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SUMMARY

The inaccuracy measure has recently become a valuable tool for detecting errors in experimental
data. This measure applies only when random variables have density functions. To circumvent
this constraint, the cumulative inaccuracy measure is a commonly used alternative measure of in-
accuracy in the literature. When the observations generated by a stochastic process are recorded
using a weight function, weighted distributions are established. Based on right-censored depen-
dent data, we provide a nonparametric estimate for the weighted dynamic cumulative past in-
accuracy measure in this study. The proposed estimator’s asymptotic characteristics have been
examined, and its performance demonstrated through simulated and real-world data sets.

Keywords: Alpha-mixing; Information measures; Recursive kernel density estimator;
Right-censored data; Weighted dynamic cumulative past inaccuracy measure.

1. INTRODUCTION

Suppose an investigator mistakenly usesβ j , the probability of the occurrence of the j th

event, instead of its true probability θ j , where 1 ≤ j ≤ n. Kerridge (1961) proposed
an inaccuracy measure that can be computed as −

∑n
j=1θ j logβ j , provided

∑n
j=1θ j =

∑n
j=1β j = 1. This measure reduces to the uncertainty measure −

∑n
j=1θ j logθ j , also

known as the entropy measure, proposed by Shannon (1948), when the investigator’s
decision is correct. Shannon’s entropy quantifies the average uncertainty associated with
an event’s occurrence.

Let g1(t ) and g2(t ) denote the probability density functions (pdfs) of the continuous
non-negative random variables T1 and T2, with distribution functions G1(x)
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= P (T1 ≤ x) and G2(x) = P (T2 ≤ x), respectively. Nath (1968) proposed the follow-
ing measure to quantify the inaccuracy between random variables with pdfs g1(t ) and
g2(t ):

I (T1,T2) =−
∫ ∞

0
g1(t ) log g2(t )d t =−Eg1

�

log g2(T )
�

. (1)

The measure in Eq. (1) helps evaluate the accuracy of experimental results when random
variables follow continuous pdfs. It is widely recognized for its usefulness. We explore
various applications and advancements in the literature pertaining to this measure, as
discussed below.

Nonadditive measures of relative information and precision were proposed by Hooda
and Tuteja (1985). Theorems for subjective probability codes for nonadditive measures
of inaccuracy were developed by Dial (1987). The quantitative-qualitative measure of in-
accuracy was created by Bhatia and Taneja (1993) using reversible symmetry. The mea-
sure of inaccuracy between nth record value distributions was studied and explicated by
Goel et al. (2018). James and Anita (2006) used inaccuracy measures in their demand
analysis, paving the way to demonstrate its application in the field of economics. Rajesh
et al. (2017) and Sathar et al. (2019) proposed nonparametric methods for estimating in-
accuracy measures under right-censoring, focusing on the residual and past lifetimes of
random variables, respectively.

Kumar and Taneja (2015) and Kundu et al. (2016) separately developed the measure
of past cumulative inaccuracy, which can be used to assess inaccuracy in cases where the
probability density functions do not exist, and is defined as follows:

ξ̄G1G2
=−
∫ ∞

0
G1(t ) lnG2(t )d t , (2)

where the experimenter’s proposed cumulative distribution function (G2(t )) is used in
place of the actual cumulative distribution function (G1(t )) due to inaccurate or missing
data in the experiment. The cumulative equivalent of the inaccuracy measure described
in Eq. (1) is represented by Eq. (2). The quantile variants of the cumulative residual
(past) inaccuracy measures, along with their dynamic forms, were introduced by Kayal
(2018). In some regularity scenarios, Viswakala and Sathar (2024) investigated nonpara-
metric estimate of the cumulative past inaccuracy measure. The bivariate extension of
past cumulative inaccuracy measure and its characteristics were examined by Ghosh and
Kundu (2020). Additionally, some findings were derived using the proportional reversed
hazard rate models.

Unequal sampling probabilities refer to situations where different members of a pop-
ulation have different chances of being selected for a sample. This scenario occurs in
contexts like stratified sampling, where different subgroups are sampled at varying rates,
and in cluster sampling, where individuals in larger clusters may have lower probabili-
ties of selection compared to those in smaller clusters. Unequal sampling probabilities
are also present when certain subpopulations are over sampled to ensure sufficient rep-
resentation. In such cases, the assumption of equal probability is violated, necessitating
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adjustments to maintain the validity of the analysis. Consequently, Equations (1) and
(2) are not valid if the random variables posses unequal sampling probabilities. In this
context, Kumar et al. (2010) proposed a length-biased weighted form of the inaccuracy
measure, which is defined as follows:

I W (T1,T2) =−
∫ ∞

0
t g1(t ) log g2(t )d t ,

and discussed its properties in residual lifetime scenario.
Viswakala and Sathar (2021) explored and examined the properties of a nonparamet-

ric estimator of the weighted residual inaccuracy measure. Within the setting of length
biased samples, Rajesh et al. (2021) and Richu et al. (2022) suggested kernel estimation
for the entropy measure and extropy measure, respectively. Daneshi et al. (2019) pro-
posed an alternative measure to Eq. (2), namely the weighted (length-biased) cumulative
past inaccuracy (WCPI), which is defined as

ξ̄WG1G2
=−
∫ ∞

0
tG1(t ) lnG2(t )d t .

