(1— ))éy ,
where A € [0,1]. When A = 1, no shrinkage occurs, and the estimates are the same as
the URE. If A/l =0, the RE is chosen. The drawback of this estimaAtor is that the factor
(1—(ky—2)A7") can be negative. This happens for small values of A. This phenomenon
is known as over-shrinkage. This can be relieved by taking its positive part which makes
it not only a shrinkage estimator but also a thresholding estimator. The positive part
shrinkage estimator (PSE) is defined as

€, =& +(1—(k,—2)A Y E=E,), k>3,

where zt = max(0, z).

3. ASYMPTOTIC RESULTS

3.1.  Asymptotic distributional results: bias

This Section deals with the asymptotic features of the proposed estimators of £ for the
RegARIMA model. First, the asymptotic distributional bias (ADB) of the estimators of
& will be discussed in detail, and afterward, the asymptotic distributional risk (ADR).

Under nonlocal (fixed) alternatives H, : £, #0, ¢ ¢ and é s are asymptotically con-

verges to £, while ér holds unbounded risk. To capture the purposeful comparisons of
the proposed estimators in terms of their biases and risks, we consider the sequence of
local alternatives,
h

K(n) I£2 = ﬁ. (14)
Note that under H,, h = 0 implies that &, = 0, which is a special case of Eq. (14). We
require the following Assumptions to derive the asymptotic distributions of the estima-
tors, as well as their ADBs and ADRs.

ASSUMPTION 1. All the zeros of ¢(B) = 0 and O(B) = 0 are out-side the unit circle,
with no single root common to the polynomials ¢(B) and O(B).

ASSUMPTION 2. The regressors x, are weakly exogenous i.e E(w,|x,) = O, stating that
w, and z, are uncorrelated.

ASSUMPTION 3. The regressors and the error term must have finite fourth moments, i.e
E(||x,]]*) < 00 and E[5}] < oo.

ASSUMPTION 4. The log-likelihood function (&) of the model must be sufficiently
smooth, which typically involves assuming that the third derivatives of the log-likelihood
function are bounded in probability.
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) OR Hessian Matrix 2248

ASSUMPTION 5. The information Matrix E(— agagT is

finite and positive definite.

Assumption 1 ensures that the true model is stationary and ergodic, and that p and
q are the true model orders. Assumption 2 is a standard set of assumptions on the er-
ror terms in regression models. The moment condition is mild since E(||x,||*) < oo is
required for the existence of I(£¢) (Assumption 3). This condition, while stricter than
some other assumptions, is used to guarantee the robustness and validity of asymptotic
properties.

Under local alternative K,,), the following Theorem facilitates the derivation and

numerical computation of the ADBs and the ADRs of the estimators outlined below.

THEOREM 6. Under the local alternatives K, in Eq. (14) and the usual Assumptions
above

r g . . .
1. yn& = N(0,1,,,) as n — oo where I, | = I, — I,  I,' I, is a positive definite
matrix and the information matrix for € = (¢],&])"

I — L, I,
£, 121 Izz

. . . N . . . .
2. As n — oo, the distribution of /A, converge to a non-central chi-squared distribution
@, (x; A) with k, degrees of freedom and the non-centrality parameter, A = h'L, h,

and ¥, (x; A) = Py} (4) < x), xeRt,
PROOF. The outline of a similar proof for linear models can be found in Sen and
Ehsanes Saleh (1987) and Thomson et al. (2016). The information matrices for linear

models and time series regression model with ARIMA error are different. O

Usually, the shrinkage estimators are biased, however, bias is accompanied by a re-
duction in variance. We define ADB of an estimator £* as

ADB(¢) = E| lim v/a(&' —€)].

. . A A A A
where £ be a generic notation for any of §, &,, &, and &, .

