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SUMMARY

In a regression setting with a response vector and given regressor vectors, a typical question is to
what extent the response is related to these regressors, specifically, how well it can be approximated
by a linear combination of the latter. Classical methods for this question are based on statistical
models for the conditional distribution of the response, given the regressors. In the present paper
it is shown that various p-values resulting from this model-based approach have also a purely
data-analytic, model-free interpretation. This finding is derived in a rather general context. In
addition, we introduce equivalence regions, a reinterpretation of confidence regions in the model-
free context.
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1. INTRODUCTION

Statistical inference with general linear models is a well-established and indespensable
tool for data analysis. The standard output of statistical software for linear models in-
cludes least squares estimators of parameters and their standard erros as well as p-values
for various linear hypotheses. While the latter are based on certain model assumptions,
linear models can also be viewed as tools for purely exploratory data analysis. In such
a model-free context, one might wonder whether the p-values for, say, the relevance of
certain covariates are still meaningful. The surprising answer is yes, these p-values do
have a very precise and new interpretation.

To formulate a first result, suppose we observe a response vector y ∈Rn and p < n
linearly independent regressor vectors (regressors) x1, . . . , x p ∈ Rn . For a given integer

1 Corresponding Author. E-mail: lutz.duembgen@unibe.ch

https://doi.org/10.60923/issn.1973-2201/18816


66 L. Dümbgen and L. Davies

po ∈ {0, . . . , p − 1}, we would like to know whether the least squares approximation of
y by a linear combination ŷ of x1, . . . , x p , that is,
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with the standard Euclidean norm ∥ · ∥, is substantially better than the restricted least
squares approximation of y by a linear combination ŷo of x1, . . . , x po

only, where ŷo := 0
in case of po = 0. A classical, model-based answer is to assume that the x j are fixed while

y ∼ Nn

�
p
∑

j=1

β j x j ,σ
2I
�

, (1)

with an unknown parameter vectorβ ∈Rp and an unknown standard deviation σ > 0.
Then an exact p-value of the null hypothesis that

β j = 0 for po < j ≤ p

is given by

1−Fp−po ,n−p

�∥ŷ − ŷo∥2/(p − po)
∥y − ŷ∥2/(n− p)

�

, (2)

where Fk ,ℓ denotes the distribution function of Fisher’s F distribution with k and ℓ
degrees of freedom. Since ∥y − ŷo∥2 = ∥y − ŷ∥2 + ∥ŷ − ŷo∥2, one can deduce from
well-known connections between chi-squared, gamma, F and beta distributions that the
p-value (2) may be rewritten as

B(n−p)/2,(p−po )/2

� ∥y − ŷ∥2

∥y − ŷo∥2
�

, (3)

where Ba,b denotes the distribution function of the beta distribution Beta(a, b ) with
parameters a, b > 0.

Now let us view all observation vectors y and x1, . . . , x p as fixed. To measure to
what extent (x j )po< j≤p contributes substantially to the least squares fit ŷ, let ŷ∗ be the
least squares fit of y after replacing (x j )po< j≤p with a tuple (x∗j )po< j≤p of independent
random vectors x∗j ∼Nn(0, I ). A precise measure of the relevance of (x j )po< j≤p is given
by the probability that ∥y− ŷ∗∥2 is smaller than ∥y− ŷ∥2. The smaller this probability,
the higher is the relevance. Interestingly, it can be computed exactly and coincides with
the p-value in Eq. (3).

LEMMA 1. For arbitrary fixed, linearly independent vectors y, x1, . . . , x p ∈ Rn and
stochastically independent standard Gaussian random vectors x∗j ∈R

n , po < j ≤ p,

∥y − ŷ∗∥2

∥y − ŷo∥2
∼ Beta
�

(n− p)/2, (p − po)/2
�

.
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In particular,

P
�

∥y − ŷ∗∥2 ≤ ∥y − ŷ∥2
�

= B(n−p)/2,(p−po )/2

� ∥y − ŷ∥2

∥y − ŷo∥2
�

.

This Lemma is essentially a variant of a classical result about the angle between a
random linear subspace and a fixed vector, see for instance Theorem 1.1 of Frankl and
Maehara (1990). A direct and self-contained proof will be given at the beginning of
Section A. But Lemma 1 can be viewed as a special case of a more general connection
between the model-based and model-free point of view which is elaborated in Section 2.
In particular, the classical model-based p-values do not require a Gaussian distribution of
y, given (x j )1≤ j≤p , and for the model-free interpretation, the random tuple (x∗j )po< j≤p

may have different distributions all of which lead to the p-value in Eq. (3). In Section 3
we discuss “equivalence” regions. In the model-based context, these are confidence re-
gions for the unknown mean vector µ = E(y). Under the model-free point of view,
the interpretation of these regions is somewhat different. To illustrate the concept, we
describe relatively simple equivalence regions for a sparse signal vector.