This paper also suggested an empirical estimator for the measure and investigated its
almost sure convergence property with respect to record values.

In many realistic situations, uncertainty relates to the past. If a random variable, T ,
is found to be down at time x, then [x −T |T ≤ x] describes the time elapsed between
the failure of the random variable and the time. Jalayeri and Khorashadizadeh (2017)
defined weighted (length-biased) dynamic cumulative past inaccuracy (WDCPI), as

ξ̄WG1G2
(x) =−
∫ x

0
t

G1(t )
G1(x)

ln
G2(t )
G2(x)

d t . (3)

Equation(3) can equivalently be expressed as

ξ̄WG1G2
(x) = lnG2(x)δ̄

W
T1
(x)− 1

G1(x)

∫ x

0
tG1(t ) lnG2(t )d t , (4)

where δ̄WT1
(x) =

∫ x
0 t Ḡ1(t )d t

Ḡ1(x)
is the weighted mean past life (WMPL) function. Jalay-

eri and Khorashadizadeh (2017) explored and identified some properties of the extended
weighted cumulative past inaccuracy for doubly truncated random variables but did not
provide any method for estimating this measure. Additionally, dependent random vari-
ables are encountered more frequently than independent ones in many practical scenar-
ios. The recursive structure of the kernel form enhances the estimator’s ability to model
complex patterns, making it more effective than non-recursive kernels. These consider-
ations motivated us to develop a non-parametric recursive kernel estimator of WDCPI
under dependent conditions.

We discuss an example of a WDCPI measure, and the variation of the measure with
respect to x and parameter λ is shown in Figure 1.
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Figure 1 – Plot of ξ̄ WG1G2
(x) against x ∈ [0,1] for different parameter λ.

EXAMPLE 1. Let the random variable T1 has distribution function G1(x) = 2x − x2,
and the random variable T2 follows power distribution with distribution function G2(x) =
xλ. Then, for x ∈ [0,1], the WDCPI measure, ξ̄WG1G2

(x) is obtained as

ξ̄WG1G2
(x) =

λx2(9x − 32)
144(x − 2)

.

The plot of the WDCPI measure, ξ̄WG1G2
(x), for x ∈ [0,1] and λ ∈ {4, 7, 10, 13} is shown

in Figure 1. The graph clearly shows that the WDCPI measure exhibits a monotonically
increasing trend with respect to both x and λ. This increase is particularly rapid for x values
exceeding 0.4.

The outline for this paper is as follows: We discuss the nonparametric recursive ker-
nel estimation of the WDCPI measure based on right-censored samples in Section 2, and
Section 3 discusses some of its properties. In Section 4, we carried out a numerical study
to assess the performance of the proposed estimator.

2. ESTIMATION OF WDCPI MEASURE

This Section presents a nonparametric estimator for Eq. (4), based on right-censored
dependent data, assuming that the underlying lifetimes are α−mixing.
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2.1. Basic concepts

α−mixing: Rosenblatt (1956) Let
�

Ω,ξ , P
�

be a probability space and ξ s
q be the σ -field

of events generated by random variables {Tr }q ≤ r ≤ s . Then, the stationary pro-
cess {Tr } is under α−mixing if

α(s) = sup
A∈ ξ q
−∞

B∈ ξ∞q+s

�

�

�

�

P (A∩B)− P (A)P (B)
�

�

�

�

↓ 0, as s →∞.

Recursive kernel density function: Let {T1r }1 ≤ r ≤ n be a sequence of random vari-
ables having common density function g1(t ), then the kernel estimator for g1(t )
introduced by Wolverton and Wagner (1969) as

g1n(t ) =
1
n

n
∑

r=1

Kr (t −T1r ), (5)

where Kr (u) =
1
hr

K
� u

hr

�

and {hn} is a sequence of positive constant, called band-

width, satisfies
1
n

n
∑

r=1

� hr
hn

�i → γi <∞, as n goes to infinity and i ∈ {1,2, . . .}. The

estimator in Eq. (5), which recursively estimates at the point t , can be written as

g1n(t ) =
n− 1

n
g1(n−1)(t )+

1
n

Kn(t −T1n), provided g10(x) = 0.

Let the right-censoring random variables {X1r }1 ≤ r ≤ n are i.i.d. with common
continuous distribution R1(x) and are independent of the random variables,
{T1r }1 ≤ r ≤ n . Let Y1r = min{T1r ,X1r } and ∆r = I (T1r ≤ X1r ). An alternative
kernel density estimator extending to right-censored sample is given by

g ∗1n(t ) =
1
n

n
∑

r=1

Kr (t −Y1r )∆r

1−R1(Y1r )
, (6)

and can be recursively estimated at the point t as

g ∗1n(t ) =
n− 1

n
g ∗1(n−1)(t )+

1
n

Kn(t −Y1n)
1−R1(Y1n)

, provided g ∗10(t ) = 0.

