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SUMMARY

This paper introduces a new class of logistic distribution, namely Exponentiated logistic distri-
bution, which is derived from type II logistic distribution. We have investigated its properties,
discussed parameter estimation, and demonstrated its usefulness in analysing real-life medical
data. The developed model provides researchers with valuable tools for accurately modelling and
analysing medical phenomena, thereby contributing to advancements in healthcare research and
decision-making.
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1. INTRODUCTION

The logistic growth function is quite relevant from a practical point of view, and it has
been applied as a growth model in several areas of research such as biology (Pearl, 1924;
Schultz, 1930; Oliver, 1982), bioassay problems (Pearl, 1940; Emmens, 1940; Wilson and
Worcester, 1943; Berkson, 1944, 1951; Finney, 1947, 1978), survival data (Plackett, 1959),
public health (Dyke and Patterson, 1952), etc. For a detailed account of the properties
and applications of the logistic model see Balakrishnan (2013). A continuous random
variable X is said to follow the standard logistic distribution (LD) if its probability den-
sity function (PDF) is of the following form:

f1 (x) =
e−x

(1+ e−x )2
, (1)

1 Corresponding Author. E-mail: drcsatheeshkumar@gmail.com
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where x ∈ R = (−∞,+∞). Balakrishnan and Leung (1988) proposed two generalised
logistic distributions of type I (LDI) and type II (LDII), respectively, through the follow-
ing PDFs f2 (·) and f3 (·), in which x ∈ R, α > 0 and β> 0

f2 (x,α,β) = αβ
αe−βx

�

1+ e−βx
�α+1 (2)

and

f3 (x,α) =
αe−αx

(1+ e−x )α+1 . (3)

The corresponding CDFs of LDI and LDII are, respectively

F2 (x) =
1

�

1+ e−βx
�α (4)

and

F3 (x) = 1− e−αx

(1+ e−x )α
. (5)

Some inference aspects of LDII have been investigated in Balakrishnan and Hossain
(2007). Recently exponentiated versions of various distributions have been studied in
the literature in order to create more flexibility in the respective models. Exponenti-
ated version of LDII is studied by Manju (2016). Also the distribution with same PDF
has been studied by Sapkota (2020). Through the present paper we consider a detailed
study of the Exponentiated-Exponential Logistic distribution and organised the paper
as follows. In Section 2, we present the definition of the Exponentiated-Exponential
logistic distribution (ELD) and describe some important properties. A location scale
extension along with the maximum likelihood estimation of the parameters of the ELD
is considered in Section 3. In Section 4, two real life medical datasets are considered for
illustrating the usefulness of the model compared to the LD, the LDI and the LDII. In
Section 5, a generalized likelihood ratio test procedure is suggested for testing the signif-
icance of the parameters and in Section 6, a simulation study is conducted to examine
the performance of the maximum likelihood estimators (MLEs) of the parameters of
the ELD. In Section 7, the regression model of this distribution is proposed along with
two numerical applications. A brief simulation study is also carried out here.

2. DEFINITION AND PROPERTIES

A continuous random variable X is said to follow an exponentiated type II logistic dis-
tribution if its CDF is of the following form: x ∈ R , α > 0 and β> 0

F (x) =
�

1− e−αx

(1+ e−x )α

�β

. (6)
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The density function corresponding to Eq. (6) is given by

f (x;α,β) = αβ
e−αx

(1+ e−x )α+1

�

1− e−αx

(1+ e−x )α

�β−1

. (7)

The distribution of a random variable having CDF in Eq. (6) or PDF in Eq. (7) is
hereafter we denoted by ELDII (α,β) . Note that

1. when β= 1, the ELDII reduces to the LDII,

2. when the α= 1 and β= 1, the ELDII reduces to LD.

The PDF plots of ELDII (α,β) for different choices of α and β are given in Figure 1.
From Figure 1 it clear that the distribution is positively skewed for α < 1 , β> 1 and is
negatively skewed for α > 1 , β< 1.

(a) α > 1,β< 1 (b) α < 1,β> 1

Figure 1 – Plots of PDF of ELDII for varying α and β.

LEMMA 1. The characteristic function ΦX (t ) of ELDII (α,β)with PDF in Eq. (7) is the
following, for t ∈ R

ΦX (t ) = αβ
∞
∑

k=0

(−1)k
�

β− 1
k

�

B (αk +α− i t , 1+ i t ) , (8)

Re(αk +α− i t )> 0, Re(1+ i t )> 0.

PROOF. Let X follows ELDII (α,β) with PDF in Eq. (7). Then, by the definition
of characteristic function, we have the following for any t ∈ R and i=

p
−1

ΦX (t ) =
∞
∫

−∞
e i t x f (x)d x

=
∞
∫

−∞
e i t xαβ

�

e−x

1+e−x

�α 1
1+e−x

�

1− e−αx

(1+e−x )α
�β−1

d x.
(9)
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Put u = e−x

1+e−x in Eq. (9) one get,

ΦX (t ) = αβ

1
∫

0

(1− u)i t uα−i t−1 (1− uα)β−1 d u. (10)

Now expanding (1− uα)β−1 in Eq. (10) and rearranging the terms to obtain the follow-
ing

ΦX (t ) = αβ
∞
∑

k=0

(−1)k
�

β− 1
k

�

1
∫

0

uαk+α−i t−1 (1− u)i t d u,

which gives Eq. (8), in light of the definition of beta integral. 2

LEMMA 2. The mean and variance of ELDII (α,β) with PDF in Eq. (7) are, respec-
tively,

Mean = αβ
∞
∑

k=0

(−1)k
�

β− 1
k

�

 

1
η2
(0,0)

− 1
η(0,0)

�

Ψ
�

η(0,1)

�

−Ψ (1)
�

!

(11)

= Λ (α,β) (say),

Variance = 2αβ
∞
∑

k=0

∞
∑

j=1

j
∑

i=1

(−1)k
�

β− 1
k

�

�

1
i ( j + 1)η( j ,1)

+
1
η3
(0,0)

+
1

η(0,0)η
2
( j ,0)

−

Ψ
�

η(0,1)

�

−Ψ (1)

η2
(0,0)



−Λ2 (α,β) , (12)

where

Ψ (a) =
d logΓ a

da
and

η(a,b ) = α+αk + a+ b .

PROOF.

µ′1 =

∞
∫

−∞

x f (x)d x

= αβ

∞
∫

−∞

x
� e−x

1+ e−x

�α 1
1+ e−x

�

1− e−αx

(1+ e−x )α

�β−1

d x

= αβ

1
∫

0

ln
�

1− u
u

�

uα−1 (1− uα)β−1 d u, where u =
e−x

1+ e−x
. (13)
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By applying binomial expansion in (1− uα)β−1, Eq. (13) reduces to

µ′1 = αβ
∞
∑

k=0

(−1)k
�

β− 1
k

�





1
∫

0

ln (1− u) uα+αk+1d u −
1
∫

0

ln u uα+αk+1d u



. (14)

From Gradshteyn and Ryzhik (2000) we have

1
∫

0

xµ−1 ln (1− x)d x =− 1
µ
[Ψ (µ+ 1)−Ψ (1)] , [Re(µ) >−1] . (15)

Applying Eq. (15) in the first integral and using product rule in the second integral of
Eq. (14) one can obtain Eq. (11)

Variance=

∞
∫

−∞

x2 f (x)d x −Λ2 (α,β) , (16)