Some final comments and an outlook to future work are given in Section 4. In par-
ticular, we explain how the considerations and results in the present paper are related
to previous work about permutation tests in regression settings, a key reference being
Freedman and Lane (1983) and a review of Winkler et al. (2014).

Technical details and proofs are deferred to Section A. Throughout this paper we use
standard results from multivariate statistics and linear models as presented in standard
textbooks, e.g. Mardia et al. (1979), Eaton (1983) and Scheffé (1959), without further
reference.

2. THE F TEST AND OTHER METHODS REVISITED

We consider arbitrary vectors y and x1, . . . , x p in Rn . At first we discuss the question
wether there is any association between y and (x j )1≤ j≤p . In the introduction, this cor-
responds to po = 0. In Section 2.3 we return to situations in which the contribution of
po ∈ {1, . . . , p − 1} regressors x1, . . . , x po

is not questioned. This includes linear regres-
sion models with an intercept, accommodated by the trivial regressor x1 = (1)

n
i=1.

Concerning the regressors x j , suppose the raw data are given by a data matrix with
n rows

[yi , w⊤i ] = [yi , wi ,1, . . . , wi ,d ], 1≤ i ≤ n,

containing the values of a response and d covariates for each observation. If the co-
variates are numerical or 0-1-valued, the usual multiple linear regression model would
consider the regressors x1 := (1)ni=1 and x j := (wi , j−1)

n
i=1, 2 ≤ j ≤ d + 1. More

complex models would also include the
�d

2

�

interaction vectors x j (a,b ) := (wi ,a wi ,b )
n
i=1,

1 ≤ a < b ≤ d . In general, with arbitrary types of covariates, one could think of
x j = ( f j (w i ))

n
i=1 with given basis functions f1, . . . , fp .
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Let us introduce some notation. The unit sphere of Rn is denoted by Sn , and On
stands for the set of orthogonal matrices in Rn×n .

2.1. The model-based approach

We consider the regressors x1, . . . , xp as fixed and y as a random vector. In settings with
random regressors, the subsequent considerations concern the conditional distribution
of y, given x1, . . . , xp . For simplicity we assume throughout that the distribution of y is
continuous, i.e. P r (y = x) = 0 for any x ∈ Rn .

The null hypothesis of no relationship between y and the regressors x1, . . . , xp can be
specified by describing a distribution of y which does not depend on the latter vectors
(or any other fixed regressors):

H0 : The random vector y has a spherically symmetric distribution on Rn .

That means, its length ∥y∥ and direction ∥y∥−1y are stochastically independent, where
∥y∥−1y ∼ Unif(Sn), the uniform distribution on the unit sphere Sn . It is well-known
that this hypothesis H0 encompasses the classical assumption that y ∼ Nn(0,σ2I ) for
some unknown σ > 0.

In order to derive p-values for H0, let S(y) = S(y, x1, . . . , y p ) be a test statistic such
that high values indicate a potential violation of H0. Then, a p-value for H0 is given by

π(y) := P
�

S(∥y∥u)≥ S(y)
�

�y
�

, (4)

where u ∼Unif(Sn) is independent from y. If S(y) is scale-invariant in the sense that

S(cv) = S(v) for all v ∈Rn \ {0} and c > 0, (5)

one can write
π(y) = 1−F(S(y)−), (6)

with the distribution function F of S(u),

F(x) := P(S(u)≤ x).

Here one could also consider a random vector z ∼Nn(0, I ) instead of u.

EXAMPLE 2 (F TEST). If x1, . . . , x p are linearly independent with p < n, and if S(y)
equals the F test statistic

S(y) :=
∥ŷ∥2/p

∥y − ŷ∥2/(n− p)
, (7)

then scale-invariance of the latter implies that the p-value π(y) is given by the simplified
formula in Eq. (6). Moreover, the distribution function F in Eq. (6) equals Fp,n−p , so
π(y) coincides with Eq. (2) in the special case of po = 0. This follows from a standard
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argument for linear models: let b1, b2, . . . , bn be an orthonormal basis of Rn such that
span(x1, . . . , x p ) = span(b1, . . . , b p ). Then z ∼ Nn(0, I ) has the same distribution as
z̃ =
∑n

i=1 zi b i , and

S(z̃ ) =

∑p
j=1 z2

j /p
∑n

i=p+1 z2
i /(n− p)

has distribution function Fp,n−p by definition of Fisher’s F distributions.

EXAMPLE 3 (MULTIPLE T TESTS). Suppose that the linear span V of the regressors
x1, . . . , x p satisfies q := dim(V) < n. Further let A be a subset of V ∩ Sn . With the or-
thogonal projection ŷ of y onto V, a possible test statistic is given by

S(y) := σ̂−1 sup
a∈A
|a⊤y| with σ̂ := (n− q)−1/2∥y − ŷ∥. (8)

Note that under H0, each term σ̂−1a⊤y follows student’s t distribution with n− q degrees
of freedom. This Example of S(·) is motivated by Tukey’s studentized maximum modulus
or studentized range test statistics (Miller, 1981).