The kernel estimate of distribution function is given in Nadaraya (1965) as

G1n(x) =
∫ x

−∞
g1n(t )d t =

1
n

n
∑

r=1

∫ x

−∞
Kr (t −T1r )d t ,
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and can be extended to the right-censored case as

G∗1n(x) =
∫ x

−∞
g ∗1n(t )d t . (7)

If the random variable {T1r }1 ≤ r ≤ n is under α−mixing dependent condition, we
get

Bias[G∗1n(x)] =
h2

nC1+γ2

2

∫ x

0
g (2)1 (t )d t +O(h2

n),

Var[G∗1n(x)] ≍
C2+η1

nhn

∫ x

0

g1(t )
1−R1(t )

d t

and

lim
n→∞

nhnCov(G∗1n(x),G∗1n(y)) = 0, x ̸= y,

where C1+ =
∫

R∗ α
2K(α)dα, C2+ =

∫

R∗ K2(α)dα; R∗ = [0,∞]

If the random variables T1 and T2 are under α−mixing condition, then the kernel
estimator of Eq. (4) under right-censoring is obtained as

ξ̄W ∗
n
(x) = lnG∗2n(x)δ̄

W∗
1n (x)−

1
G∗1n(x)

∫ x

0
G∗1n(t ) lnG∗2n(t )d t , (8)

where G∗1n(t ) and G∗2n(t ) are the nonparametric estimator for G1(t ) and G2(t ) under
right-censoring defined in Eq. (7) and

δ̄W∗1n (x) =
1

G∗1n(x)

∫ x

0
tG∗1n(t )d t ,

is the nonparametric estimator of δ̄WT1
(x) under right-censoring.

3. PROPERTIES OF THE ESTIMATORS

This Section examines the recursive and asymptotic properties of the nonparametric
kernel estimator for the WDCPI measure under right-censoring.

The following theorem outlines the recursive property of the kernel estimator for
Eq. (4), demonstrating its recursive calculation.

THEOREM 2. Given ξ̄W ∗n(x) is the kernel estimator of ξ̄WG1G2
(x) under the right-

censoredα−mixing condition, then the estimator exhibits the recursive property, as expressed
in Eq. (9):
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ξ̄W ∗
n
(x) = lnG∗2n(x)δ̄

W∗
1n (x)+

n− 1
n

G∗1(n−1)(x)

G∗1n(x)

×
�

ξ̄W ∗
n−1
(x)− lnG∗2(n−1)(x)δ̄

W∗
1(n−1)(x)
�

−n− 1
n

ln
�n− 1

n

�

1
G∗1n(x)

∫ x

0
tG∗1(n−1)(t )d t

− 1
nG∗1n(x)

∫ x

0
t ĪY1
(t ) ln
� ĪY2
(t )

n

�

d t (9)

− 1
nG∗1n(x)

�

(n− 1)S1+ S2

�

,

where

S1 =
∞
∑

i=1

(−1)i+1

i

∫ x

0

� ĪY2
(t )

(n− 1)G∗2(n−1)(t )

�i

tG∗1(n−1)(t )d t ,

S2 =
∞
∑

i=1

(−1)i+1

i

∫ x

0

� (n− 1)G∗2(n−1)(t )

ĪY2
(t )

�i

t ĪY1
(t )d t ,

ĪY j
(t ) =
∫ t

0

∫ u

0

Kn(v −Yi n)
1−Ri (Yi n)

d vd u, j ∈ {1,2}.

PROOF. From Eq. (8), we have

G∗1n(x)
�

lnG∗2n(x)δ̄
W∗
1n (x)− ξ̄

W ∗
n
(x)
�

=
∫ x

0
tG∗1n(t ) lnG∗2n(t )d t . (10)

By substituting n with n− 1 in Eq. (10), we obtain:

G∗1(n−1)(x)
�

lnG∗2(n−1)(x)δ̄
W∗
1(n−1)(x)− ξ̄

W ∗n−1(x)
�

=
∫ x

0 tG∗1(n−1)(t ) lnG∗2(n−1)(t )d t . (11)

For j ∈ {1, 2}, using the recursive formula of G∗j n(t ), we get
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G∗1n(x)
�

lnG∗2n(x)δ̄
W∗
1n (x)− ξ̄

W ∗
n
(x)
�

=
∫ x

0

n− 1
n

tG∗1(n−1)(t ) ln
§n− 1

n
G∗2(n−1)(t )+

ĪY2
(t )

n

ª

d t

+
1
n

∫ x

0
t ĪY1
(t ) ln
§n− 1

n
G∗2(n−1)(t )+

ĪY2
(t )

n

ª

d t ,

= E6+ F6, (12)

where

E6 =
∫ x

0

n− 1
n

tG∗1(n−1)(t ) ln
§n− 1

n
G∗2(n−1)(t )+

ĪY2(t )

n

ª

d t

and

F6 =
1
n

∫ x

0
t ĪY1
(t ) ln
§n− 1

n
G∗2(n−1)(t )+

ĪY2
(t )

n

ª

d t .

