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SUMMARY

In a regression setting with a response vector and given regressor vectors, a typical question is to
what extent the response is related to these regressors, specifically, how well it can be approximated
by a linear combination of the latter. Classical methods for this question are based on statistical
models for the conditional distribution of the response, given the regressors. In the present paper
it is shown that various p-values resulting from this model-based approach have also a purely
data-analytic, model-free interpretation. This finding is derived in a rather general context. In
addition, we introduce equivalence regions, a reinterpretation of confidence regions in the model-
free context.
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1. INTRODUCTION

Statistical inference with general linear models is a well-established and indespensable
tool for data analysis. The standard output of statistical software for linear models in-
cludes least squares estimators of parameters and their standard erros as well as p-values
for various linear hypotheses. While the latter are based on certain model assumptions,
linear models can also be viewed as tools for purely exploratory data analysis. In such
a model-free context, one might wonder whether the p-values for, say, the relevance of
certain covariates are still meaningful. The surprising answer is yes, these p-values do
have a very precise and new interpretation.

To formulate a first result, suppose we observe a response vector y € R” and p < n
linearly independent regressor vectors (regressors) xy,...,x , € R”. For a given integer
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2, €10,..., p — 1}, we would like to know whether the least squares approximation of
y by alinear combination y of x,,...,x ,, that is,
2 L 2
=31 = min[y—>25,x |
j=1
with the standard Euclidean norm || - ||, is substantially better than the restricted least

. . . . . A A
squares approximation of y by alinear combinationy, of x,,...,x, only, wherey :=0

P

in case of p, = 0. A classical, model-based answer is to assume that the x j are fixed while

y~ Nn<zpjﬁ;‘x}w021)» )
j=1

with an unknown parameter vector 8 € R? and an unknown standard deviation o > 0.
Then an exact p-value of the null hypothesis that

ﬁ]-:O forp,<j<p
is given by
1—F

A N
PR ly =31R/(n—p)

where F, , denotes the distribution function of Fisher’s F distribution with & and £
degrees of freedom. Since |ly — 3, |1* = lly —|* + 1|9 — ,||* one can deduce from
well-known connections between chi-squared, gamma, F and beta distributions that the

p-value (2) may be rewritten as

=17 ) o
lly =3,
where B, , denotes the distribution function of the beta distribution Beta(a, ) with

parameters a, b > 0.
Now let us view all observation vectors y and x,...,x , as fixed. To measure to

B(n—p)/zxp—pa)/z(

what extent (x;) contributes substantially to the least squares fit y, let 3" be the

Po<J<p

least squares fit of y after replacing (x;) with a tuple (x7) of independent

Po<J<p Po<J<p

random vectors X~ N, (0,1). A precise measure of the relevance of (x ), <, is given
by the probability that ||y —9 || is smaller than ||y —9||*. The smaller this probability,
the higher is the relevance. Interestingly, it can be computed exactly and coincides with

the p-value in Eq. (3).

LEMMA 1. For arbitrary fixed, linearly independent vectors y,x,,...,x, € R” and
stochastically independent standard Gaussian random vectors X ER, p,<j<ps

ly —3"I”

T Beta((n— p)/2,(p — p,)/2).
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In particular,

lly =31 )
=3P

This Lemma is essentially a variant of a classical result about the angle between a
random linear subspace and a fixed vector, see for instance Theorem 1.1 of Frankl and
Maehara (1990). A direct and self-contained proof will be given at the beginning of
Section A. But Lemma 1 can be viewed as a special case of a more general connection
between the model-based and model-free point of view which is elaborated in Section 2.
In particular, the classical model-based p-values do not require a Gaussian distribution of
y, given (x;) <, <,, and for the modelfree interpretation, the random tuple (%), <j<p
may have different distributions all of which lead to the p-value in Eq. (3). In Section 3
we discuss “equivalence” regions. In the model-based context, these are confidence re-
gions for the unknown mean vector u = E(y). Under the model-ree point of view,
the interpretation of these regions is somewhat different. To illustrate the concept, we
describe relatively simple equivalence regions for a sparse signal vector.