EXAMPLE 4 (MULTIPLE F TESTS). Let p and x1, . . . , x p be arbitrary, and let Λ be a
family of subsets M of {1, . . . , p} such that the vectors x j , j ∈ M , are linearly independent
with #M < n. WithΠM denoting the orthogonal projection fromRn onto span(x j : j ∈M ),
a possible test statistic is given by

S(y) := max
M∈Λ

∥ΠM y∥2/#M
∥y −ΠM y∥2/(n− #M )

. (9)

The idea behind this test statistic is that possibly y = µ+ ϵ with a random vector ϵ having
spherically symmetric distribution and a fixed vector µ ∈Rn such that

∥ΠMµ∥
2 ≫ ∥µ−ΠMµ∥

2

for some M ∈Λ.

2.2. The model-free point of view

To elaborate on the connection between model-based and model-free approach, note
first that the null hypothesis H0 is equivalent to an orthogonal invariance property.

With d= denoting equality in distribution, the alternative formulation reads as follows:

H ′0 : T y d= y for any fixed T ∈On .
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Another equivalent formulation involves normalized Haar measure Haarn onOn . This
is the unique distribution of a random matrix H ∈ On with left-invariant distribution
in the sense that

T H d= H for any fixed T ∈On .

For a thorough account of Haar measure we refer to Eaton (1989); in Section A we
mention two explicit constructions of H and resulting properties. For the moment it
suffices to know that also

H⊤ d= H d= HT for any fixed T ∈On .

Moreover, for any fixed unit vector v ∈ Sn , the random vector H v is uniformly dis-
tributed on Sn . Now the null hypothesis H ′0 may be reformulated as follows:

H ′′0 : If H ∼Haarn is independent from y, then H y d= y.

The equivalence of the null hypotheses H0, H ′0 and H ′′0 is explained in Section A.
From now on suppose that the test statistic S(y, x1, . . . , x p ) is orthogonally invariant

in the sense that

S(T y,T x1, . . . ,T x p ) = S(y, x1, . . . , x p ) for all y ∈Rn and T ∈On . (10)

Since x 7→T x preserves inner products, a sufficient condition for orthogonal invariance
of the test statistic S is that S(y, x1, . . . , x p ) depends only on the inner products y⊤y,
y⊤x j and x⊤j x k , 1 ≤ j ≤ k ≤ p. Then, the p-value in Eq. (4) may be rewritten as
follows:

π(y) = P
�

S(∥y∥u, x1, . . . , x p )≥ S(y)
�

�y
�

= P
�

S(H y, x1, . . . , x p )≥ S(y)
�

�y
�

= P
�

S(y, H⊤x1, . . . , H⊤x p )≥ S(y)
�

�y
�

= P
�

S(y, H x1, . . . , H x p )≥ S(y, x1, . . . , x p )
�

�y
�

,

where H ∼Haarn is independent from y. If we adopt the model-free point of view and
consider all vectors y and x1, . . . , x p as fixed, we may write

π(y) = P
�

S(y, H x1, . . . , H x p )≥ S(y, x1, . . . , x p )
�

.

Thus, π(y)measures the strength of the apparent association between y and the regres-
sor tuple (x1, . . . , x p ), as quantified by the test statistic S(y, x1, . . . , x p ), by comparing
the latter value with S(y, H x1, . . . , H x p ). That means, the regressor tuple (x1, . . . , x p )
undergoes a random orthogonal transformation, and there is certainly no “true associ-
ation” between y and (H x1, . . . , H x p ). To make the latter point rigorous, note that if
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H , J ∼Haarn and u ∼Unif(Sn) are independent (while y is fixed), then J⊤H ∼Haarn
too, whence

S(y, H x1, . . . , H x p )
d= S(y, J⊤H x1, . . . , J⊤H x p )

= S(J y, H x1, . . . , H x p )
d= S(∥y∥u, H x1, . . . , H x p ).

Finally, recall that the method in the introduction with po = 0 amounts to replacing
the fixed regressors x1, . . . , x p with independent random vectors
x∗1, . . . , x∗p ∼Nn(0, I ). But in connection with the F test statistic, this has the same effect
as replacing the former with (H x1, . . . , H x p ). Indeed, in case of linearly independent
vectors x1, . . . , x p , the value of S(y) in Eq. (7) depends only on y and the p-dimensional
linear space span(x1, . . . , x p ). Moreover, the distributions of span(H x1, . . . , H x p ) and
of span(x∗1, . . . , x∗p ) coincide, see Section A.

2.3. Composite null models

Quite often, the potential influence of some regressors x1, . . . , x po
with 1≤ po < p is out

of question or not of primary interest, and the main question is whether the regressors
x po+1, . . . , x p are really relevant for the approximation of y. One possibility to deal
with that is to “residualize” the response y and the regressors x po+1, . . . , x p , that is, to
project them onto the orthogonal complement of span(x1, . . . , x po

). In case of po = 1
and x1 = (1)

n
i=1, this boils down to centering y and x2, . . . , x p .