Applying Eq. (11), we derive:

E6 =
n− 1

n
G∗1(n−1)(x)
�

lnG∗2(n−1)(x)δ̄
W∗
1(n−1)(x)− ξ̄

W ∗
n−1
(x)
�

+
n− 1

n
ln
�n− 1

n

�
∫ x

0
tG∗1(n−1)(t )d t +

n− 1
n

S1 (13)

and

F6 =
1
n

∫ x

0
t ĪY1
(t ) ln
§ ĪY2
(t )

n

�

1+
(n− 1)G∗2(n−1)(t )

ĪY2
(t )

�ª

d t ,

=
1
n

∫ x

0
t ĪY1
(t ) ln
§ ĪY2
(t )

n

ª

d t +
S2

n
. (14)

By substituting Equations (13) and (14) into Eq. (12) and rearranging terms, we arrive
at Eq. (9). 2

The following theorem discusses the consistency property of kernel estimator of Eq. (4)
based on right-censored case.

THEOREM 3. For some positive constants m and N, if

1. the second order kernel K(·) satisfies the following conditions:

A1: K(·) is symmetric probability function.

A2: For α ∈ {β : K(β) ̸= 0}; m <K(α)<N.
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A3:
∫ ∞

−∞
K(t )d t =1,
∫ ∞

−∞
K2(t )d t <∞ and

∫ ∞

−∞
t 2K(t )d t <∞.

A4:
∫ ∞

−∞

�

�K(t )
�

�d t <∞, sup
�

�K(t )
�

�<∞ and lim
|t |→∞

�

�tK(t )
�

�=0,

2. suppose the derivatives of the density functions, g (1)i (t ), g (2)i (t ) exist and g (3)i (t ) is
bounded, for i = 1,2,

3. the joint probability density g1(x, y; s) of the random variables T1r and T1(r+s) exists
and satisfies

|g1(x, y; s)− g1(x)g1(y)| ≤M <∞, for all x, y and s ≥ 1,

where {T1r } is strong mixing, such that
∞
∑

s=1

[α(s)]a <∞, for 0 < a < 1/2 and a

similar assumption is made for the random vector {T2r },

4. the bandwidth parameters satisfy
1
n

n
∑

r=1

� hr
hn

�2 → γ2 <∞,
1
n

n
∑

r=1

hr
hn
→ η1 <∞ and

hn→ 0, nhn tends to infinity, when n goes to infinity,

then Eq. (8) is a consistent estimator of Eq. (4).

PROOF. Define

V (x) =
∫ x

0
tG1(t ) lnG2(t )d t

and

V ∗n (x) =
∫ x

0
tG∗1n(t ) lnG∗2n(t )d t ,

to simplify the notation. With these definitions, we can express

ξ̄WG1G2
(x) = lnG2(x)δ̄

W
T1
(x)−

V (x)
G1(x)

and

ξ̄W ∗
n
(x) = lnG∗2n(x)δ̄

W∗
1n (x)−

V ∗n (x)
G∗1n(x)

.

Using Taylor’s series expansion, we get

lnG∗2n(t ) = lnG2(t )+
G∗2n(t )−G2(t )

G2(t )
+E⋆,
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where

E⋆ =−
∫ 1

0

(1− ε)
�

G∗2n(t )−G2(t )
�2

�

G2(t )+ ε[G∗2n(t )−G2(t )]
	2 dε.

Hence, we get

t lnG∗2n(t )G
∗
1n(t ) = t lnG2(t )G

∗
1n(t )+ tG∗1n(t )

G∗2n(t )−G2(t )
G2(t )

+ tG∗1n(t )E⋆,

and

lnG∗2n(x)δ̄
W∗
1n (x) = lnG2(x)δ̄

W∗
1n (x)+ δ̄

W∗
1n (x)

G∗2n(x)−G2(x)
G2(x)

+ δ̄W∗1n (x)E⋆.

Then, we get

tG∗1n(t ) lnG∗2n(t )− tG1(t ) lnG2(t )

= [G∗1n(t )−G1(t )]t lnG2(t )+ t
[G∗1n(t )−G1(t )][G

∗
2n(t )−G2(t )]

G2(t )

+[G∗2n(t )−G2(t )]
tG1(t )
G2(t )

+ [G∗1n(t )−G1(t )]tE⋆+ tG1(t )E⋆ (15)

and

lnG∗2n(x)δ̄
W∗
1n (x)− lnG2(x)δ̄

W
T1
(x)

= [δ̄W∗1n (x)− δ̄
W
T1
(x)] lnG2(x)+

[δ̄W∗1n (x)− δ̄
W
T1
(x)][G∗2n(x)−G2(x)]

G2(x)

+[G∗2n(x)−G2(x)]
δ̄WT1
(x)

G2(x)
+ [δ̄W∗1n (x)− δ̄

W
T1
(x)]E⋆+ δ̄

W
T1
(x))E⋆. (16)

Hence, we get bias, variance and mean squared error (MSE) of V ∗n (x) as

Bias [V ∗n (x)] =
h2

nC1+γ2

2

∫ x

0

�

t lnG2(t )
∫ t

0
g (2)1 (u)d u +

tG1(t )
G2(t )

∫ t

0
g (2)2 (u)d u
�

d t

+O
�

1
nhn

�

+O(h2
n), (17)

Var [V ∗n (x)] =
C2+η1

nhn

∫ x

0

�

t 2 ln2 G2(t )
∫ t

0

g1(u)
1−R1(u)

d u
�

d t

+
C2+η1

nhn

∫ x

0

�

t
G1(t )
G2(t )

�2∫ t

0

g2(u)
1−R2(u)

d u
�

d t +O(h4
n) (18)
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and

MSE[V ∗n (x)] = O
�

1
nhn

�

+O(h4
n)−→ 0, as n goes to∞. (19)

