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SUMMARY

In many cases involving hypothesis testing for parameters in multivariate Gaussian populations
and certain other populations, likelihood ratio criteria, or their one-to-one functions, can be ex-
pressed in terms of the determinant of a real type-1 beta matrix. In geometrical probability prob-
lems, when the random points are type-1 beta distributed, the volume content of the parallellotope
generated by these points is also associated with the determinant of a real type-1 beta matrix.
These problems in the corresponding complex domain do not seem to have been discussed in the
literature. It is well-known that the determinant of a real type-1 beta matrix can be written as a
product of statistically independently distributed real scalar type-1 beta random variables. This
paper addresses the general h-th moments of a scalar random variable, in either the real or com-
plex domain, for any arbitrary h. The structure of these moments is quite general, and the paper
provides exact distribution results, asymptotic gamma function results, and asymptotic normal
results for both the real and complex domains.

Keywords: Likelihood ratio criteria; Type-1 beta matrix; General structures; Real and complex
cases; Asymptotic chi-square; Asymptotic normal; Exact distribution.

1. INTRODUCTION

The likelihood ratio test (LRT) is an important statistical tool used to test hypotheses
about the parameters of a statistical model. Its importance stems from the fact that it
is a powerful and versatile test that can be used in a wide range of applications. The
likelihood ratio test is an important tool in statistical analysis, offering increased power,
robustness, and model selection capabilities. It is widely used in many fields, including
biology, economics, engineering, and the social sciences. The foundational principles
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and interpretation of specific test criteria for statistical inference are outlined in Ney-
man and Pearson (1928). Further insights into the most efficient tests of statistical hy-
potheses are provided in Neyman and Pearson (1933) and Lehmann (2012). Anderson
(1958) presents a comprehensive exploration of multivariate statistical analysis, delving
into the theory and applications of the likelihood ratio test in various multivariate anal-
ysis contexts. The comparison of sample covariance matrices through likelihood ratio
tests is detailed by Manly and Rayner (1987). Pioneering the incorporation of Random
Matrix Theory, Bai et al. (2009) scrutinized two Likelihood ratio Tests and elucidated
the limiting distributions of the associated test statistics.

Lim et al. (2010) introduced likelihood ratio tests for correlated multivariate samples.
Central limit theorems for classical likelihood ratio tests applied to high-dimensional
normal distributions is developed by Jiang and Yang (2013). Subsequently, other re-
searchers expanded on these findings in various ways. For example, Jiang and Qi (2015)
relaxed assumptions on the parameters and Jiang and Wang (2017) established a mod-
erate deviation principle for these likelihood ratio tests. Furthermore, investigations
into likelihood ratio tests under model uncertainty have been conducted by various au-
thors, including Luo and Tsai (2012) and Lemonte (2013) and Lemonte (2016). More
recently, Dette and Dörnemann (2020) and Dörnemann (2023) derived insightful distri-
butional results relevant to high-dimensional settings. These results specifically involve
likelihood ratio statistics that can be expressed in terms of products and ratios of deter-
minants, incorporating sample sum of squares and cross-product matrices.

Likelihood ratio criteria associated with testing hypotheses on the parameters of one
or more real multivariate normal populations, as well as some non-normal populations,
often involve type-1 beta matrices and their determinants. The presence of real matrix-
variate type-1 beta distribution is prevalent in various problem domains. In the area of
geometrical probabilities dealing with type-1 beta distributed random points, the vol-
ume content of a p-parallellotope generated by these random points is associated with
the determinant of a real type-1 beta matrix (see Mathai, 1999). Mathai and Provost
(2022) obtained the density functions of both types of real and complex singular matrix-
variate beta random variables using a technique that relies on a series of successive trans-
formations. Notably, there seems to be a gap in the literature regarding corresponding
hypothesis tests for distribution parameters in the complex domain, with limited dis-
cussion in the recent book by Mathai et al. (2022). In these complex cases, likelihood
ratio criteria are observed to be functions of complex type-1 beta matrices and their
determinants.