More formally, assuming without loss of generality that x1, . . . , x po
are linearly in-

dependent, let b1, b2, . . . , bn be an orthonormal basis of Rn such that b1, . . . , b po
is a

basis of span(x1, . . . , x po
). With B = [b po+1, . . . , bn] ∈ Rn×(n−po ), the model Equation

(1) implies that

B⊤y ∼ Nn−po

�
p
∑

j=po+1

β j B
⊤x j ,σ

2I
�

.

Generally, the previous model-based and model-free considerations can be applied to
B⊤y ∈Rn−po in place of y.

Applying the model-based or model-free approach with the F test statistic in Eq. (7)
to the transformed observations B⊤y and B⊤x po+1, . . . , B⊤x p yields the p-value of Eq.
(3) in the introduction, see also the first part of the proof of Lemma 1.



72 L. Dümbgen and L. Davies

3. EQUIVALENCE REGIONS

3.1. General considerations

Model-based approach. LetM⊂Rn be a given set. We assume that y is a random vector
such that

y d= µ+ ϵ, (11)

with an unknown fixed parameter vectorµ ∈M and a random vector ϵwith spherically
invariant distribution on Rn , where P(ϵ = 0) = 0. Now, let
S(y) = S(y, x1, . . . , x p ) be a test statistic which is scale-invariant in y ̸= 0, and let S(0) =
0. For a given (small) number α ∈ (0,1) we define the equivalence region

Cα(y) =Cα(y, x1, . . . , x p ) :=
�

m ∈M : S(y −m)≤ κα
	

,

where κα is the (1−α)-quantile of the distribution of S(u) d= S(z ) with random vectors
u ∼ Unif(Sn) and z ∼ Nn(0, I ). This defines an (1− α) confidence region for µ in the
sense that in case of Eq. (11),

P(Cα(y) ∋µ) = P(S(z )≤ κα) ≥ 1−α.

Model-free interpretation. We consider y as fixed and assume in addition that
S(y, x1, . . . , x p ) is orthogonally invariant. Then, the equivalence region
Cα(y) = Cα(y, x1, . . . , x p ) consists of all vectors m ∈ M such that the association be-
tween y−m and the tuple (x1, . . . , x p ) is not substantially stronger than the association
between y −m and the randomly rotated tuple (H x1, . . . , H x p ), where H ∼ Haarn .
Precisely, the value S(y −m, x1, . . . , x p ), our measure of association, is not larger than
the (1−α)-quantile of S(y −m, H x1, . . . , H x p ).

Example 2 (continued) Let M = span(x1, . . . , x p ) = XRp with the matrix
X = [x1, . . . , x p] ∈Rn×p . Then, the equivalence region equals

Cα(y) =
�

Xη : η ∈Rp ,∥ŷ −Xη∥2 ≤ pF −1
p,n−p (1−α)σ̂

2(y)
	

,

where σ̂2(y) = ∥y−ŷ∥2/(n− p). The corresponding set C̃α(y) =
�

η ∈Rp : Xη ∈Cα(y)
	

is Scheffé’s well-known confidence ellipsoid for the unknown parameter β ∈ Rp such
that µ=Xβ.

3.2. Inference on a sparse signal

Suppose that p = n, and that the vectors x1, . . . , x n are linearly independent. In that case,
X := [x1, . . . , x n] is nonsingular, and assuming Eq. (11), the least squares estimator of
β :=X−1µ is given by β̂(y) :=X−1y. Writing X−1 = [a1, . . . ,an]

⊤, the Gauss–Markov
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estimator of βi equals β̂i (y) = a⊤i y. In case of y ∼ Nn(µ,σ2I ), it has distribution
N (βi ,∥a i∥2σ2) =N

�

βi , ((X
⊤X )−1)i iσ

2
�

.
Suppose that µ=Xβ is sparse in the sense that

∥β∥0 := #{i ≤ n :βi ̸= 0}

is relatively small compared with n. Then a possible test statistic for the null hypothesis
“µ= 0” is given by

Sℓ(y) = Sℓ(y, x1, . . . , x n) := G1(y)/Gℓ(y)

for some integer ℓ ∈ {2, . . . , n}, where G1(y) ≥ G2(y) ≥ · · · ≥ Gn(y) are the values
∥a1∥−1|a⊤1 y|, ∥a2∥−1|a⊤2 y|, . . . , ∥an∥−1|a⊤n y| in descending order. The idea behind this
choice is that Gℓ(y) depends mostly on the noise vector ϵ if ∥β∥0 < ℓ, while G1(y) is
mainly driven by µ in case of ∥β∥ ≫ 0. Scale-invariance of the test statistic
Sℓ(y, x1, . . . , x n) in y is obvious. Since X−1 = (X⊤X )−1X⊤, one may write ∥a i∥−2 =
(X⊤X )i i and a⊤i y =

�

(X⊤X )−1X⊤y
�

i , whence Sℓ(· · · ) is also orthogonally invariant.
Denoting the (1−α)-quantile of Sℓ(z ), z ∼Nn(0, I ), with κℓ,α and settingM=Rn ,

we obtain the equivalence region

Cℓ,α(y) :=
�

m ∈Rn : Sℓ(y −m)≤ κℓ,α
	

.