THEOREM 7. Using the above definition of ADB and Theorem 6, under the local al-
ternatives K ) in Eq. (14), as n — oo,

ADB(;,) = ADB()—I;'I,h[8, (v, A)—vE (Z71(Z, < )],
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wherev=ky—2,Z, = .2 (4), ADB(g)=—vI;'T,hE(Z,), ADBE,) =—I;'I,,h =
— (say), and W, (x, A) is the distribution function of a non-central chi-square with g degrees
of freedom and non-centrality pavameter A, and

E(x7(4)= J xH A, (x, A).
0
PROOF. The outline of the proof of the Theorem is given in the Appendix. O

The constant term h is common to the ADBs of é - é ¢, and é s, and the ADBs differ
only by a constant factor A. Therefore, it is sufficient to compare only A. It is clear that

the ADB of the £, is an unbounded function of A. On the other hand, the ADBs of
both és» and éer are bounded in A. Since E <Xle_iz(A)> is a decreasing function of A, the

A
ADB of & starts from the origin, increases to a maximum, and then decreases towards

. . A . . A
0as A > 0. The characteristics of £ are similar to those of &j.

3.2, Asymptotic distributional results: risk

We use the following quadratic loss function to obtain the ADRs of the proposed esti-

mators:
2(€5A) =[VaE —©)] A[Vn(E —0)),

where A is a positive semidefinite weight matrix. In the literature, the researchers con-

sidered A = I as an identity matrix in the simulation study. For instance, Gupta et al.

(1989) suggested that weight matrix with different arbitrary diagonal elements can not

ensured the outperform of shrinkage estimators to the full model estimators.
Therefore, the expected loss function is defined as

E[£(£7; A)|= ADR(£",§; A) = ADR(E7,6),

which is called the risk function. Under the sequence of local alternatives, we define the
asymptotic distribution function of an estimator £* as

G(y)= lim P[ V(& &) <ylK,],

where G(y) is nondegenerate distribution function for the estimators. We define the

asymptotic distributional risk (ADR) by
J J TAyal G(y

= trace(AT"), (15)

ADR(£; A)
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where I' = [ ... [ yy"d G(y) is the dispersion matrix for the distribution G(y) and I’
is the asymptotic covariance matrix of £*.

An estimator &* is then said to dominate an estimator &° asymptotically if
ADR(¢%;€) < ADR(£%€). I, in addition, ADR(¢";€) < ADR(£%€) for at least some
(€, A), then ¢ strictly dominate £°.

THEOREM 8. Under the local alternatives K, in Eq. (14) and the Theorem 6, as
n — oo, we obtain the ADR functions of the proposed estimators:

ADR(§5,3A) = ADR(E;; A)—E((1—vZ "V 1(Z, <v))trace( AC)
+ (204405, Q) —2E(Z]'1(Z, < v))
_ E((l —vZ; W 1(Z,< v)))tmce(’yTA'y), where
ADR(gA) = I, +(PE(Z})—2vE(Z,))trace AC)
+ (VE(Z3)+2vE(Z,)— 2vE(Z,)) trace(~ " Ay)

Z, = 13,4, ADR(£,; A) = ADR(§; A) — trace(A®) + v A, ADR(£;A) =
tracel AI)], v =I;' I h, & =1\, — I;|'1,, I} I, I}, I, , = I,, — I ,I,)'I,, and

T2k i 11.2 2.1 11°
C=I,1,I,,,I,, 1.
PROOF. The outline of the proof of the Theorem is given in the Appendix. O

4. SIMULATION RESULTS

This Section presents a simulation study comparing the performance of the estimators

é - é 5, and é s, relative to EA . Data are generated under three scenarios, described below:
In the simulation model, we consider the following model with ARIMA(1, 1, 1) error
for generating responses

yt*:ij,B+wt, (16)

where w, = ¢, | +a, —0,a, | with w, =Vp,, Also y,* =Vy,, z'| = Vz] with
t=12,...,n. Wetake ¢, =—049,d =1, 6, = —0.79, 0 = 1 and three covariates
with regression coefficients —0.95, 1.05, and 1.9. Therefore, 3, is a vector of regres-
sion coefficients, and all the model parameters together are £, = (—0.49,—0.79, 8, )"
=(—0.49,—0.79,—0.95,1.05,1.9), that is &, = 5. Finally, the response is generated from
simulation model. .