Some final comments and an outlook to future work are given in Section 4. In par-
ticular, we explain how the considerations and results in the present paper are related
to previous work about permutation tests in regression settings, a key reference being
Freedman and Lane (1983) and a review of Winkler et al. (2014).

Technical details and proofs are deferred to Section A. Throughout this paper we use
standard results from multivariate statistics and linear models as presented in standard
textbooks, e.g. Mardia et al. (1979), Eaton (1983) and Scheffé (1959), without further
reference.

Blly =3I <lly—=3IF) = B(n—p)/Z,(p—m)/Z(

2. THEF TEST AND OTHER METHODS REVISITED

We consider arbitrary vectors y and x,...,x, in R”. At first we discuss the question

P
wether there is any association between y and (x;);; <, In the introduction, this cor-
responds to p, = 0. In Section 2.3 we return to situations in which the contribution of

po €{1,...,p— 1} regressors xy,...,x,, is not questioned. This includes linear regres-

sion models with an intercept, accommodated by the trivial regressor x; = (1)”_,.
Concerning the regressors x ;, suppose the raw data are given by a data matrix with
7 rows

[%'a‘wiT] =Dowipmwigl, 1<i<n,

containing the values of a response and d covariates for each observation. If the co-
variates are numerical or O-1-valued, the usual multiple linear regression model would
consider the regressors x; := (1)7_; and x; := (w; ;_)l_, 2 < ] < d+1. More
complex models would also include the (”2{) interaction vectors x ;, ;) = (W, ,@; ;)7
1 <a < b <d. In general, with arbitrary types of covariates, one could think of

x; = (f;(w;)){_, with given basis functions f;,..., f,.
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Let us introduce some notation. The unit sphere of R” is denoted by S, and O,
stands for the set of orthogonal matrices in R”*”.

2.1.  The model-based approach

We consider the regressors x,...,x, as fixed and y as a random vector. In settings with

random regressors, the subsequent considerations concern the conditional distribution
ofy, given x,,...,x,. For simplicity we assume throughout that the distribution of y is
continuous, i.e. Pr(y = x)=0{or any x € R".

The null hypothesis of no relationship between y and the regressors x;, ..., x, can be
specified by describing a distribution of y which does not depend on the latter vectors
(or any other fixed regressors):

H,: The random vector y has a spherically symmetric distribution on R”.

That means, its length ||y|| and direction ||y||™'y are stochastically independent, where
ly|I"'y ~ Unif(S,), the uniform distribution on the unit sphere S, . It is well-known
that this hypothesis H, encompasses the classical assumption that y ~ N,(0,0%I) for
some unknown o > 0.

In order to derive p-values for Hy, let S(y) = S(y,xy,...,5,) be a test statistic such

that high values indicate a potential violation of Hy. Then, a p-value for H, is given by

n(y) = P(S(lyllu) > S(»)|), “)
where # ~ Unif(S,)) is independent from y. If S(y) is scale-invariant in the sense that
S(cv) = S(v) forallv € R”\ {0} and ¢ >0, )
one can write
m(y) = 1=F(S(y)-), ©)
with the distribution function F of S(u),
F(x) := P(S(u) < x).
Here one could also consider a random vector z ~ N, (0, I) instead of #.

EXAMPLE 2 (F TEST). If xy,...,x, are linearly independent with p < n, and if S(y)

equals the F test statistic
1911/

S) = s—r

ly=3/(n—p)

then scale-invariance of the latter implies that the p-value r(y) is given by the simplified

formula in Eq. (6). Moreover, the distribution function ¥ in Eq. (6) equals ¥, ,_,, so

7(y) coincides with Eq. (2) in the special case of p, = 0. This follows from a standard

@)
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argument for linear models: let b, b,,...,b, be an orthonormal basis of R” such that
span(xy,...,x,) = span(by,...,b,). Then z ~ N,(0,I) has the same distribution as
z=>7" 1zlbl, and

iz /p
i1 Zi/(n—p)

by definition of Fisher’s F distributions.