This region is rather useless per se. But if we restrict our attention to vectors m = X b,
where ∥b∥0 is bounded by a given number, we end up with the equivalence regions

C̃k ,ℓ,α(y) :=
�

b ∈Rn : ∥b∥0 ≤ k , Sℓ(y −X b)≤ κℓ,α
	

, 1≤ k < n,

which are potentially useful in case of k < ℓ. In this manuscript we only prove a first
result about these equivalence regions.

LEMMA 5. Let

kℓ,α(y) := ℓ− 1−max
�

j − i : 1≤ i ≤ j ≤ ℓ,Gi (y)/G j (y)≤ κℓ,α
	

.

Then, C̃α,k ,ℓ(y) ̸= ; if and only if k ≥ kℓ,α(y).

In the model-based context, kℓ,α is a lower (1− α)-confidence bound for ∥β∥0, and
C̃k ,ℓ,α is a (1−α)-confidence region forβ under the additional assumption that ∥β∥0 ≤ k.

3.3. Special case: the Gaussian sequence model

Suppose that x1, . . . , x n is the standard basis of Rn . Then (Gi (z ))
n
i=1 has the same distri-

bution as
�

Φ̃−1(U(n+1−i))
�n

i=1, where U(1) < · · ·< U(n) are the order statistics of indepen-

dent random variables U1, . . . , Un ∼Unif[0,1], and Φ̃ is the distribution function of |z1|,
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that is, Φ̃(r ) = 2Φ(r )− 1 for r ≥ 0. Since U(n+1−ℓ) = 1− ℓ/n+Op (n
−1/2) as n→∞, a

reasonable choice for ℓ seems to be ℓ ≈ (1− Φ̃(1))n = 2Φ(−1)n ≈ 0.32 n. Then κℓ,α is
approximately the (1−α)-quantile of G1(z ) =max1≤i≤n |zi |=

p

2 log n(1+ op (1)).
Specifically, let n = 100 and ℓ= 32. Numerical computations (outlined in Section A)

yield κℓ,0.01 = 4.083.
Now we consider the model-based setting with y ∼ Nn(µ, I ) and and two different

choices for µ. The proof of Lemma 5 includes the construction of a particular vector
µ̂(y) = µ̂ℓ,α(y) in Cℓ,α(y) such that ∥µ̂∥0 = kℓ,α(y). Now we investigated the distri-
bution of the latter number, of the set {i ≤ n : µ̂i ̸= 0} and of the cosine of the angle
between µ and µ̂.

In the first scenario, we considered the sparse vector µ = (10,−6,3,0, . . . , 0)⊤. In
100’000 Monte Carlo simulations we estimated the joint distribution of

TP(y) :=
�

i ∈ {1,2,3} : µ̂i (y) ̸= 0
	

and FP(y) := #{i > 3 : µ̂i (y) ̸= 0},

the set of nonzero components ofµwhich were detected correctly (“true positives”) and
the number of “false positives”, respectively. Table 1 contains estimated probabilities
rounded to four digits. It turned out that FP(y)≥ 2 with estimated probability less than
10−4/2, and FP(y) ≥ 1 with estimated probability 0.0058. The first component of µ
was always identified correctly as non-zero, whereas the second and third component
stayed sometimes undetected.

In the second scenario, we considered the vector µ =
�

(−1)i−12−(i−1)/2�n
i=1. Al-

though ∥µ∥0 = n, the first four to six components ofµ contain the main signal, because
∥µ∥−2∑

i>4µ
2
i = 0.0625 and ∥µ∥−2∑

i>6µ
2
i < 0.0157. Figure 1 shows the (estimated)

distribution of kℓ,α(y). Recall that the latter is a lower (1− α)-confidence bound for
∥β∥0.

Finally, Figure 2 show boxplots of the distribution of

cos∠(µ, y) and cos∠(µ, µ̂)

for both scenarios. These plots illustrate that the sparse estimator µ̂ captures µ better
than the raw data y.

TABLE 1
Joint distribution of TP(y) and FP(y) in 1st scenario (in percent).