Also, we have

δ̄W∗1n (x)− δ̄
W
T1
(x) =

∫ x
0 tG∗1n(t )d t − δ̄W∗1n (x)G

∗
1n(x)

G1(x)

�

1+Op (1)
�

. (20)

Then, we get

Bias
�

δ̄W∗1n (x)
�

=
h2

nC1+γ2

2G1(x)

�
∫ x

0
t
∫ t

0
g (2)1 (u)d ud t − δ̄WT1

(x)
∫ x

0
g (2)1 (t )d t
�

+O(h2
n) (21)

and

Var
�

δ̄W∗1n (x)
�

≍
C2+η1

nhn

1
G2

1 (x)

�
∫ x

0
t 2
∫ t

0

g1(u)d u
1−R1(u)

d t +
�

δ̄WT1
(x)
�2

×
∫ x

0

g1(t )
1−R1(t )

d t
�

. (22)

Using Eq.(16), we get bias and variance of lnG∗2n(x)δ̄
W∗
1n (x) as

Bias
�

lnG∗2n(x)δ̄
W∗
1n (x)
�

=
h2

nC1+γ2

2
lnG2(x)
G1(x)

�∫ x

0
t
∫ t

0
g (2)1 (u)d ud t − δ̄WT1

(x)
∫ x

0
g (2)1 (t )d t
�

+
h2

nC1+γ2

2

δ̄WT1
(x)

G2(x)

∫ x

0
g (2)2 (t )d t +
�

1
nhn

�

+O(h2
n), (23)

Var
�

lnG∗2n(x)δ̄
W∗
1n (x)
�

≍
C2+η1

nhn

(

ln2 G2(x)

Ḡ2
1 (x)

�
∫ x

0
t 2
∫ t

0

g1(u)d u
1−R1(u)

d t +
�

δ̄WT1
(x)
�2
∫ x

0

g1(t )
1−R1(t )

d t
�

+
� δ̄WT1

(x)

G2(x)

�2∫ x

0

g2(t )
1−R2(t )

d t







(24)
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and hence the MSE of lnG∗2n(x)δ̄
W∗
1n (x) is obtained as

MSE[lnG∗2n(x)δ̄
W∗
1n (x)] = O

�

1
nhn

�

+O(h4
n)−→ 0. (25)

We have ξ̄W ∗
n
(x) = lnG∗2n(x)δ̄

W∗
1n (x)−

V ∗n (t )
G∗1n(x)

, as n goes to infinity, using Equations

(19), (25) and Slutsky’s theorem the desired result obtain. 2

In the following theorem, we demonstrate that the MSE of the estimator in Eq. (4),
based on right-censored case, goes to zero when n goes to infinity.

THEOREM 4. Under the assumptions given in Theorem 3, the MSE of the estimator in
Eq. (8) approaches to zero, when n goes to infinity.

PROOF. We have,

V ∗n (x)
G∗1n(x)

−
V (x)
G1(x)

=
V ∗n (x)−

V (x)
G1(x)

G∗1n(x)

G1(x)

�

1+Op (1)
�

. (26)

Hence, using Equations (17), (18), (23), (24) and (26), we get

Bias[ξ̄W ∗
n
(x)]

=
h2

nC1+γ2

2
lnG2(x)
G1(x)

�∫ x

0
t
∫ t

0
g (2)1 (u)d ud t − δ̄WT1

(x)
∫ x

0
g (2)1 (t )d t
�

+
h2

nC1+γ2

2







δ̄WT1
(x)

G2(x)

∫ x

0
g (2)2 (t )d t − 1

G1(x)

∫ x

0
t lnG2(t )
∫ t

0
g (2)1 (u)d ud t







+
h2

nC1+γ2

2G1(x)

�∫ x

0

tG1(t )
G2(t )

∫ t

0
g (2)2 (u)d ud t +

V (x)
G1(x)

∫ x

0
g (2)1 (t )d t
�

+
�

1
nhn

�

+O(h2
n), (27)
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Var[ξ̄W ∗
n
(x)]

=
C2+η1

nhn

¨

ln2 G2(x)
G2

1 (x)

�
∫ x

0
t 2
∫ t

0

g1(u)d u
1−R1(u)

d t +
�

δ̄WT1
(x)
�2
∫ x

0

g1(t )d t
1−R1(t )

�

+
� δ̄WT1

(x)

G2(x)

�2∫ x

0

g2(t )d t
1−R2(t )







+
C2+η1

nhnG2
1 (x)

∫ x

0
t 2 ln2 G2(t )
∫ t

0

g1(u)d u
1−R1(u)

d t

+
C2+η1

nhnG2
1 (x)

¨

∫ x

0

� tG1(t )
G2(t )

�2∫ t

0

g2(u)d u
1−R2(u)

d t +
� V (x)

G1(x)

�2∫ x

0

g1(t )d t
1−R1(t )

«

+O(h4
n). (28)

When n goes to infinity, nhn→∞ and hn→ 0 in Equations (27) and (28), complete the
proof. 2

In the following theorem, we prove that the mean integrated squared error of the
estimator in Eq. (4), based on right-censored case, goes to zero when n goes to infinity.