S(3) =

has distribution function F p—p
EXAMPLE 3 (MULTIPLE T TESTS). Suppose that the linear span V of the regressors
Xiy..os X, satisfies g := dim(V) < n. Further let A be a subset of VNS, With the or-

thogonal projection y of y onto V, a possible test statistic is given by

S(y) == 6"'sup la'y| with & = (n—gq) /2

ach

ly —ll- ®)

Note that under Hy, each term 6—"a 'y follows student’s t distribution with n — q degrees
of freedom. This Example of S(-) is motivated by Tukey’s studentized maximum modulus
or studentized range test statistics (Miller, 1981).

EXAMPLE 4 (MULTIPLE F TESTS). Let p and x,... X, be arbitrary, and let A be a
Jamily of subsets M of {1,..., p} such that the vectors x ;, j € M, are linearly independent
with#M < n. With1Il,, denoting the orthogonal projection from R” onto span(x; : j € M),
a possible test statistic is given by

B 0L, |/
Sl VT vy T ©)

The idea behind this test statistic is that possibly y = u + e with a random vector & having
spherically symmetric distribution and a fixed vector u € R” such that

Ly el > {1 =T el

Jor some M € A.

2.2, The model-free point of view

To elaborate on the connection between model-based and model-free approach, note
first that the null hypothesis H, is equivalent to an orthogonal invariance property.

With = denoting equality in distribution, the alternative formulation reads as follows:

H;: Ty éy for any fixed T € O,,.



70 L. Diimbgen and L. Davies

Another equivalent formulation involves normalized Haar measure Haar, on @,,. This
is the unique distribution of a random matrix H € O, with left-invariant distribution
in the sense that

THLH for any ixed T € O,,.

For a thorough account of Haar measure we refer to Eaton (1989); in Section A we
mention two explicit constructions of H and resulting properties. For the moment it
suffices to know that also

H LgtHT for any fixed T € O,,.
Moreover, for any fixed unit vector v € S, the random vector Hv is uniformly dis-
tributed on S,,. Now the null hypothesis Hj may be reformulated as follows:
H{: If H ~ Haar, is independent from y, then Hy Z y.

The equivalence of the null hypotheses Hy, H; and H is explained in Section A.
From now on suppose that the test statistic S(y,x, ..., x,) is orthogonally invariant
in the sense that

S(Ty,Txl,...,Txp) = S(y,x1,...,xp) forallyeR”and T €0, (10)

Since x — T x preserves inner products, a sufficient condition for orthogonal invariance
of the test statistic § is that §(y,xy,...,x,) depends only on the inner products Ty,

yTx/- and x;xk, 1 <j <k < p. Then, the p-value in Eq. (4) may be rewritten as

follows:

S(llyllats x15--,% ) = S(¥) | )
S(Hy,xy,...,x,)
S(y,H'x,,....,H'x,)>S(y)|y)

(S Hxy,... . Hx ) > S(y,%,...,x,) | 9),

where H ~ Haar, is independent from y. If we adopt the model-free point of view and
consider all vectors y and x,...,x » 3 fixed, we may write

(
(
(

P
P
P
P

TE(y) = ]P(S(y’Hxl"'-:pr)ZS(ysxl)-“’xp))-

Thus, 7(y) measures the strength of the apparent association between y and the regres-
sor tuple (xy,...,x,), as quantified by the test statistic S(y,x,...,x,), by comparing
the latter value with S(y, Hx ... ,pr). That means, the regressor tuple (x,... ,xp)

undergoes a random orthogonal transformation, and there is certainly no “true associ-
ation” between y and (Hx,...,Hx ). To make the latter point rigorous, note that if
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H,J ~ Haar, and # ~ Unif(S,) are independent (while y is fixed), then J T H ~ Haar,
too, whence

d
S(y,Hx,,...,Hx,) = S(y,] " Hx,,....J 'Hx )
S(Jy,Hx,,...,Hx )

[l

SUIyllse, Hxy, ..., Hx ).