TP(y) = {1,2,3} {1,2} {1,3} {1} Otherwise Total

FP(y) = 0 11.13 82.70 0.35 5.24 0.00 99.42

FP(y) = 1 0.12 0.42 0.00 0.04 0.00 0.58

Total 11.25 83.12 0.35 5.28 0.00 100.00
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Figure 1 – Distribution of kℓ,α(y) in 2nd scenario.
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Figure 2 – Distribution of cos∠(µ, y) and cos∠(µ, µ̂) in 1st scenario (left) and 2nd scenario (right).
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4. FINAL COMMENTS AND OUTLOOK

Let us relate the considerations in the present paper to research about permutation tests
in general regression models. We start from the model-based approach with y =Xβ+ϵ
with fixed X = [x1, . . . , x p] ∈ Rn×p , β ∈ Rp and a random error ϵ ∈ Rn . When test-
ing the null hypothesis that (β j )po< j≤p = 0, the goal is to relax the assumption of a
spherically symmetric distribution of ϵ to assuming exchangeability only. That is, for
any fixed permutation τ of {1, . . . , n}, the distribution of τ(ϵ) coincides with the dis-
tribution of ϵ, where τ(v) := (vτ(i))

n
i=1 for v ∈ Rn . Indeed, if po = 0 or po = 1 and

x1 = (1)
n
i=1, the null hypothesis can be tested exactly with a permutation test in which

the original data (y,X ) are compared with (τ(y),X ) for all (or many randomly chosen)
permutations τ. In other cases, however, it is not obvious how to perform a valid permu-
tation test. Kennedy (1995) describes potential pitfalls, and Winkler et al. (2014) provide
a good overview of proposed permutation schemes. Apart from the aforementioned
simple setting, all these proposals are justified by asymptotic considerations only. A
particularly interesting reference is Freedman and Lane (1983), because they motivated
their permutation test also by the wish to interpret the resulting p-values in a model-
free way. Their approach works as follows: Let ϵ̂o := y − ŷo be the residual vector
under the null model. Then they propose to compare the F test statistic for the original
observations (y,X ) with the F test statistic applied to (ŷo + τ(ϵ̂o),X ). The collection
of data (ŷo + τ(ϵ̂o),X ), where τ is an arbitrary permutation of {1, . . . , n}, serves as a
data-generated reference set of data to be compared with the original (y,X ). If the latter
sticks out in terms of the F test statistic, this is viewed as model-free evidence that the
regressors x j , po < j ≤ p, are relevant. Freedman and Lane (1983) show that under
certain regularity assumptions, the resulting p-value is asymptotically equivalent to the
classical p-value (2). Thus our Lemma 1 may be viewed as a computationally simple and
exact alternative to the paradigm of Freedman and Lane (1983).

Sections 3.2 and 3.3 describe a model-free approach to variable selection. Since it
is computationally intensive, at least for non-orthogonal regressors x1, . . . , x n , Davies
and Dümbgen (2024) develop an alternative simpler procedure for model-free variable
selection. The price to be paid for the simplification is that the selection procedure is
possibly conservative in the sense of selecting too few variables. The idea of Gaussian
covariate vectors might also be applicable for order selection in autoregressive time series
models.
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APPENDIX

A. TECHNICAL DETAILS AND PROOFS

A.1. Proof of Lemma 1

Note that y is the sum of the three orthogonal vectors ŷo , ŷ∗− ŷo and y − ŷ∗. Thus,

∥y − ŷ∗∥2

∥y − ŷo∥2
=
∥y − ŷo∥2−∥y − ŷ∗∥2

∥y − ŷo∥2
= 1−

∥ŷ∗− ŷo∥2

∥y − ŷo∥2
,

whence the claim is equivalent to

∥ŷ∗− ŷo∥2

∥y − ŷ∗∥2
∼ Beta
�

(p − po)/2, (n− p)/2
�

.

Let us first recall two well-known facts about a standard Gaussian random vector
z = (zi )

n
i=1 in Rn :

(F1) For any fixed matrix B ∈ On , the random vector Bz is standard Gaussian too.
Equivalently, for any orthonormal basis b1, . . . , bn ofRn , the random vector

∑n
i=1 zi b i

is standard Gaussian.
(F2) For any k ∈ {1, . . . , n− 1}, the random variable

∑k
j=1 z2

j

�
∑n

i=1 z2
i follows the beta

distribution with parameters k/2 and (n− k)/2.

Step 1: Reduction to the case of po = 0. Suppose that po ≥ 1. Let Πo be the orthogonal
projection from Rn onto span(x1, . . . , x po

), so ŷo = Πo y. The vector ŷ∗ − ŷo is the or-
thogonal projection of y−Πo y onto the linear span of the vectors x∗j−Πo x∗j , po < j ≤ p.

All these vectors lie in the (n− po)-dimensional linear space {x1, . . . , x po
}⊥, and the inde-

pendent random vectors x∗j−Πo x∗j , po < j ≤ p, follow a standard Gaussian distribution
on that space. The latter claim follows from (F1) when choosing an orthonormal basis
ofRn such that n− po of these basis vectors span {x1, . . . , x po

}⊥. Hence, we may assume
without loss of generality that po = 0 and ŷo = 0.