∞
∫

−∞

x2 f (x)d x =

∞
∫

−∞

x2αβ
� e−x

1+ e−x

�α 1
1+ e−x

�

1− e−αx

(1+ e−x )α

�β−1

d x

= αβ

1
∫

0

[ln (1− u)− ln u]2uα−1 (1− uα)β−1 d u, (17)

in which u = e−x

1+e−x . Applying binomial expansion in (1− uα)β−1, Eq. (17) reduces to

∞
∫

−∞

x2 f (x)d x = αβ
∞
∑

k=0

�

β− 1
k

�

(−1)k
1
∫

0

[ln (1− u)− ln (u)]2 uα+αk−1d u

= αβ
∞
∑

k=0

�

β− 1
k

�

(−1)k [I1+ I2+ I3] , (18)

where

I1 =

1
∫

0

[ln (1− u)]2uα+αk−1d u, (19)

I2 =−2

1
∫

0

ln (u) ln (1− u) uα+αk−1d u (20)
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and

I3 =

1
∫

0

[ln (u)]2 uα+αk−1d u. (21)

From Gradshteyn and Ryzhik (2000) we have

[ln (1± u)]2 = 2 ∗
∞
∑

j=1

(∓) j+1 u j+1

j + 1

j
∑

i=1

1
i

for u2 < 1. (22)

Applying Eq. (22) in Eq. (19), I1 reduces to

I1 = 2
∞
∑

j=1

j
∑

i=1

1
i ( j + 1) (α+αk + j + 1.)

(23)

Applying product rule of integration in Equations (20) and (21), I2 and I3 reduce to the
following forms:

I2 = 2
∞
∑

j=1

1

(α+αk) (α+αk + j )2
−
Ψ (α+αk + 1)−Ψ (1)

(α+αk)2
(24)

and
I3 =

2

(α+αk)3
. (25)

Equations (16) and (18) yield Eq. (12) in the light of Equations (23), (24) and (25). 2

LEMMA 3. Measure of skewness ga of ELDII (α,β) with PDF in Eq. (7) is given by

ga = log
�

ρ0.5− 1
ρ0.8− 1

��

log
�

ρ0.2− 1
ρ0.8− 1

��−1

, (26)

in which ρ−1
c = [1− (1− c1/β)1/α].

PROOF. Galton (1896) introduced the percentile oriented measure of skewness as

ga =
x0.8− x0.5

x0.5− x0.2
, 0< ga <∞, (27)

where ga = 1 indicates symmetry, ga < 1 is interpreted as skewness to the left and ga > 1
is interpreted as skewness to the right. From Eq. (6), one can write the quantile of ELDII
as

Xγ = − log

�

�

1−
�

1− γ
1
β

�
1
α

�−1

− 1

�

. (28)

Substituting Eq. (28) in Eq. (27) yields Eq. (26). From Eq. (26) it is evident that skewness
depends on both α and β. The Galton’s percentile measure of skewness for different
values of α and β are given in Table 1. 2
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LEMMA 4. The PDF of the k th order statistics Xk:n of ELDII (α,β) is

fk:n (x) =
αβ

B(k , n−k+1)
e−αx

(1+e−x )α+1

�

1− e−αx

(1+e−x )α
�βk−1

h

1−
�

1− e−αx

(1+e−x )α
�β
in−k

.
(29)

PROOF. Let X1,X2, . . . ,Xn be a random sample of size n from the ELDII (α,β) and
let Xk:n be the k th order statistics for k = 1, 2, . . . , n. Let FXk:n

(x) and fXk:n
(x) denote

CDF and PDF of Xk:n , respectively,

fk:n (x) =
1

B (k , n− k + 1)
[F (x)]k−1 [1− F (x)]n−k f (x) , (30)

for x ∈ R. Applying Equations (6) and (7) in Eq. (30) gives Eq. (29). 2

From Lemma 4, we have the following Remarks.

REMARK 5. The distribution of the largest order statistic Xn:n taken from a population
following ELDII (α,β) is ELDII (α, nβ).

REMARK 6. The PDF of the smallest order statistics is

f1:n (x) = nαβ
e−αx

(1+ e−x )α+1

�

1− e−αx

(1+ e−x )α

�β−1 �

1−
�

1− e−αx

(1+ e−x )α

�β
�n−1

. (31)

LEMMA 7. The Renyi entropy of ELDII (α,β) is given by

IR (γ ) =
1

1− γ

¨

γ log (αβ)+ log

� ∞
∑

k=0

(−1)k
�

βγ − γ
k

�

B (αγ +αk ,γ )
�«

. (32)

PROOF. For γ > 0 and γ 6= 1 the Renyi entropy is defined by

IR (γ ) =
1

1− γ
log

§
∫

f γ (x)d x
ª

,

=
1

1− γ
log

¨

(αβ)γ
∫
� e−x

1+ e−x

�αγ 1
(1+ e−x )γ

�

1− e−αx

(1+ e−x )α

�γ (β−1)

d x

«

.

(33)

On substituting e−x

1+e−x = u in Eq. (33),

IR (γ ) =
1

1− γ
log







(αβ)γ
1
∫

0

uαγ−1 (1− u)γ−1 (1− uα)γ (β−1) d u







=
1

1− γ
log







(αβ)γ
∞
∑

k=0

(−1)k
�

βγ − γ
k

�

1
∫

0

uαγ+αk−1 (1− u)γ−1d u







,
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by applying binomial expansion in (1− uα)γ (β−1). Thus, we have

IR (γ ) =
1

1− γ
log

¨

(αβ)γ
∞
∑

k=0

(−1)k
�

βγ − γ
k

�

B (αγ +αk ,γ )
«

,

which gives Eq. (32). 2

LEMMA 8. The survival function is given by

S(x) = 1−
�

1− e−αx

(1+ e−x )α

�β

, x ∈ R

.

PROOF. The proof follows directly from Eq. (6). 2

LEMMA 9. The hazard rate function is given by

h (x) =
αβ(1+ e x )−α(1+ e−x )−1[1− (1+ e x )−α]β−1

1− [1− (1+ e x )−α]β
, x ∈ R.

PROOF. By definition

h(x) =
f (x)

1− F (x)

Now the proof is straight forward in the light of Equations (6) and (7). 2

3. LOCATION SCALE EXTENSION AND MAXIMUM LIKELIHOOD ESTIMATION

In this Section, we discuss an extended form of ELDII (α,β) by introducing the location
parameter µ and scale parameter σ , and discuss the maximum likelihood estimation of
the parameters of extended form of ELDII (α,β).

Let Z follows the ELDII (α,β) with PDF in Eq. (7). Then, X = µ+ σZ is said to
have an extended ELDII with parameters µ,σ ,α and β, denoted by EELDII (µ,σ ;α,β)
with the following PDF,

f (x,µ,σ ,α,β) =

αβe
−α(x−µ)

σ



1− e
−α(x−µ)

σ
�

1+e
−(x−µ)
σ

�α





β−1

σ
h

1+ e
−(x−µ)
σ

iα+1 , (34)

in which x ∈ R, µ ∈ R, α > 0, β> 0.
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Let X1,X2, . . . ,Xn be a random sample from a population having EELDII (µ,σ ;α,β)
with the PDF in Eq. (34). The log-likelihood function l = ln L(µ,σ ;α,β) of the random
sample is

l = n logα+ n logβ− n logσ −α
n
∑

i=1

(xi −µ)
σ

+(β− 1)
n
∑

i=1

log









1− e
−α(xi−µ)

σ

�

1+ e
−(xi−µ)

σ

�α









− (α+ 1)
n
∑

i=1

log
�

1+ e
−(xi−µ)

σ

�

. (35)

On differentiating Eq. (35) with respect to parameters µ, σ , α, β and equating to zero,

we obtain the following likelihood equations, in which zi =
xi−µ
σ and Ω j i =

�

e−zi

1+e−zi

� j
,

for j = 1, α

nα
σ
=
(α+ 1)
σ

n
∑

i=1

Ω1i +
α (β− 1)

σ

n
∑

i=1

Ωαi (1−Ω1i )
(1−Ωαi )

, (36)

n
σ
=
α

σ

n
∑

i=1

zi −
(α+ 1)
σ

n
∑

i=1

ziΩ1i −
α (β− 1)

σ

n
∑

i=1

zi
Ωαi (1−Ω1i )
(1−Ωαi )

, (37)

n
α
=

n
∑

i=1

zi +(β− 1)
n
∑

i=1

Ωαi

1−Ωαi
log (Ω1i )−

n
∑

i=1

log (1−Ω1i ), (38)

0=
n
β
+

n
∑

i=1

log (1−Ωαi ). (39)

On solving the system of Equations (36) - (39) with the help of some mathematical soft-
ware such as MATLAB, MATHCAD, MATHEMATICA, R etc. one can obtain the maximum like-
lihood estimators (MLEs), θ̂ =

�

µ̂, σ̂ , α̂, β̂
�

of the parameters of EELDII (µ,σ ;α,β).