In the unrestricted model specified in Eq. (2), let € = (£],&))", where £, =€, and
& is the vector of regression coefficients for k, insignificant covariates.
In this setting, the response is generated from the simulation model in which we con-
sider the true &, is a zero vector. Therefore, the true values of the parameters are &, =
(—0.49,—0.79,—0.95,1.05,1.9)" and &, = 8, = (0,0,0,0,...,0)T. We consider six values:
k,=4,8,12,15,18 and 21.
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The restricted model is established by considering a constraint £, = 0 in the unre-
stricted model. The restricted model is not significantly different from the unrestricted
model. In this situation, A = ||é—é7 [[* =0, where ||-|| is the Euclidian norm. To explore
the behavior of shrinkage estimators when the restricted model is substantially different

from the unrestricted model, we consider &, = (4/¢,0,..,0) " so that A = ||é\—ér||2 =c,
where c is a positive constant. Note that A is the difference between the restricted and
the unrestricted model in the spirit of the local alternative in Eq. (14), and the perfor-
mance of the shrinkage estimators is assessed under both Hy: A=0and H, : A=, for
0<c<15

All the covariates are generated from standard normal distributions. We use 7 = 500,
600, 700 and 800 to investigate the impact of 7, k, and A on shrinkage estimators. Here,
we consider A = (0,0.03,0.07,0.10,0.15,0.3,0.55, 1, 1.5).

The estimates é , é - é ¢»and é s are obtained from each of the 1000 simulated datasets
with different combinations of 7, k, and k,. The mean squared error (MSE) is used to
evaluate the performance of the estimators. We have calculated MSE for any estima-

tor, £* based on the decomposition MSE(é*) = tr[var(é*)] + ||bias(é*)||2; we took the
trace of the covariance matrix of £ and the average of ||bias(€)||? across the 1000 simu-
lated datasets to compute MSE(é*). The RMSE of £* to é is defined as RMSE(§A 1 €)=
MSE(é) JMSE(£*). Thus, a RMSE value exceeding one means the estimators have lower
risk than the URE, and a RMSE less than one has higher risk.

TABLE 1
RMSEs of é " é 5 and é .. with respect to £ when the restricted parameter space is correct (A =0).

n=500 n=600 n=700 n=800
ki=5k=4 k =5k=4 k=5k=4 k=>5k=>4

RE 1.88 1.85 1.81 1.83

SE 1.31 1.31 1.29 1.31

PSE 1.41 1.42 1.42 1.41
ky=5k=21 k =5k =21 k=5k=21 k=>5k=21

RE 5.63 5.95 5.76 5.69

SE 3.99 4.06 3.86 3.88

PSE 4.40 4.54 4.39 4.44

The findings demonstrated in Table 1 for A =0 and in the Figures 1 and 2 for A > 0.
The RMSE:s of all estimators relative to URE are initially highest at A = 0, although
subject to random fluctuation. Table 1 and Figures 1-2 show that the RE outperforms
other estimators near the null hypothesis due to its unbiasedness; the RMSEs of SE
and PSE relative to the RE asymptotically converge to 1. On the other hand, as A
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increases, the risk of the RE increases and becomes unbounded, that is, the RMSE of
the RE decreases and becomes zero, as reported in Figures 1-2. However, as A increases,

the RE’s risk increases without bound, resulting in a decreasing RMSE that approaches
zero, as illustrated in Figures 1-2.
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Figure 1 - RMSEs of RE (é,), SE(EA <), and PSE(§A ¢.) with respect to URE(é) when the subspace
misspecifies A >0, » = 500,600, and k, =5, k, = 8,12,15,18.

Shrinkage estimators offer substantial risk reduction compared to the URE, regard-
less of the auxiliary information used in the chosen restricted model. This aligns with
Theorem 8. Since A represents the deviation from the null hypothesis, shrinkage esti-
mators remain advantageous even when A > 0. As shown in the Tables and Figures,
they are highly efficient (low risk) relative to the URE when A = 0. Furthermore, per-
formance degrades gradually if the restricted model is misspecified. Therefore, shrinkage
estimators are particularly useful in real-world applications where, as is often the case, a

perfectly specified restricted model is unattainable. These results are supported by the
findings in many studies in the literature.
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Figure 2 - RMSEs of RE (é ), SE (é s), and PSE (é ¢,) with respect to URE(é) when the subspace
misspecifies A > 0, n = 700,800, and &, =5, %, = 8,12,15, 18.