Step 2: The case of po = 0. We argue similarly as Frankl and Maehara (1990). With
the random matrix X := [x∗1, . . . , x∗p] ∈Rn×p , the orthogonal projection ŷ∗ is given by
ŷ∗ =X (X⊤X )−1X⊤y, and

∥ŷ∗∥2 = y⊤X (X⊤X )−1X⊤y.

The distribution of this random variable depends only on ∥y∥2. Indeed, let B ∈On such
that By = ∥y∥e with e = (1,0, . . . , 0)⊤. Since X̃ := BX has the same distribution as X ,
we may conclude that

∥ŷ∗∥2 = ∥y∥2e⊤X̃ (X̃
⊤

X̃ )−1X̃
⊤

e d= ∥y∥2e⊤X (X⊤X )−1X⊤e.
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But then we may replace y with ∥y∥∥z∥−1z with a standard Gaussian random vector z
which is independent from X . Conditional on X , this vector z has the same distribution
as
∑n

i=1 zi b i with an orthonormal basis b1, . . . , bn of Rn such that span(x∗1, . . . , x∗p ) =
span(b1, . . . , b p ), and the orthogonal projection of z onto the latter space equals

∑p
j=1 z j b j .

Consequently, conditional on X ,

∥ŷ∗∥2

∥y∥2
d=









n
∑

i=1

zi b i










−2







p
∑

j=1

z j b j










2
=

p
∑

j=1

z2
j

�

n
∑

i=1

z2
i

follows a beta distribution with parameters p/2 and (n − p)/2. Since this does not
depend on X , we may conclude that the ratio ∥ŷ∗∥2/∥y∥2 has distribution Beta(p/2, (n−
p)/2). 2

A.2. Haar measure onOn in a nutshell

Recall that Haarn is the unique probability measure on On such that a random matrix

H ∼ Haarn satisfies T H d= H for any fixed T ∈ On (left-invariance). For the reader’s
convenience, we explain a few well-known basic facts here.

Existence. To construct such a random matrix explicitly, let Z ∈ Rn×n be a random

matrix such that T Z d= Z for any fixed T ∈On , and rank(Z) = n almost surely. This is
true, for instance, if the n2 entries of Z are independent with distribution N (0,1). Then
one can easily verify that H := Z(Z⊤Z)−1/2 is a random orthogonal matrix with left-
invariant distribution. Another possible construction would be to apply Gram-Schmidt
orthogonalization to the columns z 1, z 2, . . . , z n of Z . This leads to a random matrix
H ∈On with left-invariant distribution, because the coefficients for the Gram–Schmidt
procedure involve only the inner products z⊤i z j , and these remain unchanged if Z is
replaced with T Z for some T ∈On .

Inversion-invariance and uniqueness. Let J , H be independent random matrices with

left-invariant distribution on On . By conditioning on J one can show that J⊤H d= H ,

and conditioning on H reveals that J⊤H = (H⊤ J )⊤ d= J⊤. Hence, J⊤ d= H . In the
special case that J is an independent copy of H , this shows that

H⊤ d= H .

And then, with the original J , we see that J = (J⊤)⊤ d=H⊤ d=H , i.e.

J d= H .
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Right-invariance. If H ∼Haarn , then its distribution is right-invariant in the sense that

HT d= H for any fixed T ∈On . This follows easily from left-invariance and inversion-
invariance.

Random linear subspaces ofRn . The second construction of H = [h1, . . . ,hn] via Gram–
Schmidt may be applied to a random matrix Z with independent columns z 1, z 2, . . . , z n ∼
Nn(0, I ). This shows that the first column of H has distribution Unif(Sn). Combined
with right-invariance, applied to permutation matrices, this shows that any column of
H has distribution Unif(Sn). Furthermore, for k ∈ {1,2, . . . , n} and arbitrary linearly
independent vectors x1, . . . , x k ∈Rn ,

span(z 1, . . . , z k )
d= span(H 1, . . . , H k )

d= span(H x1, . . . , H x k ).

The first equality follows from the construction of H . For the second one, let B ∈
Rk×k be a nonsingular matrix such that the columns of [t 1, . . . , t k] = [x1, . . . , x k]B are
orthonormal. Extending them to a orthonomal basis t 1, t 2, . . . , t n of Rn ,

span(H x1, . . . , H x k ) = H[x1, . . . , x k]R
k = H[t 1, . . . , t k]R

k ,

and this is the linear span of the first k columns of H[t 1, . . . , t n]. But by right-invariance,
the latter matrix has the same distribution as H , because [t 1, . . . , t n] ∈On .

A.3. Equivalence of the null hypotheses H0, H ′0 and H ′′0
Recall that we consider a random vector y with continuous distribution onRd . Suppose
first that H0 is true. Then y has the same distribution as ∥y∥∥z∥−1z , where y and z ∼
Nn(0, I ) are independent. For any fixed T ∈On , orthogonal invariance of the standard

Gaussian distribution implies that T z d= z , so

T y d= ∥y∥∥z∥−1T z = ∥y∥∥T z∥−1T z d= ∥y∥∥z∥−1z d= y.