Second order partial derivatives of Eq. (35) with respect to the parameters are obtained
and find that the equations give negative values for α > 0,β > 0,σ > 0,µ ∈ R. These
equations are given in Appendix A. Further this is verified with the help of MATHEMATICA
Software. For interval estimation of θ= (α,β,µ,σ) and test of hypothesis, one requires
the Fisher Information matrix, I (θ). The elements of this matrix can be worked out as
follows:
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I11 = E
�

− ∂ 2 l
∂ α2

�

= n
α2 +(β− 1) J1

I12 = E
�

− ∂ 2 l
∂ α∂ β

�

= J2

I13 = E
�

− ∂ 2 l
∂ α∂ µ

�

=− n
σ +

(β−1)
σ J3+

1
σ J4

I14 = E
�

− ∂ 2 l
∂ α∂ σ

�

= 1
σ J5+

(β−1)
σ J6

I22 = E
�

− ∂ 2 l
∂ β2

�

= n
β2

I23 = E
�

− ∂ 2 l
∂ β∂ µ

�

= α
σ J7

I24 = E
�

− ∂ 2 l
∂ β∂ σ

�

= α
σ J8

I33 = E
�

− ∂ 2 l
∂ µ2

�

= α(β−1)
σ2 J9+αJ10+

(α+1)
σ2 J11

I34 = E
�

− ∂ 2 l
∂ µ∂ σ

�

= nα
σ2 +

−α(β−1)
σ2 J12+(α+ 1) J13+αJ14+(α+ 1) J15+

(α+1)
σ2 J16

I44 = E
�

− ∂ 2 l
∂ σ2

�

=− n
σ2 +

α
σ2 J17+

α(β−1)
σ2 J18+

(α+1)
σ J19,

where
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One can evaluate these expectations numerically using mathematical software like
MATHEMATICA, MATLAB, PYTHON, R, etc., through numerical methods. Asymptotic nor-
mality of the MLEs of EELDII (µ,σ ;α,β) follows from standard theory for MLEs:

THEOREM 10. Under the standard regularity conditions for asymptotic normality of

MLEs, the MLEs θ̂ =
�

µ̂, σ̂ , α̂, β̂
�

of the parameter vector θ = (µ,σ ,α,β) of

EELDII (µ,σ ;α,β) are asymptotically normally distributed in the sense that
p

n
�

θ̂−θ
�

→

N
�

0, I (θ)−1� as n→∞, where I (θ) is the Fisher information matrix.

Regarding the regularity conditions, assume the true parameter θ0 lie in the interior of
the parameter space. From the above it is evident that the log likelihood function is
differentiable twice with respect to the parameters. Also we verified the Fisher informa-
tion matrix as positive definite. Applying Taylor series expansion on the log likelihood
function:

l (θ̂) = l (θ0)+ (θ̂−θ0)
T S (θ0)+

1
2
(θ̂−θ0)

T 52 l
�

θ̃
�

�

θ̂−θ0

�

, (40)

where S (θ0) =
∂ l (θ)
∂ θ |θ = θ0 is the score function and 52 l

�

θ̃
�

is the Hessian matrix of

the log-likelihood function evaluated at some intermediate point θ̃ between θ̂ and θ0.
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The maximum likelihood estimator θ̂ maximises the log-likelihood function. That is,

S
�

θ̂
�

= 0. By substituting this first-order condition in Eq. (40), we obtain

0= S (θ0)+∇
2 l
�

θ̂
��

θ̂−θ0

�

,

which implies
p

n
�

θ̂−θ0

�

≈
�

1
n
∇2 l

�

θ̃
�

�−1 1
p

n
S (θ0) .

By law of large numbers, the Hessian matrix of the log-likelihood function converges
in probability to the negative of Fisher information matrix Van der Vaart (2000). Thus,
as n → ∞, −1

n ∇
2 l (θ0)

P→ I (θ0). Now, as n → ∞, in the light of central limit

theorem, we have 1p
n S (θ0)

D→ N (0, I (θ0)). Hence, as n →∞, by Slutsky’s lemma
p

n
�

θ̂−θ0

�

D→ N
�

0, I (θ0)
−1�.

4. APPLICATION

For numerical illustration we consider the following datasets.

Dataset 1 Prostrate cancer dataset available in “https://www.umass.edu//statdata”.
This dataset is also used by Hosmer Jr et al. (2013). These data are copyrighted by
John Wiley and Sons Inc. We are considering the continuous variable Prostatic
Specimen Antigen Value (PSA) in mg/ml of 380 patients.
Mean=15.41, variance=399.90, skewness=3.28, kurtosis=13.18.

Dataset 2 Myopia Data dataset available in “https://www.umass.edu//statdata”. These
data are copyrighted by John Wiley and Sons Inc. We are considering the contin-
uous variable vitreous chamber depth(VCD) in mm of 618 patients. Mean=15.41,
variance=0.441, skewness=0.108, kurtosis=0.221.

We obtain the maximum likelihood estimates (MLEs) of the parameters of the
EELDII (µ,σ ;α,β) by using the nlm() package in R software. The Akaike informa-
tion criterion (AIC), Bayesian information criterion (BIC), Consistent Akaike informa-
tion criterion (CAIC), Hannan Quinn information criterion (HQIC) and Kolmogorov-
Smirnov Statistic (KSS) values are computed for comparing the model EELDII (µ,σ ;α,β)
with the existing models - LD(µ,σ), LDI(µ,σ ,α,β), LDII(µ,σ ,α) are given in Table 2.

From Table 2 it is seen that the AIC, BIC, CAIC and HQIC values are minimum for
EELDII (µ,σ ;α,β) compared to other models. Figure 2, Figure 3, Figure 4 and Figure 5
also confirm this result.
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TABLE 2
Estimated values and standard errors of the parameters with the corresponding KSS, AIC , BIC,

CAIC, HQIC values.