THEOREM 5. Under the assumption given in Theorem 3, the mean integrated squared
error of the estimator in Eq. (8) tends to zero, when n goes to infinity.

PROOF. We have,

MISE
h

ξ̄W ∗
n
(x)
i

= E
∫

[ξ̄W ∗
n
(x)− ξ̄WG1G2

(x)]2d x,

≤
∫

E[ξ̄W ∗
n
(x)− ξ̄WG1G2

(x)]2d x =
∫

MSE[ξ̄W ∗
n
(x)]d x. (29)

Using Theorem 4 in Eq. (29), when n goes to infinity, the proof follows. 2

In the following theorem, we provided the almost sure convergence property of the
estimator in Eq. (4), based on the right-censored case.

THEOREM 6. Let ξ̄W ∗
n
(x) be the nonparametric estimator in Eq. (4) based on right-

censored sample. Suppose G1(x) and G2(x) satisfy the Lipschitz condition and for some
fixed point λ, 0 < λ <∞, the distribution function of censored variables, Li (·), satisfies
Li (λ) < 1; i=1,2. Moreover, if the second order kernel K(x) satisfies assumptions stated in
Theorem 3, then

sup
0≤x≤λ

�

�ξ̄W ∗
n
(x)− ξ̄WG1G2

(x)
�

� → 0 a.s .



236 K.V. Viswakala and E.I. Abdul Sathar

PROOF. We have,

ξ̄W ∗
n
(x)− ξ̄WG1G2

(x) =
�

lnG∗2n(x)δ̄
W∗
1n (x)− lnG2(x)δ̄

W
T1
(x)
�

−
�

V ∗n (x)
G∗1n(x)

−
V (x)
G1(x)

�

.

Using Equations (15) and (16), we get
�

�V ∗n (x)−V (x)
�

�

≈
∫ x

0
|t lnG2(t )| |G

∗
1n(t )−G1(t )|d t +

∫ x

0

tG1(t )
G2(t )

|G∗2n(t )−G2(t )|d t . (30)

Also, we have
�

�

�δ̄W∗1n (x)− δ̄
W
T1
(x)
�

�

� =

∫ x
0 t
�

�G∗1n(t )−G1(t )
�

�d t

G∗1n(x)
+ δ̄WT1

(x)
�

�G∗1n(x)−G1(x)
�

�

G∗1n(x)
. (31)

Moreover, we have
�

�

�

�

V ∗n (x)
G∗1n(x)

−
V (x)
G1(x)

�

�

�

�

=
|V ∗n (x)−V (x)|

G∗1n(x)
+
V (x)
G1(x)

�

�G∗1n(x)−G1(x)
�

�

G∗1n(x)
. (32)

Also, we can express
�

�

�lnG∗2n(x)δ̄
W∗
1n (x)− lnG2(x)δ̄

W
T1
(x)
�

�

�

≈
�

�

�δ̄W∗1n (x)− δ̄
W
T1
(x)
�

�

� |lnG2(x)|+ |G
∗
2n(x)−G2(x)|
�

�

�

�

δ̄WT1
(x)

G2(x)

�

�

�

�

. (33)

Using the almost sure convergence property of the kernel estimator suggested by Cai
and Roussas (1992) and Cai (1998), we get

sup
0≤x≤λ

�

�G∗i n(x)−Gi (x)
�

� → 0 a.s .; i = 1,2.

Using this, the proof immediately follows from Equations (30)–(33). 2

The following theorem discusses the asymptotic normality of kernel estimator in
Eq. (4) based on right-censored case.

THEOREM 7. Assume that the assumptions stated in Theorem 3 hold true. If x is a
point of continuity of G1(x) and G2(x) with G1(x) > 0 and G2(x) > 0 and for some fixed
point λ, 0< λ<∞ such that if x ∈ [0,λ],

Æ

nhn

�

ξ̄W ∗
n
(x)− ξ̄WG1G2

(x)
�

→N
�

0,σ2

ξ̄W ∗
n

�

,

with σ2

ξ̄W ∗
n

= nhnVar[ξ̄W ∗
n
(x)].
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PROOF. We have,

p

nhn

�

ξ̄W ∗
n
(x)− ξ̄WG1G2

(x)
�

=
Æ

nhn

�

�

lnG∗2n(x)δ̄
W∗
1n (x)− lnG2(x)δ̄

W
T1
(x)
�

−
�

V ∗n (x)
G∗1n(x)

−
V (x)
G1(x)

��

.

Using Equations (16) and (30)-(33), we get

p

nhn

�

ξ̄W ∗
n
(x)− ξ̄WG1G2

(x)
�

=
Æ

nhn
lnG2(x)
G1(x)

�∫ x

0
t
∫ t

0

�

g ∗1n(u)− g1(u)
�

d ud t

+δ̄WT1
(x)
∫ x

0

�

g ∗1n(t )− g1(t )
�

d t
�

+
Æ

nhn

δ̄WT1
(x)

G2(x)

∫ x

0

�

g ∗2n(t )− g2(t )
�

d t

−
p

nhn

G1(x)

�∫ x

0
t lnG2(t )
∫ t

0

�

g ∗1n(u)− g1(u)
�

d ud t

+
∫ x

0

tG1(t )
G2(t )

∫ t

0

�

g ∗2n(u)− g2(u)
�

d ud t −
V (x)
G1(x)

∫ x

0

�

g ∗1n(t )− g1(t )
�

d t
�

.