Consequently, H ′0 is true as well.
Now suppose that H ′0 is true. If H ∼ Haarn and y are independent, then for any

measurable set B ⊂Rn ,

P(H y ∈ B) = EP(H y ∈ B |H ) = EP(y ∈ B |H ) = P(y ∈ B),

where P(H y ∈ B |H ) = P(Y ∈ B |H ) by H ′0.
Finally, suppose that H ′′0 is true. Then for any measurable set B ⊂Rn ,

P(y ∈ B) = P(H y ∈ B) = EP(H y ∈ B |y)
= EP
�

∥y∥u ∈ B
�

�y
�

= P
�

∥y∥u ∈ B
�

,

where u ∼Unif(Sn) and y are independent. Thus H0 is satisfied as well.
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A.4. Proof of Lemma 5

We first construct a particular point β̂= β̂ℓ,α(y) ∈Rn such that Sℓ(y−Xβ̂)≤ κℓ,α and

∥β̂∥0 = kℓ,α(y). To this end let (σ(1),σ(2), . . . ,σ(n)) be a permutation of (1,2, . . . , n)
such that Gi (y) = ∥aσ(i)∥−1|a⊤σ(i)y| for 1 ≤ i ≤ n. Let kℓ,α(y) = ℓ− 1− jo + io with
indices 1≤ io ≤ jo ≤ ℓ such that |Gio

(y)|/|G jo
(y)| ≤ κℓ,α. Now we set

β̂σ(i) :=











0 if io ≤ i ≤ jo or i > ℓ,
sign(a⊤σ(i)y)
�

|a⊤σ(i)y| − ∥aσ(i)∥Gio
(y)
�

if 1≤ i < io ,

sign(a⊤σ(i)y)
�

|a⊤σ(i)y| − ∥aσ(i)∥G jo
(y)
�

if jo < i ≤ ℓ.

Obviously, this defines a vector β̂ ∈ Rn such that ∥β̂∥0 = kℓ,α(y). Note also that the

numbers ∥aσ(i)∥−1
�

�a⊤σ(i)(y −Xβ̂)
�

� are nonincreasing in i ∈ {1, . . . , n} with

∥aσ(1)∥
−1�
�a⊤σ(1)(y −Xβ̂)
�

� = Gio
(y), ∥aσ(ℓ)∥

−1�
�a⊤σ(ℓ)(y −Xβ̂)
�

� = G jo
(y).

Consequently, β̂ ∈ C̃k ,ℓ,α(y) for k ≥ kℓ,α(y).
On the other hand, let kℓ,α(y) > 0. We have to show that Sℓ(y − b) > κℓ,α(y) for

any b ∈ Rn with k := ∥b∥0 < kℓ,α(y). Then there exist indices 1 ≤ i(1) < i(2) < · · · <
i(n−k)≤ n and 1≤ j (1)< j (2)< · · ·< j (n−k)≤ n such that Gi(s)(y) =G j (s)(y−X b)
for 1 ≤ s ≤ n− k. But at least n− k − (n− ℓ) = ℓ− k of the indices j (1), . . . , j (n− k)
are contained in {1, . . . ,ℓ}. Consequently, if Sℓ(y −X b)≤ κℓ,α, then

κℓ,α ≥ G1(y −X b)/Gℓ(y −X b)

≥ G j (1)(y −X b)/G j (ℓ−k)(y −X b)

= Gi(1)(y)/Gi(ℓ−k)(y),

whence kℓ,α(y)≤ ℓ− 1− (i(ℓ− k)− i(1))≤ ℓ− 1− (ℓ− k − 1) = k, a contradiction to
k < kℓ,α(y). 2

A.5. Technical details for Section 3.3

For any κ≥ 1,

P
�

Sℓ(z )≤ κ
�

= P
�

Φ̃−1(U(n))≤ κ Φ̃
−1(U(n+1−ℓ))
�

= EP
�

U(n) ≤ Φ̃[κ Φ̃
−1(U(n+1−ℓ))]
�

�U(n+1−ℓ)
�

= E
�� Φ̃[κ Φ̃−1(U(n+1−ℓ))]−U(n+1−ℓ)

1−U(n+1−ℓ)

�ℓ−1�

,
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where the last step follows from the fact that conditionally on U(n+1−ℓ), the random
variable U(n) has the same distribution as the maximum of ℓ− 1 independent random
variables with uniform distirbution on [U(n+1−ℓ), 1]. Since U(n+1−ℓ) has distribution
Beta(n+ 1− ℓ,ℓ), the latter expectation may be expressed as

∫ 1

0

� Φ̃[κ Φ̃−1(B−1(u))]−B−1(u)
1−B−1(u)

�ℓ−1
d u,

where B−1 is the quantile function of Beta(n+ 1−ℓ,ℓ). This integral can be computed
numerically, and the quantile κℓ,α can be found via bisection.
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