Distribution

Dataset LD LDI, LDII EELDII
(µ,σ) (µ,σ ,α,β), (µ,σ ,α) (µ,σ ,α,β)

µ̂ 11.478 -70.041 0.872 4.820
(0.234) (0.452) (0.662) (0.032)

σ̂ 7.919 433.953 0.293 0.739
(0.404) (0.370) (0.267) (0.234)

α̂ – 6315.143 0.020 0.033
(0.832) (0.051) (0.044)

Dataset 1 β̂ – 48.255 – 0.389
(0.757) (0.155)

KSS 0.045 0.039 0.035 0.031
p-value 0.561 0.695 0.862 0.901

AIC 3177.298 3005.468 2824.581 2808.022
BIC 3178.458 3007.787 2826.319 2810.339

CAIC 3180.458 3011.787 2829.319 2814.339
HQIC 3174.944 3000.761 2821.049 2803.313

µ̂ 2.581 0.474 2.008 6.277
(0.231) (0.627) (0.113) (0.563)

σ̂ 0.490 3.720 0.311 6.007
(0.482) (0.237) (0.083) (0.337)

α̂ – 13.495 0.397 24.160
(0.570) (0.185) (0.226)

Dataset 2 β̂ – 5.391 – 2.984
(0.251) (0.149)

KSS 0.155 0.088 0.053 0.038
p-value 0.477 0.593 0.682 0.896

AIC 1675.865 1623.548 1643.798 1619.694
BIC 1677.496 1626.810 1646.245 1622.957

CAIC 1679.496 1630.810 1649.245 1626.957
HQIC 1673.663 1619.144 1640.496 1615.291
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Figure 2 – Empirical distribution of the Dataset 1 along with the fitted CDFs.

Figure 3 – Empirical distribution of the Dataset 2 along with the fitted CDFs.
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Figure 4 – Fitted density functions to the histogram of Dataset 1.

Figure 5 – Fitted density functions to the histogram of Dataset 2.
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5. TESTING OF HYPOTHESIS

In this Section, the generalized likelihood ratio test procedure is used for testing the
parameters of the EELDII (µ,σ ;α,β). Here, we consider the following tests:

Test 1 H01 : α= 1 against H11 : α 6= 1.

Test 2 H02 :β= 1 against H12 :β 6= 1.

Test 3 H03 : α= 1,β= 1 against H13 : α 6= 1,β 6= 1.

In this case, the test statistic is,

λ=−2 logΛ= 2
h

log L
�

θ̂; y|x
�

− log L
�

θ̂∗; y|x
�i

, (41)

where θ̂ is the maximum likelihood estimator of θ = (µ,σ ;α,β) with no restriction,
and θ̂∗ is the maximum likelihood estimator of θwhen α= 1 in case of Test 1 andβ= 1
in case of Test 2 and α = 1, β= 1 in case of Test 3 respectively. Using Taylor series ex-
pansion of the log likelihood function around θ∗

λ≈
�

θ̂∗− θ̂
�T
∇2
θ l (θ∗)

�

θ̂∗− θ̂
�

.

By the properties MLEs, the distribution of the likelihood ratio test statistic can be
approximated in the following form

λ≈
p

n
�

θ̂∗− θ̂
�T

I (θ∗)
p

n
�

θ̂∗− θ̂
�

,

where, as n →∞
p

n
�

θ̂∗− θ̂
�

D→ N
�

0, I (θ0)
−1� in the light of Theorem 10, this im-

plies λ follows an asymptotic chi-square distribution with degrees of freedom equal to
the difference in the number of parameters estimated under H0 and H1. Hence, the
test statistic λ given in Eq. (41) is asymptotically distributed as χ 2 with one degree of
freedom in case of Test 1 and Test 2 and with two degrees of freedom in case of Test

3. The computed values of logL
�∧
θ; y|x

�

, logL
�∧∗
θ ; y|x

�

and test statistic in case of the

two datasets are listed in Table 3. Since the critical value at the significance level 0.05
and degree of freedom one for two tailed test is 5.023 and for degrees of freedom two is
7.327, the null hypothesis is rejected in all cases, which shows the appropriateness of the
EELDII to the datasets.

6. SIMULATION

A simulation study is carried out to evaluate the performance of the parameters of the
EELDII (µ,σ ;α,β) for varying degrees of skewness. We applied the inverse transform
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TABLE 3
Calculated values of the test statistic.

.

Dataset Hypothesis log L
�∧
θ; y|x

�

log L
�∧∗
θ ; y|x

�

Test statistic

H01 : α= 1 -1400.005 -1498.745 197.480
Dataset 1

H02 :β= 1 -1400.005 -1409.030 18.051

H03 : α= 1,β= 1 -1400.005 -1586.649 373.288

H01 : α= 1 -805.847 -807.974 4.253
Dataset 2

H02 :β= 1 -805.847 -818.899 26.104

H03 : α= 1,β= 1 -805.847 -531.587 60.171

method of Ross (2022) for generating random variables from the EELDII (µ,σ ;α,β)
distribution. Let X be a random variable with CDF in Eq. (6). Simulate X according
to X = F −1(U ), U ∼U [0,1].

Here, we are considering the following four parameter sets with varying degrees of
skewness, and sample sizes n =15, 25, 50, 100, 200, 300 and 500.

(i) α = 1.501, β = 0.058, µ = 0.395, σ = 4.432 (Galton’s percentile measure of skew-
ness=1.7).

(ii) α = 0.184, β = 0.355, µ = 0.701, σ = 0.111 (Galton’s percentile measure of skew-
ness=0.7).

(iii) α = 0.05, β = 0.4, µ = 1.2, σ = 0.5 (Galton’s percentile measure of skew-
ness=2.8).

(iv) α= 1.5, β= 0.08, µ= 5, σ = 1.2 (Galton’s percentile measure of skewness=0.5).

We computed the mean, standard deviation, skewness, excess kurtosis, absolute bias
and Mean Square Error (MSE) of the parameters of EELDII (µ,σ ;α,β) and presented
in Table 4 to Table 7 . From the tables it can be seen that both the absolute bias and
MSEs in respect of each parameters of the EELDII (µ,σ ;α,β) are in decreasing order as
the sample size increases.
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TABLE 4
Mean, standard deviation, skewness, kurtosis, absolute bias and MSE of the estimated parameters of

parameter set (i).

n Parameter Mean SD Skewness Kurtosis Bias MSE

10 α 5.06E-01 1.27E-00 1.84E-00 -8.20E-01 9.95E-01 8.25E-02
β 8.23E-01 1.23E-00 9.13E-01 -7.74E-01 7.70E-01 4.94E-02
µ 1.06E-00 2.33E-00 1.44E-00 -8.53E-01 6.71E-01 3.48E-02
σ 2.82E+00 8.43E-01 1.66E+00 -4.76E-01 1.61E+00 2.59E-01

25 α 7.75E-01 2.13E-01 5.81E-01 -7.32E-01 7.26E-01 4.25E-02
β 1.60E-01 9.87E-01 5.33E-01 -5.12E-01 1.02E-01 8.42E-03
µ 8.26E-01 3.54E-01 2.54E-01 -7.12E-01 3.01E-01 2.07E-02
σ 3.12E+00 5.23E-01 1.19E+00 -4.14E-01 1.31E+00 2.24E-01

50 α 9.37E-01 2.08E-01 4.77E-01 -5.02E-01 5.64E-01 3.84E-03
β 8.40E-02 5.25E-01 4.84E-01 -3.97E-01 2.60E-02 6.21E-03
µ 7.27E-01 2.29E-01 1.33E-01 -4.32E-01 2.65E-01 1.97E-03
σ 3.60E+00 3.14E-01 8.85E-01 -3.95E-01 8.31E-01 1.83E-01

100 α 1.46E+00 1.92E-01 4.63E-01 -4.85E-01 3.64E-02 2.95E-03
β 7.03E-02 1.13E-01 4.71E-01 -3.86E-01 2.34E-03 7.43E-06
µ 4.74E-01 1.84E-01 9.88E-02 -4.01E-01 2.11E-02 5.67E-04
σ 3.72E+00 2.67E-01 7.81E-01 -3.45E-01 1.16E-01 1.64E-01

200 α 1.48E+00 1.90E-01 3.46E-01 -4.11E-01 1.82E-02 1.96E-03
β 6.67E-02 8.74E-02 4.60E-01 -2.85E-01 1.26E-03 6.61E-06
µ 4.31E-01 1.62E-01 8.40E-02 -3.81E-01 3.69E-03 4.78E-04
σ 4.06E+00 2.26E-01 5.79E-01 -2.26E-01 7.26E-02 7.81E-02