Finally, recall that the method in the introduction with p, = 0 amounts to replacing
the fixed regressors  x;,...,x, with independent random  vectors

X yees Xy~ N, (0,1). But in connection with the F test statistic, this has the same effect
as replacing the former with (Hx,...,Hx ). Indeed, in case of linearly independent
VECtOrs Xy, ..., X ,, the value of §(y) in Eq. (7) depends only on y and the p-dimensional
linear space span(xy,...,x ). Moreover, the distributions of span(Hx,...,Hx ) and

*

») coincide, see Section A.

of span(x7,...,x

2.3.  Composite null models

Quite often, the potential influence of some regressors x,...,x, with1< p, < pisout
of question or not of primary interest, and the main question is whether the regressors

X, 415---> %, are really relevant for the approximation of y. One possibility to deal

with that is to “residualize” the response y and the regressors x x ,, that is, to

oo
project them onto the orthogonal complement of span(x,...,x, ). In case of p, = 1

and x; = (1)_,, this boils down to centering y and x,,...,x,,.
More formally, assuming without loss of generality that x,,...,x,
dependent, let b, b,,...,b, be an orthonormal basis of R” such that &,,...,b, isa

7P
basis of span(xy,...,x,, ). With B =[b b,] € R?("=7:) the model Equation
(1) implies that

are linearly in-

RS EREER)

)4
T T 2
BTy ~ Nnm(_z BB %0 I>.
J=pot1

Generally, the previous model-based and model-free considerations can be applied to
B'y € R" 7 in place of y.

Applying the model-based or model-free approach with the F test statistic in Eq. (7)
to the transformed observations By and B' x ST ,BTx » yields the p-value of Eq.
(3) in the introduction, see also the first part of the proof of Lemma 1.
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3. EQUIVALENCE REGIONS

3.1.  General considerations

Model-based approach. Let Ml C R” be a given set. We assume that y is a random vector
such that

d
y = pte, (11)
with an unknown fixed parameter vector 4 € M and a random vector ¢ with spherically
invariant distribution on R”, where P(e = 0) = 0. Now, let

S»)=S(,xy,...,x,) be a test statistic which is scale-invariant in #0, and let §(0) =
0. For a given (small) number a € (0, 1) we define the equivalence region

C,0)=C(y,xp,-.05x,) = {meM:S(y—m)<x,},

where x, is the (1 — a)-quantile of the distribution of S() s (z) with random vectors
u ~ Unif(S,) and z ~ N, (0,I). This defines an (1 — ) confidence region for u in the
sense that in case of Eq. (11),

P(C,(n)2u) = P(S(z)<x,) = 1—a.

Model-free interpretation. We consider y as fixed and assume in addition that
S(,xy,...,x,) is orthogonally invariant. Then, the equivalence region

C,(y) = C,(y,xy,...,x,) consists of all vectors m € M such that the association be-
tween y —m and the tuple (xy,...,x ) is not substantially stronger than the association
between y —m and the randomly rotated tuple (Hx,...,Hx,), where H ~ Haar,.
Precisely, the value S(y —m,x,,...,x P)’ our measure of association, is not larger than
the (1—a)-quantile of S(y —m,Hx,...,Hx ).

Example 2 (continued) Let M = span(x;,...,x,) = XR? with the matrix
X =[x,... ,xp] € R”*?. Then, the equivalence region equals

C,(y) = {Xn:neR: |y —Xn|’ < pF,, ,(1—a)d*(y)},
where 82(y) = |ly—9|]%/(n—p). The corresponding set C,( {7; eR?:XneC,(y )i
is Scheffé’s well-known confidence ellipsoid for the unknown parameter 3 € R” suc

that u =XpJ.

3.2, Inference on a sparse signal

Suppose that p = 7, and that the vectors x, ..., x,, are linearly independent. In that case,
X :=[x{,...,x,]1s nonsmgular and assuming Eq (11), the least squares estimator of

B:=X"uisgiven byﬂ =X"'y. Writing X' =[a,,...,a4,]", the Gauss-Markov
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estimator of [3; equals /BAi(y) =a/y. Incase of y ~ N,(u4,021), it has distribution

N(Bylla;lPo?) = N(B,, (X X)™);0%).
Suppose that 4 = X 3 is sparse in the sense that

1Bl == #{i <n: 5, #0}

is relatively small compared with 7. Then a possible test statistic for the null hypothesis
“u =07 is given by

Se@) =8y, x15--05%,) = Gi(9)/Gy(y)

for some integer ¢ € {2,...,n}, where G,(y) > G,(y) > -+ > G,(y) are the values
a7 a! v, |2yl |a) ), ..., ||a,] 7", y| in descending order. The idea behind this
choice is that G,(y) depends mostly on the noise vector e if ||B]|, < ¢, while G,(y) is
mainly driven by u in case of ||B|| > 0. Scale-invariance of the test statistic
Sy(9,%45---,%,) in y is obvious. Since X! = (XTX)~'XT, one may write ||a;|| % =
(X'X),; and a;y = ((XTX)_lXTy)Z., whence §,(---) is also orthogonally invariant.