The PSE outperforms the SE as A approaches zero. Above A =0.3, the RMSEs of
both SE and PSE are equal and approach one as A increases. The estimation accuracy
of both SE and PSE is higher for » = 500 and » = 600 than for » = 700 and n =
800, because their RMSEs increase with decreasing sample size. For example, Table 1
shows that when &, = 5, k, = 21, and n = 600, the RMSEs of SE and PSE are 4.06
and 4.54, respectively; while for » =700, k;, = 5, and k, = 21, the RMSEs are 3.86 and
4.39. Increasing the sample size accelerates the convergence of the RE’s RMSE to zero.

However, the RMSEs of SE and PSE remain constant with increasing sample size when
A>0.

Figure 3 shows MSE curves illustrating the impact of sample size () and the number
of insignificant covariates (k,) on the accuracy and uncertainty of shrinkage estimators.
As expected, for a fixed sample size, accuracy decreases with increasing k,. Conversely,
for a fixed k,, accuracy improves with increasing sample size (compare Figures 3, a-d).
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Figure 3 - MSEs of URE (é ), RE (é ), SE (EA 5),and PSE (é s.) when the subspace misspecifies A > 0,
n =500,700, and k, =5,k, = 8,12,15,18.

5. A REAL DATA EXAMPLE

We apply the shrinkage estimation approach to the Canadian crime rates data set (Fox
and Weisberg, 2019). This data set contains 7 macroeconomic variables: female indictable-
offense conviction (response) and six predictor variables: total fertility rate (x;), women’s
labor force participation rate (x,), women’s post secondary degree rate (x;), female theft
conviction rate (x,), male indictable offense conviction rate (x;), and male theft convic-
tion rate (x,). Figure 4 shows a yearly time series plot of the female indictable offense
conviction rate per 100,000 Canadian women aged 15 years and older. This is for the
period 1931 to 1968. The conviction rate rose from the mid-1930s until 1940, then de-
clined until the mid-1950s, and rose again. We are interested in relating variations in
women’s crime rates to changes in their position within Canadian society using the six
covariates.

The results from the multiple linear regression of women’s conviction rate on these
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Figure 4 - Time series plot of the female indictable offense conviction rate per 100,000 Canadian
women aged 15 years and older.

six covariates show that women’s labor force participation rate and male indictable of-
fense conviction rate are significant covariates. The coefficients are not estimated very
precisely after all and the data set is quite small. A useful next step is to plot the residuals
against time. Plots of the residual autocorrelations and partial autocorrelations for the
multiple linear regression using this data are shown in Figure 5. As a rough guide to
the statistical significance of residual autocorrelations and partial autocorrelations, ref-
erence lines have been placed in Figure 5. The pattern is clearly indicative of an AR(2) or
ARIMA(1,0,1) process, with a positive autoregressive coefficient at lag 1 and a negative
coefficient at lag 2. As a result of using the auto.arima function under the forecast
R-package, it appears that ARIMA(1,0,1) is the most appropriate model to fit the data
set (Rob and George, 2021). The Ljung-Box test for white noise, using 8 lags, resulted in
a p-value of 0.94, confirming the presence of white noise.

In the first step of the shrinkage approach, we apply backward elimination to select
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Figure 5 — ACF and PACF plots of residuals for Canadian crime rates data.

the significant covariates. It shows that women’s labor force participation rate and male
indictable offense conviction rate are significantly related to female indictable-offense
conviction, while the remaining four covariates are insignificant. Then we define a
restricted subspace using insignificant covariates. Therefore, the restricted subspace is
&, =(&,8,64,¢)=(0,0,0,0) together with p = 1,9 =1, k; =4, and k, = 4.

We used non-overlapping block bootstrap (Hardle et al., 2003) to compute point esti-
mates, standard errors, and the RMSEs of the proposed estimators. Only the significant
coefficients are reported in Table 2. We apply the following bootstrap Algorithm.

ALGORITHM 9.