300 α 1.49E+00 1.88E-01 2.49E-01 -1.95E-01 9.15E-03 7.03E-04
β 6.15E-02 8.04E-02 4.12E-01 -2.31E-01 1.03E-04 1.19E-07
µ 4.11E-01 9.50E-02 7.11E-02 -2.54E-01 2.05E-03 3.14E-04
σ 4.12E+00 2.07E-01 3.79E-01 1.15E-01 2.05E-02 2.46E-03

500 α 1.50E+00 1.64E-01 2.33E-01 0.37E-01 1.92E-03 1.69E-04
β 6.03E-02 7.58E-02 3.84E-01 -1.04E-01 9.32E-05 2.35E-08
µ 4.06E-01 5.50E-02 5.80E-02 -1.06E-01 1.04E-03 3.41E-05
σ 4.24E+00 1.21E-01 1.28E-01 1.08E-01 8.16E-03 1.06E-04
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TABLE 5
Mean, standard deviation, skewness, kurtosis, absolute bias and MSE of the estimated parameters of

parameter set (ii).

n Parameter Mean SD Skewness Kurtosis Bias MSE

10 α 8.86E-01 7.86E-01 -1.92E+00 -5.35E-01 7.02E-01 5.03E-01
β 8.04E-01 7.14E-01 -7.83E-01 -4.47E-01 4.49E-01 2.02E-02
µ 1.61E+00 2.56E-01 -9.19E-01 -1.74E-01 9.09E-01 8.10E-02
σ 5.11E-01 5.61E-01 -7.05E-01 -1.47E-01 4.00E-01 1.60E-01

25 α 7.80E-01 7.01E-01 -1.68E+00 -4.86E-01 5.96E-01 3.68E-01
β 7.22E-01 6.37E-01 -7.11E-01 -3.38E-01 3.67E-01 1.89E-02
µ 1.02E+00 2.11E-01 -8.94E-01 -1.51E-01 2.98E-01 6.50E-02
σ 4.23E-01 3.84E-01 -5.63E-01 -1.02E-01 3.12E-01 1.57E-01

50 α 6.35E-01 5.38E-01 -1.55E+00 -4.52E-01 4.51E-01 2.89E-01
β 5.81E-01 5.77E-01 -6.44E-01 -1.46E-01 2.26E-01 1.30E-02
µ 8.88E-01 1.45E-01 -6.22E-01 -4.32E-01 1.87E-01 1.53E-02
σ 2.78E-01 3.08E-01 -5.16E-01 -9.84E-01 1.67E-01 8.51E-02

100 α 4.85E-01 3.42E-01 -7.03E-01 -4.41E-01 3.01E-01 1.36E-01
β 4.02E-01 2.33E-01 -4.74E-01 -7.48E-02 4.67E-02 3.26E-03
µ 7.21E-01 1.32E-01 -5.75E-01 -4.68E-01 1.98E-02 5.88E-04
σ 1.42E-01 2.99E-01 -3.83E-01 -8.54E-01 3.12E-02 1.46E-03

200 α 2.83E-01 2.75E-01 -5.01E-01 -4.26E-01 9.94E-02 1.48E-02
β 3.85E-01 2.24E-01 -4.53E-01 7.26E-01 2.95E-02 1.30E-03
µ 7.11E-01 1.16E-01 -5.64E-01 -3.88E-01 1.01E-02 1.53E-04
σ 1.26E-01 2.57E-01 -3.72E-01 2.46E-01 1.53E-02 3.51E-04

300 α 2.15E-01 2.06E-01 -4.31E-01 -4.01E-01 3.07E-02 1.42E-03
β 3.67E-01 2.14E-01 -3.46E-01 5.44E-01 1.23E-02 2.28E-04
µ 7.09E-01 9.59E-02 -2.17E-01 -2.81E-01 8.02E-03 9.65E-05
σ 1.20E-01 2.37E-01 -2.74E-01 1.84E-01 9.02E-03 1.22E-04

500 α 1.92E-01 1.77E-01 -3.91E-01 -3.37E-01 8.46E-03 1.07E-04
β 3.57E-01 1.87E-01 -2.24E-01 1.16E-01 1.87E-03 5.25E-06
µ 7.02E-01 6.58E-02 -1.58E-01 -2.06E-01 1.01E-03 1.53E-06
σ 1.12E-01 1.84E-01 -9.80E-02 7.73E-02 1.13E-03 1.91E-06
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TABLE 6
Mean, standard deviation, skewness, kurtosis, absolute bias and MSE of the estimated parameters of

parameter set (iii).

n Parameter Mean SD Skewness Kurtosis Bias MSE

10 α 5.21E-01 8.81E-01 1.33E+00 -5.81E-01 4.71E-01 2.22E-02
β 8.82E-01 1.80E+00 1.21E+00 -2.95E-01 4.82E-01 2.32E-02
µ 1.74E+00 6.85E-01 6.78E-01 -8.56E-01 5.44E-01 2.96E-02
σ 1.21E+00 5.63E-01 8.93E-01 -8.81E-01 7.13E-01 5.08E-02

25 α 4.56E-01 8.45E-01 1.28E+00 -5.35E-01 4.06E-01 6.59E-03
β 8.41E-01 1.78E+00 8.95E-01 -2.64E-01 4.41E-01 7.78E-03
µ 1.62E+00 6.33E-01 6.56E-01 -8.13E-01 4.15E-01 6.89E-03
σ 1.09E+00 5.78E-01 8.84E-01 -7.28 E-01 5.88E-01 1.38E-02

50 α 2.55E-01 7.86E-01 9.77E-01 -4.12E-01 2.05E-01 8.41E-04
β 6.73E-01 1.06E+00 7.49E-01 -1.58E-01 2.73E-01 1.49E-03
µ 1.57E+00 6.42E-01 6.12E-01 -7.40E-01 3.66E-01 2.26E-03
σ 1.04E+00 5.12E-01 8.12E-01 -6.67E-01 5.37E-01 5.77E-03

100 α 1.87E-01 7.71E-01 9.01E-01 -4.07E-01 1.37E-01 1.88E-04
β 5.16E-01 9.76E-01 6.95E-01 -2.47E-02 1.16E-01 1.35E-04
µ 1.39E+00 6.13E-01 5.99E-01 -6.81E-01 1.85E-01 3.42E-04
σ 8.75E-01 4.69E-01 7.43E-01 -6.12E-01 3.75E-01 1.41E-03

200 α 1.16E-01 7.13E-01 7.93E-01 3.87E-01 6.60E-02 2.18E-05
β 4.82E-01 7.44E-01 6.64E-01 6.12E-01 8.20E-02 3.36E-05
µ 1.31E+00 5.86E-01 5.47E-01 -5.88E-01 5.99E-02 1.79E-05
σ 7.87E-01 4.52E-01 7.06E-01 -5.47E-01 2.87E-01 4.12E-04

300 α 8.70E-02 6.54E-01 5.46E-01 3.04E-01 3.70E-02 4.56E-06
β 4.67E-01 5.39E-01 5.86E-01 2.07E-01 6.70E-02 1.50E-05
µ 1.28E+00 5.34E-01 4.09E-01 -3.27E-01 3.02E-02 3.04E-06
σ 6.34E-01 4.09E-01 5.13E-01 -4.88E-01 1.34E-01 5.99E-05