Denoting the (1—a)-quantile of §,(z), z ~ N, (0,1), with x, , and setting M = R”,
we obtain the equivalence region

Croly) == {meR":S(y—m)<x,,}.

This region is rather useless per se. But if we restrict our attention to vectors m = X b,
where ||5|, is bounded by a given number, we end up with the equivalence regions

é/e,z,a(y) = {beR":||bll,<k,S(y—Xb)<x,,}, 1<k<n,

which are potentially useful in case of £ < £. In this manuscript we only prove a first
result about these equivalence regions.

LEMMA 5. Let

kp(y) =l —1—max{j—i:1<i<j<{,G,(y)/G,(») < x,}-

Then, éa)u(y) #0 if and only if k > ky (y).

In the model-based context, &, , is a lower (1— a)-confidence bound for || 3||o, and

(NTM, , 1sa(1—a)-confidence region for B under the additional assumption that || 8|, < k.

3.3, Special case: the Gaussian sequence model
Suppose that x4, ..., x,, is the standard basis of R”. Then (G;(z))”_, has the same distri-
bution as <&)71(U(n+l—i)))?:1’ where Uy <+ < U, are the order statistics of indepen-

dent random variables Uj,..., U, ~ Unif[0,1], and & is the distribution function of FAR
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that is, $(7) = 28(r)— 1 for r > 0. Since Uity = 1—{/n+ Op(n_1/2) asn — 00, a
reasonable choice for £ seems to be £ & (1—&(1))n = 28(—1)n ~ 0.32 7. Then Xy, 18

approximately the (1—a)-quantile of G,(z) = max,;,, |z;| = v/ 2logn(1+0,(1)).

Specifically, let 7 = 100 and ¢ = 32. Numerical computations (outlined in Section A)
yield x4 o, =4.083.

Now we consider the model-based setting with y ~ N, (u,I) and and two different
choices for u. The proof of Lemma 5 includes the construction of a particular vector
a(y) = gy () in C; ,(y) such that ||&ll, = &, ,(y). Now we investigated the distri-
bution of the latter number, of the set {i < 7 : 2; # 0} and of the cosine of the angle
between u and f.

In the first scenario, we considered the sparse vector u = (10,—6,3,0,...,O)T. In
100’000 Monte Carlo simulations we estimated the joint distribution of

TP(y) == {i €{1,2,3}: (;(y)#0} and FP(y) := #{i>3: 4;(y)#0},

the set of nonzero components of u which were detected correctly (“true positives”) and
the number of “false positives”, respectively. Table 1 contains estimated probabilities
rounded to four digits. It turned out that FP(yy) > 2 with estimated probability less than
107*/2, and FP(y) > 1 with estimated probability 0.0058. The first component of u
was always identified correctly as non-zero, whereas the second and third component
stayed sometimes undetected.

In the second scenario, we considered the vector u = ((—1)i*127(i*1)/ 2)?:1. Al-
though || u||, = 7, the first four to six components of u contain the main signal, because
][ 7230554 47 = 0.0625 and ||u|| ™2 3506 47 < 0.0157. Figure 1 shows the (estimated)
distribution of &, ,(y). Recall that the latter is a lower (1— a)-confidence bound for

1181lo-

Finally, Figure 2 show boxplots of the distribution of

cosZ(u,y) and cosZ(u, k)

for both scenarios. These plots illustrate that the sparse estimator @& captures u better
than the raw data y.

TABLE 1
Joint distribution of TP(y) and FP(y) in 1* scenario (in percent).