(34)

Using the asymptotic normality property of the kernel density estimator from Masry
(1986) and Cai (1998), we get

Æ

nhn

�

g ∗i n(t )− gi (t )
�

→N
�

0,σ2
i+

�

, σ2
i+ =C2+η1

gi (t )d t
1−Ri (t )

; i = 1,2.

Thus, the proof is established by Eq. (34). 2

In the following Section, we present a Monte-Carlo simulation study to evaluate
the estimator’s performance, recommend an empirical competitor for the proposed
estimator, and provide comparisons based on bias and MSE. We also examine a real-
world data application.

4. SIMULATION STUDY

To generate dependent data, we used the AR(1) model to produce random variables. We
simulated 350 simulated samples of the form Ti r =

p

(1−ρ2)|Xi r |, where i =1 and 2,
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Figure 2 – Histogram of ξ̄ W ∗
n
(x) with normal density curve from sample of size 200.

r = {1,2, . . . , 350}. The variables {Xi r } were generated using an AR(1) with parameter
ρ = 0.5 and white noise parameters (0, 1) and (0, 2), respectively. The resulting Ti r
values are stationary and α−mixing, following half normal densities with parameters
1 and 2 respectively. Exponential distributions with parameters 1 and 2 were used for
censoring observations. We used the Epanechnikov kernel function and selected the
optimal bandwidth for the recursive kernel estimator, as discussed in Yousri (2014).

We repeated the method 200 times to verify that the proposed estimator exhibits
acceptable asymptotic normality. The resulting histograms of the estimator in Eq. (8)
are shown in Figure 2. We tested AIC and BIC in every situation and passed each time.

The simulation study and the data in Table 1 validate the estimator’s performance
in terms of MISE and confidence interval (CI) estimates.

In the next sub-Section, we propose an empirical estimator to numerically compare
the behaviour of the estimators based on their bias and MSE.

4.0.1. Comparative study
Let {Ti r }1≤r≤n , for i =1 and 2, be a sequence of n identical lifetime variables and be
censored on the right by independently and identically distributed random variables
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TABLE 1
Comparison of MISE of ξ̄ W ∗

n
(x) and 95% confidence interval of ξ̄ W ∗

n
(1.7).

n 50 100

ρ MISE 95% CI MISE 95% CI

-0.9 0.089 (0.284, 0.381) 0.036 (0.309, 0.378)
-0.6 0.010 (0.299, 0.378) 0.007 (0.330, 0.371)
-0.3 0.084 (0.306, 0.461) 0.018 (0.311, 0.431)
0 0.028 (0.303, 0.395) 0.021 (0.325, 0.386)
0.3 0.059 (0.293, 0.406) 0.011 (0.300, 0.385)
0.6 0.059 (0.319, 0.402) 0.018 (0.322, 0.381)
0.9 0.113 (0.281, 0.411) 0.014 (0.298, 0.378)

n 200 300

ρ MISE 95% CI MISE 95% CI

-0.9 0.011 (0.317, 0.370) 0.007 (0.324, 0.369)
-0.6 0.006 (0.333, 0.361) 0.003 (0.345, 0.359)
-0.3 0.006 (0.317, 0.410) 0.001 (0.323, 0.408)
0 0.005 (0.337, 0.376) 0.003 (0.349, 0.374)
0.3 0.008 (0.325, 0.392) 0.005 (0.331, 0.386)
0.6 0.006 (0.329, 0.367) 0.005 (0.335, 0.362)
0.9 0.008 (0.307, 0.364) 0.005 (0.314, 0.361)
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{Xi r }1≤r≤n , so that Xi r and Ti r are independent. In this censoring scheme one can ob-
serve (Yi r ,∆i r ), where Yi r = min(Ti r ,Xi r ) and ∆i r = I (Ti r ≤ Xi r ). Denote
{Yi r :n}1≤r≤n , the sample order statistics and let

M j =
n
∑

r=1

I (Y1r ≤ Y2 j :n), r = 1,2, . . . , n, (35)

the number of random variables of the first censored sample that are less than or equal
to j th order statistics of the second censored sample. Moreover, we rename by Y1( j ,1) <
Y1( j ,2) < . . . the random sample of the first censored sample belonging to (Y2 j :n ,Y2( j+1):n],
if any. Then, in the context of right-censoring, we get the empirical estimator of WDCPI
measure as

¯ξW
n

cen(x) = − 1
2n

n−1
∑

j=1











M j+1Y 2
2( j+1):n −M j Y

2
2 j :n −

M j+1−M j
∑

k=1
Y 2

1( j ,k)

G1+(x)
n
∑

r=1
I (X1r > Y2 j :n)











× ln









j

G2+(x)
n
∑

r=1
I (X2r > Y2 j :n









I (Y1 j :n ≤ x), (36)

where,

Gi+(x) = 1−
∏

1≤r≤n

�

1−
∆i r :n

n− r + 1

�I (Yi r :n≤x)

i ∈ {1,2}.