500 α 6.40E-02 6.18E-01 5.21E-01 2.98E-01 1.40E-02 3.92E-07
β 4.42E-01 5.01E-01 5.69E-01 1.97E-02 4.20E-02 3.53E-06
µ 1.24E+00 5.16E-01 3.79E-01 -3.06E-01 2.61E-02 1.36E-06
σ 5.53E-01 3.98E-01 5.07E-01 -4.62E-01 5.25E-02 5.55E-06
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TABLE 7
Mean, standard deviation, skewness, kurtosis, absolute bias and MSE of the estimated parameters of

parameter set (iv).

n Parameter Mean SD Skewness Kurtosis Bias MSE
10 α 1.02E+00 1.25E+00 -1.55E+00 -1.21E+00 4.80E-01 2.30E-02

β 2.88E-01 1.51E+00 -1.29E+00 -6.47E-01 2.08E-01 4.33E-03
µ 6.12E+00 1.05E+00 -8.79E-01 -7.48E-01 1.12E+00 1.25E-01
σ 2.57E+00 8.69E-01 -7.48E-01 -6.79E-01 1.37E+00 1.88E-01

25 α 1.14E+00 1.10E-01 -1.35E+00 -1.03E+00 3.60E-01 5.18E-03
β 3.12E-01 9.85E-01 -8.75E-01 -4.47E-01 2.32E-01 2.15E-03
µ 5.94E+00 8.82E-01 -7.45E-01 -5.46E-01 9.40E-01 3.53E-02
σ 2.33E+00 6.47E-01 -6.43E-01 -4.48E-01 1.13E+00 5.11E-02

50 α 1.22E+00 9.81E-01 -1.05E+00 -7.12E-01 2.80E-01 1.57E-03
β 4.29E-02 8.46E-01 -8.47E-01 -4.15E-01 3.71E-02 2.75E-05
µ 5.89E+00 8.01E-01 -6.44E-01 -2.14E-01 8.90E-01 1.58E-02
σ 2.04E+00 6.33E-01 -5.85E-01 -4.13E-01 8.40E-01 1.41E-02

100 α 1.38E+00 9.47E-01 -8.42E-01 -6.60E-01 1.20E-01 1.44E-04
β 5.13E-02 7.14E-01 -7.97E-01 -4.06E-01 2.87E-02 8.24E-06
µ 5.64E+00 7.09E-01 -6.01E-01 -4.92E-02 6.40E-01 4.10E-03
σ 1.85E+00 5.83E-01 -5.67E-01 -3.99E-01 6.50E-01 4.23E-03

200 α 1.40E+00 8.02E-01 -8.11E-01 -6.20E-01 1.00E-01 5.00E-05
β 5.82E-02 6.82E-01 -7.61E-01 -3.77E-01 2.18E-02 2.38E-06
µ 5.58E+00 6.39E-01 -5.83E-01 8.66E-01 5.80E-01 1.68E-03
σ 1.57E+00 5.54E-01 -5.47E-01 -3.63E-01 3.70E-01 6.85E-04

300 α 1.42E+00 7.83E-01 -7.46E-01 -5.43E-01 8.00E-02 2.13E-05
β 6.60E-02 6.17E-01 -7.22E-01 -2.96E-01 1.40E-02 6.53E-07
µ 5.31E+00 5.42E-01 -4.39E-01 3.94E-01 3.10E-01 3.20E-04
σ 1.42E+00 4.73E-01 -5.18E-01 -2.87E-01 2.20E-01 1.61E-04

500 α 1.47E+00 7.09E-01 -6.18E-01 -4.79E-01 3.00E-02 1.80E-06
β 7.10E-02 5.42E-01 -6.43E-01 -1.75E-01 9.00E-03 1.62E-07
µ 5.29E+00 4.96E-01 -3.77E-01 3.04E-01 2.90E-01 1.68E-04
σ 1.31E+00 3.97E-01 -4.69E-01 -2.25E-01 1.10E-01 2.42E-05
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7. EXPONENTIATED LOGISTIC REGRESSION MODEL

Binary regression models are used for regressing certain independent variables on a di-
chotomous dependent variable. In this Section, we consider a regression model based on
ELDII and compare it with the other logit models. A random variable X is said to fol-
low exponentiated logistic regression model of type II (ELRMII) if it has the following
representation

p =
�

1− e−αx

(1+ e−x )α

�β

, (42)

where x ∈ R , α > 0 and β > 0. A graphical representation of ELRMII for particular
values of α and β are given in Figure 6.

(a) For fixed α and varying β (b) For fixed α and varying β

Figure 6 – Plots of ELRMII for varying values of α and β.

In order to obtain the maximum likelihood estimators of the parameters of ELRMII,
let us have a sample of n independent observations of the pairs (xi , yi ), i=1,2,. . . ,n, where
xi is the value of the independent variable and yi denotes the value of the dichotomous
outcome variable for the i th subject. Let pi = P (Yi = 1|Xi ), so that P (Yi = 0|Xi ) =
1− pi . The probability of observing the outcome Yi whether it is 0 or 1 is given by
P (Yi |Xi ) = pyi

i (1− pi )
1−yi . If there are n sets of values of Xi , say X, the probability

of observing a particular sample of n values of Y, say Y is given by the product of n
probabilities, since the observations are independent. That is

P (Y|X) =
n
∏

i=1

pyi
i (1− pi )

1−yi . (43)

Let z = a+
s
∑

r=1
br Xr and Θ = (α,β,a, b1, b2, . . . , bs ) be the vector of parameters of the

ELRMII and let bΘ =
�

bα, bβ, ba,Òb1,Òb2, . . . ,Òbs

�

be the maximum likelihood estimator (MLE)
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of Θ. The log-likelihood function of ELRMII is given by

l = log L (y|z,θ) =
n
∑

i=1

yi log pi +
n
∑

i=1

(1− yi ) log (1− pi ) . (44)

The MLEs of the parameters are obtained by solving the following set of likelihood
equations, in which

δ j =
� e−z

1+ e−z

� j

, j = 1, α,

∂ l
∂ α
= 0,

or, equivalently,

n
∑

i=1

yi
δα log (δ1)
(1−δα)

−
n
∑

i=1

(1− yi )
(1−δα)

β−1δα log (δ1)

1− (1−δα)
β

= 0, (45)

∂ l
∂ β
= 0

or, equivalently,

n
∑

i=1

yi log (1−δα)−
n
∑

i=1

(1− yi )
(1−δα)

β log (1−δα)
1− (1−δα)

β
= 0, (46)

∂ l
∂ a
= 0

or, equivalently,

n
∑

i=1

yi
δα (1−δ1)
(1−δα)

−
n
∑

i=1

(1− yi )
(1−δα)

β−1δα (1−δ1)

1− (1−δα)
β

= 0 (47)

and
∂ l
∂ b j

= 0,

or, equivalently,

x j

n
∑

i=1

yi
δα (1−δ1)
(1−δα)

− x j

n
∑

i=1

(1− yi )
(1−δα)

β−1δα (1−δ1)

1− (1−δα)
β

= 0 f o r j = 1,2, . . . , s .

(48)
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Second order partial derivatives of Eq. (44) with respect to the parameters are observed
with the help of MATHEMATICA software and found that the equation gives negative val-
ues, for all α > 0, β > 0, a, b ∈ R. Now we can obtain the bΘ by solving the likelihood
Equations (45) to (48) with the help of mathematical software packages such as MATHCAD,
MATHEMATICA, R etc.

7.1. Applications

For numerical illustration, we consider the following two datasets.

Dataset 3 Prostrate cancer dataset available in “https://www.umass.edu//statdata”.
These data are copyrighted by John Wiley and Sons Inc. The variable capsule
denotes the status of the tumor, whether it is penetrated or not, which we con-
sider as the dichotomous dependent variable (Y ) and Prostatic Specimen Antigen
Value (PSA) in mg/ml of 380 patients as the explanatory (X ) variable.