1. Generate the B replicates for bootstrap of the series from the crime data set:

i) Divide the series into b blocks v, vy, 3, - - v, with length g, where b x g ~ n.

i) Randomly select b blocks with replacement from these blocks, to get a new boot-
strap sample, y;, v5, V3 -+ ¥
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2. The ARIMA model was fitted to each of the bootstrap samples by using the maximum
likelihood estimation method and obtain the estimate é

3. Repeat steps 1-2, 1000 times.

Based on the above Algorithm, we calculated the estimates, standard errors, and
RMSEs. The findings presented in Table 2 show that the RE, SE, and PSE estimators
are superior to the URE, which is corroborated by theoretical and simulation results
that identify shrinkage estimate as an improvement over the URE.

TABLE 2
Estimates (first row) and standard errors (second row) for AR parameter ¢, MA parameter 0, and
significant covariates, x, and xs.

A

Estimators gzg . 6 . 5, ,é s RMSE

URE 046 011 011 006  1.00
(0.43) (0.34) (0.18) (0.05)

RE 055 002 012 003 188
(0.41) (0.18) (0.13) (0.03)

SE 049 008 012 005 134
0.42) (0.31) (0.17) (0.05)

PSE 048 008 012 005 139

(0.41) (0.30) (0.17) (0.05)

6. DISCUSSION

Due to its favorable efficiency characteristics, the unrestricted maximum likelihood es-
timator (URE) is one of the most commonly used and widely accepted methods for esti-
mating parameters. However, significant research has focused on improving ML estima-
tors, particularly for time series regression model parameters. For instance, shrinkage
estimators have been shown to outperform URE under certain conditions. In this study,
we introduce shrinkage estimators for multiple linear regression models with ARIMA
errors when some regression parameters lie in a subspace. The shrinkage method pro-
ceeds in four steps: First, a full model is fit using all available covariates. Second, co-
variates that do not improve the model’s maximum likelihood fit are identified using
a variable selection procedure with AIC criterion. Third, a restricted model is fit, as-
suming the coefficients of these redundant covariates are zero. Finally, the full model’s
estimates are optimally shrunk toward the restricted model’s estimates, along the direc-
tion defined by the zero-coefficient restriction.



Regression Models with ARIMA Errors 21

This paper examines the asymptotic bias and risk properties of shrinkage estimators,
supported by extensive simulation studies. These simulations demonstrate that the re-
stricted estimator outperforms the unrestricted estimator when the true parameter is
near the imposed restriction, but this advantage diminishes as the true parameter moves
turther away. The shrinkage estimators are most effective when (1) the unrestricted and
restricted models are similar, indicating that assumptions about insignificant covariates
are valid; and (2) the number of insignificant covariates is large. The positive shrinkage
estimator outperforms the shrinkage estimator at and near the null hypothesis. A real-
world application to Canadian crime rates further demonstrates the superiority of the
shrinkage estimators over the URE. Future research will explore shrinkage estimation
methods for nonlinear time series regression models, and compare their performance
against machine learning algorithms applied to time series models with ARIMA errors.

The paper would significantly benefit from a more thorough exploration of the
practical limitations inherent in employing shrinkage methods within the context of
ARIMA models. The effectiveness of these methods critically on the validity of ARIMA
model assumptions, including stationarity of the time series and the normality of er-
ror terms. However, deviations from these assumptions—such as non-homogeneous
variance, the presence of structural breaks, non-normal error distributions (e.g., heavy—
tailed distributions or outliers), or model mlsspemﬁcatlon—can severely compromise
the accuracy and reliability of the shrinkage estimators. Specifically, violations of sta-
tionarity will affect the covariance structure upon which the shrinkage is based, po-
tentially leading to biased and inaccurate forecasts. Similarly, outliers and heavy-tailed
errors will distort the estimated covariance structure, negatively impacting the shrink-
age performance. A detailed discussion addressing these limitations, including strategies
for robust model specification and outlier handling, is necessary to fully assess the ap-
plicability and reliability of the proposed methodology in real-world scenarios where
ARIMA assumptions might be violated.
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APPENDIX
A. PROOEFS