On the basis of bias and MSE, we compared the performance of the proposed esti-
mator in Eq. (8) with its corresponding competitor in Eq. (36). The bias and MSE of
the estimators are shown in Tables 2 and 3, respectively.

In the following sub-Section, we conduct a real data analysis to study the use of
estimators in real situations.

4.0.2. Real data analysis
In this sub-Section, we took a numerical example based on real life data set to illustrate
the performance of the estimators in Equations (8) and (36).

EXAMPLE 8. Consider the data from King et al. (1979), which discussed the tumour free
time (in days) of 30 rats in the unsaturated fat diet group, in order to evaluate the performance
of the estimators for estimating the WDCPI measure.



Estimation of WDCPI measure based on censored data 241

TABLE 2
Comparison of bias of the estimators ξ̄W ∗

n
(x) and ξ̄W

n
cen(x)

n 100 200 300

x ξ̄W ∗
n
(x) ξ̄W

n
cen(x) ξ̄W ∗

n
(x) ξ̄W

n
cen(x) ξ̄W ∗

n
(x) ξ̄W

n
cen(x)

1.1 0.113 0.298 0.047 0.206 0.029 0.164
1.3 0.245 0.424 0.150 0.231 0.069 0.171
1.5 0.338 0.456 0.229 0.277 0.193 0.229
1.7 0.355 0.596 0.259 0.425 0.251 0.339
1.9 0.406 0.812 0.283 0.594 0.276 0.508

TABLE 3
Comparison of MSE of the estimators ξ̄W ∗

n
(x) and ξ̄W

n
cen(x)

n 100 200 300

x ξ̄W ∗
n
(x) ξ̄W

n
cen(x) ξ̄W ∗

n
(x) ξ̄W

n
cen(x) ξ̄W ∗

n
(x) ξ̄W

n
cen(x)

1.1 0.013 0.129 0.004 0.052 0.001 0.029
1.3 0.060 0.185 0.027 0.054 0.005 0.029
1.5 0.115 0.213 0.053 0.084 0.037 0.054
1.7 0.126 0.355 0.067 0.193 0.064 0.115
1.9 0.165 0.659 0.080 0.371 0.077 0.259

TABLE 4
Fitting details of real data

Distribution Parameters AIC BIC

Example 8: Uniform (59.97, 178.39) -9.69 -9.65
Log-normal (4.54, 0.34) -9.79 -9.75
Gamma (8.472, 11.769) -9.85 -9.80
Extreme value (83.42, 26.18) -9.79 -9.75
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Figure 3 – Plot for the WDCPI measure and estimators of the tumour free time (in days) of 30 rats
in the unsaturated fat diet group.

We fitted the real example to four distributions based on AIC and BIC, as shown in Table
4. The bold figures in the table represent the better fit of two distributions. we use the
bootstrapping method to analyse the performance of estimators in real-world situations.
In Example 8, we use the gamma distribution as the original, the log-normal distribu-
tion as the suggested, and randomly selected censoring random variables as exponential
with parameters of 0.0009 and 0.0003, respectively. Figure 3 shows the theoretical and
estimators values of the WDCPI measure and Figure 4 depicts the relative efficiency of
the kernel estimator compared to its corresponding empirical estimator.

4.0.3. Conclusions
In this sub-Section, the conclusion of the numerical study is presented. We examined
the asymptotic properties of the kernel estimator and numerically compared it to the
empirical estimator, leading to the following conclusions.

The asymptotic normality of the kernel estimator is validated by Figure 2. Table 1
shows that as sample size increases, MISE and the size of the confidence interval both de-
crease, indicating improved estimator accuracy. Tables 2 and 3 show that as sample size
increases, bias and MSE decrease. The table shows that the proposed estimator outper-
forms its competitor in terms of bias and MSE. Additionally, the x values have a direct
influence on biases and MSEs. The simulation results demonstrate the effectiveness of
the proposed estimator under right-censoring schemes, which is essential for real-world
applications involving incomplete data.

The observations obtained from Figure 3 and Figure 4 are as follows: In Figure 3,
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Figure 4 – Relative efficiency of the kernel estimator with respect to the empirical estimator for
the WDCPI measure of the tumour free time (in days) of 30 rats in the unsaturated fat diet group.

as x increases, the theoretical value ξ̄WG1G2
(x) and the two estimators generally show an

increasing trend, indicating that the WDCPIM increases over x when the log-normal
distribution is chosen for fitting the data set instead of the gamma distribution under a
right censoring scheme. The kernel estimator ξ̄W ∗

n
(x) tends to closely follow the gen-

eral shape of the theoretical value ξ̄WG1G2
(x), although with some deviations. This indi-

cates that ξ̄W ∗
n
(x) slightly diverges in its estimation compared to the empirical estimator

ξ̄W
n

cen(x). However, in this example, ξ̄W ∗
n
(x) is observed to be the better estimator of

ξ̄WG1G2
(x) due to its closer alignment with the theoretical value.

Additionally, the relative efficiency of the kernel estimator with respect to the em-
pirical estimator, as depicted in Figure 4, shows that relative efficiency decreases as x
increases. However, the relative efficiency remains greater than 1, indicating that the
kernel estimator consistently outperforms the empirical estimator across the range of
x. This highlights the superiority of the kernel estimator in this context.
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