In many physical situations, variables appear in pairs, such as time and phase. Hence,
in such situations, it is found that a more appropriate representation of such random
phenomena is through random variables in the complex domain. Scalar, vector, and
matrix-variate distributions in the complex domain find extensive applications in com-
munication theory, engineering problems, quantum physics, and other domains. Deng
(2016) specifically addresses the analysis of data related to multi-look return signals from
polarimetric synthetic aperture radar. A cross-section of the return signal has two com-
ponents: one is the pepper dust-like contaminants called freckle, and the other is the
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cross-section variable itself, called texture. Typically, freckle is modeled using a matrix-
variate random variable in the complex domain, while texture is represented by either
a scalar positive variable or a positive definite matrix variable. These models are respec-
tively termed the scalar texture model and matrix texture model. Deng (2016) provides
a comprehensive list of scalar variable distributions and matrix-variate distributions in
the complex domain commonly employed in radar data analysis. In a recent paper by
Benavoli et al. (2016), physicists illustrate and demonstrate with examples that Quantum
Mechanics can be viewed as a Bayesian analysis of Hermitian positive definite matrices
in a Hilbert space. Consequently, matrix-variate distributions in the complex domain
play a crucial role in quantum physics. Hence, the results obtained in the present paper
will have relevance and use in communication theory, engineering problems, quantum
physics, and related areas, apart from their significance in the statistical literature within
the complex domain.

This paper is organized as follows: Section 2 deals with the likelihood ratio crite-
ria, their connection to the real type-1 beta matrix, the structural representation of the
determinant of a type-1 beta matrix, and a general moment structure. In Section 3, ap-
proximations and asymptotic gamma form are presented. Section 4 is about asymptotic
normality, dealing with a novel method of deriving such results. Concluding remarks
are given in Section 5.

The following subsection introduces the notations and definitions used throughout
this article for the likelihood ratio criteria associated with the type-1 beta matrix in real
and complex scenarios.

1.1. Notations

In this paper, the following notations will be used for convenience. Real scalar variables,
whether mathematical variables or random variables, will be denoted by lower-case let-
ters such as x, y, x1, x2, . . .. Real vector/matrix variables, mathematical or random,
will be denoted by capital letters such as X , Y , X1, X2, . . ., whether the matrices are
square or rectangular. Complex variables will be denoted with a tilde in the form x̃, ỹ,
X̃ , Ỹ , . . .. Constant scalars will be denoted by a, b , c , . . . and constant vector/matrix
by A, B , . . .. No tilde will be used on constants. The determinant of a p × p matrix
Z will be written as |Z | or det(Z). In the complex domain, det(Z̃) will be of the form
det(Z̃) = a+ i b , i =

p

(−1),a, b real scalar. Then, the absolute value or modulus of the
determinant of Z̃ will be

|det(Z̃)|=+
p

a2+ b 2 =+
q

det(Z̃)det(Z̃∗) = +
q

det(Z̃Z̃∗),

where Z̃∗ means the complex conjugate transpose of Z̃ . A prime will be used to indicate
the transpose such as A′. When a m × n real matrix X = (xi j ), where the xi j ’s are
distinct (functionally independent) real scalar variables, then the wedge product of their
differentials dxi j ’s will be written as dX = ∧m

i=1 ∧
n
j=1 dxi j . When Y = (yi j ) is a p × p
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real symmetric matrix, Y = Y ′, then dY = ∧i≤ j dyi j = ∧i≥ j dyi j since there are only

p(p + 1)/2 distinct elements due to symmetry. For a p × q matrix Ỹ in the complex
domain, Ỹ can be written as Ỹ = Y1 + iY2, i =

p

(−1),Y1,Y2 real, then dỸ will be
defined as dỸ = dY1 ∧dY2. In this paper, a vector will mean a n× 1 or 1× n matrix for
n > 1 and when n = 1 these will be called scalars. A statistical density will be defined as
a real-valued scalar function f (X ), where the argument X can be scalar, vector, square
or rectangular matrix, in the real or complex domain, such that f (X ) ≥ 0 for all X
and
∫

X f (X )dX = 1. In the following discussion, all matrices appearing are p × p real
positive definite, or Hermitian positive definite in the complex domain, unless stated
otherwise. Also, it is understood that the density functions are zero outside the support
stated with each function.

1.2. The Matrix-Variate Gamma Distribution

A real matrix-variate gamma density with shape parameter α and scale parameter matrix
B >O, denoted by f1(X ), is defined as the following:

f1(X ) =
|B |α

Γp (α)
|X |α−

p+1
2 e−tr(BX ),X =X ′ >O,B = B ′ >O,ℜ(α)>

p − 1
2

(1)

and zero elsewhere, where X > O,B > O mean that the p × p matrices X and B are
real positive definite, B is a constant matrix, tr(·) means the trace of (·), ℜ(·) means the
real part of (·) and Γp (α) is the real matrix-variate gamma given by

Γp (α) =π
p(p−1)

4 Γ (α)Γ (α− 1
2
) . . .Γ (α−

p − 1
2
),ℜ(α)>

p − 1
2

.

It is called the real matrix-variate gamma because it is associated with a real matrix-variate
gamma integral, namely

Γp (α) =
∫

X>O
|X |α−

p+1
2 e−tr(X )dX ,ℜ(α)>

p − 1
2

.