TP(y)=  {1,2,3} {1,2} {1,3} {1} Otherwise Total

FP(y)=0 11.13 8270 035 5.24 0.00 99.42
1 0.12 0.42 0.00 0.04 0.00 0.58

Total 11.25 83.12 035 5.28 0.00 100.00
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Figure 1 - Distribution of &, ,(y) in 2" scenario.
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Figure 2 - Distribution of cos Z(u,y) and cos Z(u, £) in 1 scenario (left) and 2"¢ scenario (right).
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4. FINAL COMMENTS AND OUTLOOK

Let us relate the considerations in the present paper to research about permutation tests
in general regression models. We start from the model-based approach withy =X 8 +¢
with fixed X = [x,...,x,] € R"*?, f € R? and a random error ¢ € R”. When test-
ing the null hypothesis that (5;), .;<, = 0, the goal is to relax the assumption of a

spherically symmetric distribution of ¢ to assuming exchangeability only. That is, for
any fixed permutation 7 of {1,...,7}, the distribution of 7(¢) coincides with the dis-
tribution of ¢, where 7(v) := (v,(;))7_, for v € R”. Indeed, if p, =0 or p, = 1 and
x; = (1)%_,, the null hypothesis can be tested exactly with a permutation test in which
the original data (y,X) are compared with (7(y),X) for all (or many randomly chosen)
permutations 7. In other cases, however, it is not obvious how to perform a valid permu-
tation test. Kennedy (1995) describes potential pitfalls, and Winkler et al. (2014) provide
a good overview of proposed permutation schemes. Apart from the aforementioned
simple setting, all these proposals are justified by asymptotic considerations only. A
particularly interesting reference is Freedman and Lane (1983), because they motivated
their permutation test also by the wish to interpret the resulting p-values in a model-
free way. Their approach works as follows: Let &, := y —_ be the residual vector
under the null model. Then they propose to compare the F test statistic for the original
observations (y,X) with the F test statistic applied to (¥, + 7(¢,),X). The collection
of data (9, + ©(¢,),X), where 7 is an arbitrary permutation of {1,...,7}, serves as a
data-generated reference set of data to be compared with the original (y, X). If the latter
sticks out in terms of the F test statistic, this is viewed as model-free evidence that the
regressors x;, p, < j < p, are relevant. Freedman and Lane (1983) show that under
certain regularity assumptions, the resulting p-value is asymptotically equivalent to the
classical p-value (2). Thus our Lemma 1 may be viewed as a computationally simple and
exact alternative to the paradigm of Freedman and Lane (1983).

Sections 3.2 and 3.3 describe a model-free approach to variable selection. Since it
is computationally intensive, at least for non-orthogonal regressors x,,...,x,, Davies
and Diimbgen (2024) develop an alternative simpler procedure for model-free variable
selection. The price to be paid for the simplification is that the selection procedure is
possibly conservative in the sense of selecting too few variables. The idea of Gaussian
covariate vectors might also be applicable for order selection in autoregressive time series
models.

ACKNOWLEDGEMENTS

The authors are grateful to a reviewer and the editor for constructive comments. Part
of this work was supported by Swiss National Science Foundation.



Model-Free Linear Regression 77

APPENDIX
A. TECHNICAL DETAILS AND PROOFS
A.1. Proof of Lemma 1

Note that y is the sum of the three orthogonal vectors y,, 9" —9, and y —5". Thus,

2
Al

S L O
[y =3, 1y —3,IP 1y — 3,17
whence the claim is equivalent to

[ Al

T~ Beta((p—p,)/2,(n—p)/2).

ly =5l

Let us first recall two well-known facts about a standard Gaussian random vector

z=(z;)’_ mR"
(F1) For any fixed matrix B € O,,, the random vector Bz is standard Gaussian too.
Equivalently, for any orthonormal basis &, ..., b, of R”, the random vector >, z;b,
is standard Gaussian.
(F2) Forany k € {1,...,n—1}, the random variable Zle 22/ ?_, z; follows the beta

7 1=1
distribution with parameters k/2 and (n — k) /2.