PROOEF. Theorem 7

The bias expressions of the proposed estimators is here derived. It is obvious that
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ADB(€) =0. The ADB of (£,), (€), and (£, ) estimators are as follows:
ADB(E,) =E( lim va(€,—&))=—T; Tyh=—,
ADB(E) =E( lim V(€ —&))=—E( lim va((k,~2)A (€ ~£,))) =mE(Z)),
ADB(E,) =E( lim vlés, —¢))
=E(lim va(és—&)— v (1-(k,=2A")1 (A< (k,=2)) (=€)
:ADB(éS)—E<nILr§o Yl —€,)(1—(ky—2)A) 1 (A< (k, —2)))
=ADB(&)+~vE (I (Z, < (k,—2)))

—y(ky—2E(Vn(é— &) AT (A< (k,—2)))
=ADB(Eg) + ¥, (v, ) —WE(Z,'1 (2, <v)).

PROOF. Theorem 8
To assess the proposed estimators, we derive their asymptotic covariance matrices. The
A
covariance matrix of any estimator £ is defined as:
A

Cov(é) =E( Jim (€'~ )€ ~&)").

First, we will start deriving the covariance matrices of the URE and RE:

Cové) = E(lim vaé—evaé—8))=1;},

Cov(€,) = E(lim va(€, —Va(,—&))=@+7",

_7-1 _ 17 717 71 : : :
where =1, —1I'I,I,, I,,I;'. Secondly, we derive the covariance matrices of the

shrinkage and positive shrinkage estimators:

Covis) = E(lim vailés—ovnéi—8)")

= 5 fim V(- e—vA ) a(é-e—d é-6) )

= EWnE—ovaé—N)+VEWaé—€)n(€—¢,)" lim A7)
—2EWn(E—E )€ =) lim A7)

= I, +VCE(Z}) +v* vy E(23) — 2E(Vn(€ — €, )Wn(€—€)" lim A,
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Consider the last term:
E(vaé—€)va¢—¢ lim A7)
= E(EWaé—€Wné—o) lim A7|vaé—E,))
= B(Vaé—E B/~ |Vré—E,) lim A7)
+E(Va(é—£€) (Vi —€) ~E(/aé—£,) ) lim A1)
= E(va—€)vaE—€) lim A7) —E(valé—€) i A)E(vaé—£)'
= CE(i (D) +77 E(x,2,(8) = "E(x.2,(4))
= CE(Z)+77 E(Z)—E(Z).

Cov(és) = I+ (CEZ])+vv E(ZD)
—2v(CE(Z)+ 77 E(Z) -7 E(Z)))

= I, +(VE(Z])—2E(Z))C
+(VE(Z3) + 2VE(Z,) — 2E(Z,y)) v -

Let F,,(A)= (1 —v/i_1>ml</i < v), where m =1,2.

Coviés,) = E( lim virts, —)v(és, —0)")
= E( lim vals— v —o")
+E( lim B(A)Wa(é—€)nE—€,)T)
—2E<hmF(A)\/_( €l —o))
— Cov(éy) +E<hm Fy( Q)€ —E,)/n(€, —¢€) )
28 lim F(A)/r(E )(f €& +(1—vA) Valé—£)7))
= Cov(és)+E( lim Fy(A)/n(E—E,)v/n(€— £)>
—2E( lim F(AWn(E—E)Vn(E,—€)").
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Consider the second term:

—E(lim B(A)/(E—E)WnE—£))

= —£(lim (1—vA" ) 1(A<v) vad &)V —£))
= —CE(1(Z,<»)(1—vZ"})=E(1(Z,<»)(1—vZ;")).
Consider the third term:
2 fim F(A)aE—€ )€, o))
- _JF (nlirgc V(€€ )E(F (A€, — &) |Vn(é —é)))

_ —2E< lim /(€ —€,)E(va(€,— &) ) F,(4)+0

= —2B(lim Va(—&)1(A<v)—vAvaé—€r(A<v))
xE(vn(€,—€)")
= 20,0, Ay —2E(Z7(Z <)y "
= (20, A)—2E(Z7' 1(Z, <))y
Finally,
Cov(éer) = Cov(és)—E«l —vZfl)zI(Z1 < v))C

+(2Fv+4(v, A)—2vE (Zl_ll(Zl <))
— E((l —vZZ_1>21(Zz < v)))’y’yT.

The proof of Theorem 8 now follows using Eq. (3) and the above covariance matrices.
O
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