The corresponding gamma density in the complex domain denoted by f̃1(X̃ ), complex
matrix-variate gamma and complex matrix-variate gamma integral are the following (see
also Mathai et al., 2022):

f̃1(X̃ ) =
|det(B)|α

Γ̃p (α)
|det(X̃ )|α−pe−tr(BX̃ ), X̃ = X̃ ∗ >O, B = B∗ >O, ℜ(α)> p − 1,

(2)
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Γ̃p (α) =π
p(p−1)

2 Γ (α)Γ (α− 1) . . .Γ (α− p + 1), ℜ(α)> p − 1,

Γ̃p (α) =
∫

X̃>O
|det(X̃ )|α−pe−tr(X̃ )dX̃ , ℜ(α)> p − 1,

where X̃ and B are Hermitian positive definite with B being a constant matrix, |det(·)|
means the absolute value of the determinant of (·), a tilde is used on the functions in
the complex domain, a letter c is attached to the section number to indicate equation
numbers in the complex domain in order to avoid too many equation numbers.

In a statistical density, usually, the parameters are real. But the mathematical prop-
erties hold for parameters in the complex domain also. Hence, the relevant conditions
are stated for the parameters in the complex domain.

2. LIKELIHOOD RATIO CRITERIA ASSOCIATED WITH TYPE-1 BETA MATRIX AND
STRUCTURAL REPRESENTATIONS

Consider the case of a p × 1 real vector variable X having a real p-variate nonsingular

Gaussian distribution, that is, X ∼Np (µ,Σ),Σ>O. Let X be partitioned as X =
�

X1
X2

�

where X1 is p1 × 1 and X2 is p2 × 1 with p1 + p2 = p. Consider the hypothesis that
X1 and X2 are independently distributed. Consider testing this hypothesis by using a
simple random sample of size n from this normal population. Let λ be the likelihood
ratio criterion for testing this hypothesis of independence. Let u = λ

2
n . Then, under the

null hypothesis one can see that the h-th moment of u, for arbitrary h, is of the form

E[u h] = c

∏p
j=p1+1 Γ (

m
2 −

j−1
2 + h)

∏p2
j=1 Γ (

m
2 −

j−1
2 + h)

, ℜ(h)>−m
2

, (3)

where c is the normalizing constant such that E[u h] = 1 when h = 0. In the complex
case, consider the p-variate complex nonsingular Gaussian population X̃ ∼ Ñp (µ̃,Σ),
Σ=Σ∗ >O. Consider the partitioning of X̃ as in the real case and consider the hypoth-
esis that the subvectors are independently distributed. Then, it is shown that the h-th
moment of ũ = λ̃

2
n , for arbitrary h and under the null hypothesis, is of the form

E[ũ h] = c̃

∏p
j=p1+1 Γ (m+ h − j + 1)
∏p2

j=1 Γ (m+ h − j + 1)
, ℜ(h)>−m. (4)

It can be seen that ũ in the complex case is also real and for consistency of the notation
we have used a tilde. In the real and complex cases in Eq. (3) and Eq. (4), it can be
seen that the h-th moments of u and ũ are coming from the determinants of a real type-
1 beta matrix and a complex type-1 beta matrix respectively. Those beta matrices are
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coming from the following properties. From Mathai (1999) it follows that when X1 and
X2 are two p× p real matrix-variate random variables, independently distributed as the
gamma distribution in Eq. (2) with the parameters (α,B) and (β,B), respectively, with
the same scale parameter matrix B >O, then U = (X1+X2)

− 1
2 X1(X1+X2)

− 1
2 is type-1

real matrix-variate beta distributed with the density

f2(U ) = {
Γp (α+β)

Γp (α)Γp (β)
}|U |α−

p+1
2 |I −U |β−

p+1
2 , O <U < I , ℜ(α), ℜ(β)>

p − 1
2

.

(5)
Here (·)

1
2 means the positive definite square root of the positive definite matrix (·) and

the notation O < U < I means U > O and I − U > O. It is well-known that since
the density in Eq. (5) is a function of the determinant, |U |, the h-th moment of the
determinant of this real type-1 beta matrix in Eq. (5) is available from the normalizing
constant in Eq. (5) and it has the form

E[|U |h] =
Γp (α+ h)

Γp (α)

Γp (α+β)

Γp (α+β+ h)
, ℜ(α+ h)>

p − 1
2

= cp

p
∏

j=1

Γ (α+ h − j−1
2 )

Γ (α+β+ h − j−1
2 )

, cp =
p
∏

j=1

Γ (α+β− j−1
2 )

Γ (α− j−1
2 )

= E[u h
1 ]E[u

h
2 ] . . . E[u h

p ], E[u h
j ]

=
Γ (α+ h − j−1

2 )

Γ (α− j−1
2 )

Γ (α+β− j−1
2 )

Γ (α+β+ h − j−1
2 )

, (6)

where u1, . . . , up are independently distributed real scalar type-1 beta variables with the

parameters (α− j−1
2 ,β), for j = 1, . . . , p. Hence, |U | has the structural representation

|U |= u1 . . . up .