Step 1: Reduction to the case of p, =0. Suppose that p, > 1. Let IT, be the orthogonal
projection from R” onto span(x,...,x, ), so , =II,y. The vector " — 9, is the or-
thogonal projection of y—II y onto the linear span of the vectors x;—Il,x%, p, <] < p.
All these vectors lie in the (7 — p, )-dimensional linear space {x,...,x, }+, and the inde-
pendent random vectors x; =, x%, p, <] < p, follow a standard Gaussian distribution

on that space. The latter claim follows from (F1) when choosing an orthonormal basis
of R” such that n— p, of these basis vectors span {x,...,x, }+. Hence, we may assume

without loss of generality that p, =0and y, =0.

Step 2: The case of p, = 0. We argue similarly as Frankl and Maehara (1990). With
the random matrix X := [x},...,x}] € R"*?, the orthogonal projection §" is given by

P =X(X"X)"'X Ty, and
15°1F = » T XX X)X Ty,

The distribution of this random variable depends only on ||y||>. Indeed, let B € O, such
that By = ||y||e with e = (1,0,...,0)". Since X := BX has the same distribution as X,
we may conclude that

1571 = [lylPe™ XX %)% e £ [ly]Pe’ X(X X)X e.
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But then we may replace y with ||y||||z|| ™'z with a standard Gaussian random vector z
which is independent from X. Conditional on X, this vector z has the same distribution
as >.7_, z;b; with an orthonormal basis b,,...,b, of R” such that span(x7],.. ,x;) =

i=1“1"%

span(by,...,b ), and the orthogonal projection of z onto the latter space equals / _z;b;.

Consequently, conditional on X,

WL [San] 3me - Za15e

follows a beta distribution with parameters p/2 and (7 — p)/2. Since this does not
depend on X, we may conclude that the ratio ||y ||?/||y||* has distribution Beta(p /2, (n—

2)/2). m

A.2.  Haar measure on Q,, in a nutshell

Recall that Haar,, is the unique probability measure on @, such that a random matrix
H ~ Haar,, satisfies TH 2 H for any fixed T € O, (left-invariance). For the reader’s

convenience, we explain a few well-known basic facts here.

Existence. 'To construct such a random matrix explicitly, let Z € R”*” be a random
matrix such that TZ £ Z for any fixed T' € Q,,, and rank(Z) = » almost surely. This is
true, for instance, if the 72 entries of Z are independent with distribution N(0,1). Then
one can easily verify that H := Z(Z " Z)~"/? is a random orthogonal matrix with left-
invariant distribution. Another possible construction would be to apply Gram-Schmidt
orthogonalization to the columns z,,z,,...,z, of Z. This leads to a random matrix
H € O, with left-invariant distribution, because the coefficients for the Gram-Schmidt
procedure involve only the inner products Z;I—Z]-, and these remain unchanged if Z is

replaced with TZ for some T € O,,.

Inversion-invariance and uniqueness. Let J,H be independent random matrices with

left-invariant distribution on O, . By conditioning on J one can show that J'H=H,
S d

and conditioning on H reveals that JTH = (H'J)" = JT. Hence, ]T H. In the

special case that J is an independent copy of H, this shows that

H £H

And then, with the original J, we see that J =(J T)T dgri H,i.e.

JTLH
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Right-invariance. 1f H ~ Haar,, then its distribution is right-invariant in the sense that

HT £ H for any fixed T € O,. This follows easily from left-invariance and inversion-
invariance.

Random linear subspaces of R”.  The second constructionof H =[h,...,b ] viaGram-
Schmidt may be applied to a random matrix Z with independent columns z |, z,, ...z, ~
N, (0,I). This shows that the first column of H has distribution Unif(S,). Combined
with right-invariance, applied to permutation matrices, this shows that any column of
H has distribution Unif(S,). Furthermore, for k£ € {1,2,...,7} and arbitrary linearly
independent vectors x,...,x;, € R”,

span(zy,...,2;) 4 span(H ,...,H}) 4 span(Hx,...,Hx,).

The first equality follows from the construction of H. For the second one, let B €
R¥** be a nonsingular matrix such that the columns of [¢,,...,£,]=[x,,...,x, B are
orthonormal. Extending them to a orthonomal basis ¢, ¢,,...,¢, of R”,

span(Hx,,...,Hx,) = H[x,,...,x,JR* = H[t,,...,t,]R*,

and this is the linear span of the first &£ columns of H[¢,,...,t,,]. But by right-invariance,
the latter matrix has the same distribution as H, because [¢,,...,¢,]€O,,.