Dataset 4 Shock dataset obtained from Afifi and Azen (2014) (see https://www.umass.
edu/statdata/statdata/stat-logistic.html). These data were collected at the Shock
Research Unit at the University of Southern California, Los Angeles, California.
Data were collected on 113 critically ill patients. Here, we consider the explana-
tory variable as the urine output (ml/hr) at the time of admission and the depen-
dent variable Y as whether the person survived or not.

Here we consider the simplest model, Z = a + bX . We obtained the MLEs of the
parameters α,β, a and b with the help of R software 3.0.3 by using the nlm package. The
estimated values of the parameters of the logistic regression model (LRM), type I logistic
regression model (LRMI), type II logistic regression model (LRMII) and ELRMII, along
with the computed values of the AIC, BIC, CAIC and HQC and pseudo R2 values Mc-
Fadden (1973) are given in Tables 8 and 10. The values of AIC, BIC, CAIC and HQC
are relatively less in case of the ELRMII compared to other existing models while the
values of the of pseudo R2 (such as McFadden’s R2, McFadden’s Adj R2) are more in case
of ELRMII. We have obtained plots of cumulative distribution functions of the fitted
regression models along with the empirical distribution function in the case of Dataset
3 in Figure 7 and that in the case of Dataset 4 in Figure 8. Further, we obtained the
weighted residual plots in each of the cases and presented in Figure 9 and Figure 10. The
plots in Figure 7 to Figure 10 also support the suitability of the ELRMII models to both
the datasets considered here. Hence, based on the above observations we can conclude
that the ELRMII gives better fit to the given datasets compared to other existing models.
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TABLE 8
Estimated values and standard errors of the parameters with the corresponding Pseudo R2 values and

Information criteria values - Dataset 3.

Distribution

LRM LRMI LRMII ELRMII
(a, b ) (α,β,a, b ) (α,a, b ) (α,β,a, b )

α̂ – 184.237 0.028 0.159
(0.783) (0.013) (0.239)

β̂ – 3.467 – 3.830
(0.847) – (0.587)

â -1.113 1.379 5.994 6.731
(0.432) (0.347) (0.778) (0.886)

b̂ 0.050 0.011 1.025 0.229
(0.014) (0.122) (0.068) (0.069)

AIC 467.702 468.758 464.367 462.163
BIC 468.861 471.077 466.106 464.482
CAIC 470.861 475.077 469.106 468.482
HQC 465.348 464.051 460.836 457.456
McFadden’s R2 0.094 0.101 0.105 0.113
McFadden’s Adj R2 0.087 0.093 0.089 0.098
Cox Snell R2 0.120 0.127 0.132 0.142
Cragg-Uhler(Nagelkerke)R2 0.162 0.171 0.179 0.192
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TABLE 9
Estimated values and standard errors of the parameters with the corresponding Pseudo R2 values and

Information criteria values - Dataset 4.

Distribution

LRM LRMI LRMII ELRMII
(a, b ) (α,β,a, b ) (α,a, b ) (α,β,a, b )

α̂ – 12.406 0.003 0.003
(0.435) (0.028) (0.011)

β̂ – 0.073 – 1.116
(0.066) – (0.148)

â -4.679 5.241 4.725 -58.378
(0.801) (0.749) (0.342) (0.648)

b̂ 0.854 5.854 12.130 39.432
(0.344) (0.686) (0.414) (0.525)

AIC 391.372 390.494 405.743 384.773
BIC 393.003 393.756 408.190 388.036
CAIC 395.003 397.756 411.190 392.036
HQC 389.169 386.091 402.441 380.370
McFadden’s R2 0.085 0.097 0.056 0.110
McFadden’s Adj R2 0.076 0.087 0.037 0.091
Cox Snell R2 0.091 0.102 0.060 0.116
Cragg-Uhler(Nagelkerke)R2 0.135 0.152 0.090 0.172
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Figure 7 – Empirical distribution of the Dataset 3 along with the fitted CDFs.

Figure 8 – Empirical distribution of the Dataset 4 along with the fitted CDFs.
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Figure 9 – Weighted residual plots of fitted regression models for Dataset 3.

Figure 10 – Weighted residual plots of fitted regression models for Dataset 4.
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7.2. Testing of hypothesis

Next we discuss the generalised likelihood ratio test procedures for testing the parame-
ters of the ELRMII (α,β,a, b ) and attempt a brief simulation study. Here, we consider
the following tests:

Test 1 H01 : α= 1 vs H11 : α 6= 1;

Test 2 H02 :β= 1 vs H12 :β 6= 1;

Test 3 H03 : a = 0 vs H13 : a 6= 0;

Test 4 H04 : b = 0 vs H14 : b 6= 0;

Test 5 H05 : α= 1, a = 0 vs H13 : α 6= 1, a 6= 0;

Test 6 H06 : β= 1, a = 0 vs H15 :β 6= 1, a 6= 0;

Test 7 H07 : α= 1, β= 1, a = 0 vs H17 : α 6= 1, β 6= 1, a 6= 0.

In this case, the test statistic is

−2 logΛ= 2
�

ln L(Ω̂; y|x)− ln L(Ω̂∗; y|x)
�

, (49)

where
∧
Ω is the maximum likelihood estimator of Ω = (α,β,a, b ) with no restriction,

and Ω̂∗ is the maximum likelihood estimator ofΩwhen α= 1 in case of Test 1,β= 1 in
case of Test 2, a = 0 in case of Test 3, b = 0 in case of Test 4, α= 1,a = 0 in case of Test
5, β = 1,a = 0 in case of Test 6, α = 1,β = 1,a = 0 in case of Test 7. The test statistic
−2 logΛ given in Eq. (49) is asymptotically distributed as χ 2 with one degree of freedom
freedom in Test 1, Test 2, Test 3, Test 4 and 2 degree of freedom in Test 5, Test 6 and
three degree of freedom in Test 7. The computed values of ln L(Ω̂; y|x), ln L(Ω̂∗; y|x)
and test statistic in case of both the two datasets are listed in Table 10. Since the critical
value at the significance level 0.05 and degree of freedom one for two tailed test is 5.023
and for degrees of freedom two is 7.327 and for degrees of freedom three is 9.348, the
null hypothesis is rejected in all cases, which shows the appropriateness of the ELRMII
to the datasets.
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TABLE 10
Calculated values of the test statistics in case of ELRMII.

Test ln L
� ∧
Ω; y|x

�

ln L
�∧∗
Ω; y|x

�

Test statistic

Test 1 -227.0811 -230.4308 6.6994
Test 2 -227.0811 -229.8361 5.5100

Dataset 3 Test 3 -227.0811 -232.1870 10.2118
Test 4 -227.0811 -256.1444 58.1266
Test 5 -227.0811 -232.9611 11.7602
Test 6 -227.0811 -234.0933 14.0244
Test 7 -227.0811 -259.6120 65.0618

Test 1 -68.1231 -70.9346 5.7864
Test 2 -68.1231 -72.8451 9.6074

Dataset 4 Test 3 -68.1231 -72.7806 9.4784
Test 4 -68.1231 -75.0685 14.0542
Test 5 -68.1231 -74.1214 11.9966
Test 6 -68.1231 -75.2569 14.2696
Test 7 -68.1231 -76.3648 16.4834

7.3. Simulation

Next, we conduct a simulation study to assess the performance of the MLEs of the pa-
rameters of the ELRMII. We consider the following two sets of parameters.

1. α= 0.159, β= 3.830, a = 6.731, b = 0.229 (positively skewed),

2. α= 2.5, β= 1.116, a =−58.378, b = 39.432 (negatively skewed).