A.3.  Equivalence of the null hypotheses Hy, H; and H

Recall that we consider a random vector y with continuous distribution on R¢. Suppose
first that H, is true. Then y has the same distribution as ||y||||z|| ™'z, where y and z ~
N, (0,1 are independent. For any fixed T' € O,,, orthogonal invariance of the standard

Gaussian distribution implies that 7'z 4 Z,0
d -1 —1 d -1, 4
Ty = il Tz = [yllIT2l" Tz = |lylllzl""z =y

Consequently, Hj is true as well.
Now suppose that Hj is true. If H ~ Haar, and y are independent, then for any
measurable set B C R”,

P(HyeB) = EP(HyecB|H) = EP(yeB|H) = P(y €B),

where P(Hy € B|H)=P(Y € B|H) by H.
Finally, suppose that H{ is true. Then for any measurable set B C R”,

P(yeB) = P(HyeB) = EP(Hy €B|y)
= EP(|lyllx € B|y) = P(|lyllx € B),

where # ~ Unif(S, ) and y are independent. Thus H is satisfied as well.
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A.4.  Proof of Lemma 5

We first construct a particular point /é = /BZ,QO’) € R” such that S,(y —X,é) <, and

||/é||o = ky (). To this end let (¢(1),0(2),...,0(n)) be a permutation of (1,2,...,7)
such that G;(y) = ||ag(i)||_1|aj(i)y| for 1 <i < m. Let by ,(y) =€ —1—j, +i, with
indices 1 < i, < 7, <€ such that |G, (y)I/|G; (y)| < %, ,. Now we set

0 ifi,<i<j ori>¢,
,Bg(l') = S%gn(az(,')y>(|“l—(i)y| - ||ﬂa(i)||Gia (y)> lf 1 < i.< io’
Slgn(”;r(,‘)y><|d;r(i)y| - ”“a(i)“Gjo(y)) if Jo<t< l.

Obviously, this defines a vector ,& € R” such that || ,B llo = % ,(y)- Note also that the

numbers ||a0(l-)||_1|a1(l.)(y —Xﬁ)| are nonincreasing in € {1,...,n} with

||“a(1)||_1|“z(1)<y_X/6)| = Gia(y)’ ||“a(€)||_1|“;r([)(y_Xﬁ>| = Gjo(y)'

Consequently, ﬁ € ék,z,a(y> fork >k, ().

On the other hand, let &, ,(y) > 0. We have to show that §,(y —b) > x, ,(y) for
any b € R” with k :=[|b||, < k;,(¥). Then there exist indices 1 < i(1) < (2) <--- <
i(n—k)<nand1</(1)<j(2) < <j(n—k) < nsuchthat G, (y) = G (y—Xb)
for 1 <s<n—*k. Butat least n —k —(n—{) ={ —k of the indices j(1),...,7(n—k)
are contained in {1,...,£}. Consequently, if S,(y —Xb) < x, ,, then

> G(y—Xb)/G(y —XDb)
> Gy =Xb)/ Gy —XDb)
= G/ Gi—py@);

whence k; (y) <l —1—(i({ —k)—i(1)) <€ —1—({ —k —1) =k, a contradiction to
k< k(,a(y)' U

Xl

A.5.  Technical details for Section 3.3
Forany x > 1,
P(Sy(z) < x) = P(&7(U,) <27 (U, 41_p))
= ]E]P)( l](n) <@ x¢_1<[](n+17/))] | l](n+1fé))

B E<<‘I’[X¢_1 Uns1—e)] = Upnri—e) >€_1>
1— [J(n+1—[) ’
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where the last step follows from the fact that conditionally on U, ), the random
variable U, has the same distribution as the maximum of £ — 1 independent random
variables with uniform distirbution on [U,,_4),1]. Since U, has distribution
Beta(n +1—2,{), the latter expectation may be expressed as

U B 1B (N — B 1)\~
J, )

where B~! is the quantile function of Beta(n + 1 —¢,¢). This integral can be computed
numerically, and the quantile x, , can be found via bisection.
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