The computed values of the bias and MSE corresponding to sample sizes 100, 200, 300
and 500 respectively are given in Table 11. From the Table, it can be seen that both the
absolute bias and MSEs in respect of each parameter of the ELRMII are in decreasing
order as the sample size increases.



58 C. Satheesh Kumar and L. Manju

TABLE 11
Bias and MSE within brackets of the simulated datasets in case of ELRMII.

Parameter Set sample size: α β a b

100 1.64E-01 6.14E-02 3.05E-01 2.86E-01
(8.07E-02) (4.53E-03) (7.10E-03) (1.33E-02)

200 8.32E-02 3.67E-02 1.19E-01 9.82E-02
(2.64E-02) (2.34E-03) (2.78E-03) (5.81E-03)

α = 0.159, β = 3.830, 300 5.85E-02 7.73E-03 8.85E-02 7.55E-02
a= 6.731, b=0.229 (6.73E-03) (1.99E-03) (1.74E-03) (2.46E-03)

500 1.02E-02 -2.32E-03 3.64E-02 -4.41E-02
(3.69E-03) (8.47E-04) (9.41E-04) (1.06E-04)

100 5.71E-01 6.77E-01 -6.08E-02 2.12E-01
(2.46E-01) (9.26E-02) (7.68E-02) (4.56E-02)

200 2.54E-01 3.57E-01 -4.81E-02 9.93E-02
(1.28E-02) (6.30E-03) (5.59E-03) (1.51E-02)

α = 2.5, β = 1.116, 300 6.70E-02 1.03E-01 8.02E-03 7.02E-02
a= -58.378, b=39.432 (7.82E-03) (1.28E-03) (3.65E-04) (8.22E-03)

500 2.76E-03 8.87E-02 2.12E-03 5.13E-02
(2.97E-04) (6.65E-04) (9.93E-05) (5.97E-04)

8. CONCLUSION

Exponentiated version of LDII was studied by Manju (2016). Also the distribution with
the same PDF has been considered by Sapkota (2020) and called it as the Exponentiated-
Exponential Logistic Distribution. Through the present paper we considered a detailed
study of the Exponentiated-Exponential logistic distribution. We have investigated its
properties, discussed parameter estimation, and demonstrated its usefulness in analysing
real-life medical data along with its corresponding regression model. The developed
model provides researchers with valuable tools for accurately modelling and analysing
medical phenomena, thereby contributing to advancements in healthcare research and
decision-making.
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APPENDIX

A. EQUATIONS

∂ 2 l
∂ α2

=
−n
α2
− (β− 1)

n
∑

i=1

ln (Ω1i )
2Ωαi (1−Ωαi +Ω1i )

(1+Ωαi )
2 ,

∂ 2 l
∂ β2

=
−n
β2

,

∂ 2α

∂ µ2
=
−α (β− 1)

σ2

�

n
∑

i=1

(1−Ω1i )
3 [(1+Ωαi )Ωα−1i (α+ e−2zi )−αΩ2α−1i

(1+Ωαi )
2

�

−
(α+ 1)
σ

n
∑

i=1

(1−Ω1i )
2,

∂ 2 l
∂ σ2

=
n
σ2
− α

σ2

n
∑

i=1

zi −
α (β− 1)
σ2 (1+Ωαi )

�

e−αzi (σ (αzi − 1)− 1)

+ [(α+ 1)zi e (α+1)zi −αzi e−αzi ] (1−Ω1i )
α+2
�

−
(α+ 1)
σ

n
∑

i=1

zi (zi − 1)Ω1i (1−Ω1i ) .



60 C. Satheesh Kumar and L. Manju

REFERENCES

A. A. AFIFI, S. P. AZEN (2014). Statistical Analysis: a Computer Oriented Approach.
Academic Press, New York.

N. BALAKRISHNAN (2013). Handbook of the Logistic Distribution. CRC Press, Boca
Raton.

N. BALAKRISHNAN, A. HOSSAIN (2007). Inference for the Type II generalized logistic
distribution under progressive Type II censoring. Journal of Statistical Computation
and Simulation, 77, no. 12, pp. 1013–1031.

N. BALAKRISHNAN, M. LEUNG (1988). Order statistics from the type Igeneralized logistic
distribution. Communications in Statistics - Simulation and Computation, 17, no. 1,
pp. 25–50.

J. BERKSON (1944). Application of the logistic function to bio-assay. Journal of the Amer-
ican Statistical Association, 39, no. 227, pp. 357–365.

J. BERKSON (1951). Why I prefer logits to probits. Biometrics, 7, no. 4, pp. 327–339.

G. DYKE, H. PATTERSON (1952). Analysis of factorial arrangements when the data are
proportions. Biometrics, 8, no. 1, pp. 1–12.

C. EMMENS (1940). The dose/response relation for certain principles of the pituitary gland,
and of the serum and urine of pregnancy. Journal of Endocrinology, 2, no. 2, pp. 194–
225.

D. J. FINNEY (1947). The principles of biological assay. Supplement to the Journal of the
Royal Statistical Society, 9, no. 1, pp. 46–91.

D. J. FINNEY (1978). Statistical Method in Biological Assay. Ed. 3. Charles Griffin &
Company, London.

F. GALTON (1896). Application of the method of percentiles to Mr. Yule’s data on the
distribution of pauperism. Journal of the Royal Statistical Society, 59, no. 2, pp. 392–
396.

I. GRADSHTEYN, I. RYZHIK (2000). Table of Integrals, Series, and Products. Ed. 6.
Academic Press, San Diego.

D. W. HOSMER JR, S. LEMESHOW, R. X. STURDIVANT (2013). Applied Logistic Regres-
sion, vol. 398. John Wiley & Sons, Hoboken.

L. MANJU (2016). On generalized logistic models and applications to medical data.
PhD Thesis submitted to University of Kerala (Unpublished). URL https://

shodhganga.inflibnet.ac.in.

https://shodhganga.inflibnet.ac.in
https://shodhganga.inflibnet.ac.in


Exponentiated-Exponential Logistic Distribution 61

D. MCFADDEN (1973). Conditional logit analysis of qualitative choice behaviour. In
Frontiers in Econometrics, Academic Press, New York, pp. 105–142.

F. OLIVER (1982). Notes on the logistic curve for human populations. Journal of the Royal
Statistical Society - Series A, 145, no. 3, pp. 359–363.

R. PEARL (1924). Studies in Human Biology. Williams & Wilkins, Baltimore.

R. PEARL (1940). The aging of populations. Journal of the American Statistical Associa-
tion, 35, no. 209b, pp. 277–297.

R. L. PLACKETT (1959). The analysis of life test data. Technometrics, 1, no. 1, pp. 9–19.

S. M. ROSS (2022). Simulation. Academic press, San Diego.

L. P. SAPKOTA (2020). Exponentiated exponential logistic distribution: some properties
and applications. Janapriya Journal of Interdisciplinary Studies, 9, pp. 100–108.

H. SCHULTZ (1930). The standard error of a forecast from a curve. Journal of the Amer-
ican Statistical Association, 25, no. 170, pp. 139–185.

A. W. VAN DER VAART (2000). Asymptotic Statistics, vol. 3. Cambridge University
Press, Cambridge.

E. B. WILSON, J. WORCESTER (1943). The determination of LD 50 and its sampling
error in bio-assay. Proceedings of the National Academy of Sciences, 29, no. 2, pp.
79–85.


	Introduction
	Definition and properties
	Location scale extension and Maximum likelihood estimation
	Application
	Testing of hypothesis
	Simulation
	Exponentiated Logistic Regression Model
	Applications
	Testing of hypothesis
	 Simulation

	Conclusion
	Equations