It can be seen that in the complex case also the transformation
Ũ = (X̃1+X̃2)

− 1
2 X̃1(X̃1+X̃2)

− 1
2 holds and Ũ has a complex matrix-variate type-1 beta dis-

tribution when X̃1 and X̃2 are independently distributed complex matrix-variate gamma
variables with the densities as in Eq. (2) with the parameters (α,B) and (β,B), respec-
tively, with the same B = B∗ >O, where the square root means the Hermitian positive
definite square root of the Hermitian positive definite matrix. Then, following the steps
parallel to those in the real case, it can be seen that the density of Ũ , denoted by f̃2(Ũ ),
is the following:
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f̃2(Ũ ) = {
Γ̃p (α+β)

Γ̃p (α)Γ̃p (β)
}|det(Ũ )|α−p |det(I − Ũ )|β−p , O < Ũ < I , ℜ(α), ℜ(β)> p−1,

where O < Ũ < I means Ũ = Ũ ∗ > O and I − Ũ > O. In the complex case the h-th
moment of the absolute value of the determinant of Ũ , namely E[|det(Ũ )|h], has the
following form:

E[|det(Ũ )|h] =
Γ̃p (α+ h)

Γ̃p (α)

Γ̃P (α+β)

Γ̃p (α+β+ h)
, ℜ(α+ h)> p − 1

= c̃p

p
∏

j=1

Γ (α+ h − j + 1)
Γ (α+β+ h − j + 1)

, c̃p =
p
∏

j=1

Γ (α+β− j + 1)
Γ (α− j + 1)

= E[ũ h
1 ]E[ũ

h
2 ] . . . E[ũ h

p ], E[ũ h
j ]

= c∗j
Γ (α+ h − j + 1)
Γ (α+β+ h − j + 1)

, (7)

for ℜ(α+ h)> 0, where c∗j is the corresponding normalizing constant. Here, it can be
seen that ũ1, . . . , ũp are independently distributed real scalar type-1 beta variables with
the parameters (α− j + 1,β) for j = 1, . . . , p. The only difference between the real and
complex cases here is that j−1

2 of the real case is replaced by j−1 in the complex case. For
consistency of the notation, we have written ũ j , j = 1, . . . , p. Then, the distributions of

the determinant in U in the real case and the absolute value of the determinant of Ũ in
the complex case, can be studied by using the structural representations in Equations (6)
and (7).

3. APPROXIMATIONS AND ASYMPTOTIC GAMMA AND CHISQUARE

Let us consider a more general form of the gamma structure so that Equations (6) and
(7) will be available as special cases therein. Let v be a real scalar random variable with
the h-th moment of the form

E[v h] = c
p
∏

j=1

Γ (α+δ j +ρh)

Γ (α+δ j +β j +ρh)
, (8)

for ℜ(α) > p−1
2 ,ρ > 0,ℜ(α + δ j + ρh) > 0, j = 1, . . . , p where c is the normalizing

constant so that E[v h] = 1 when h = 0. Note that for δ j =−
j−1
2 ,ρ= 1,β j =β in Eq.

(8) yields the h-th moment of the real case in Eq. (6). For δ j =−( j − 1),β j =β,ρ= 1
give the h-th moment in Eq. (7). Hence, we will deal with the moment in Eq. (8) and



160 N. Sebastian and T. Princy

study some properties of the real scalar random variable v. Consider E[vαh] coming
from Eq. (8) and consider the approximation of all gammas in Eq. (8) by using the first
term approximation of gamma functions or Stirling’s formula, given by

Γ (z +δ)≈
p

2πz z+δ− 1
2 e−z , for |z | →∞ and δ bounded.

Then, under Stirling’s formula we have

p
∏

j=1

Γ (α+δ j +β j )

Γ (α)
≈
p

2παα+δ j+β j−
1
2 e−α

p
2παα+δ j−

1
2 e−α

= α
∑

j β j

p
∏

j=1

Γ (α+δ j +αρh)

Γ (α+δ j +β j +αρh)
=

p
∏

j=1

Γ (α(1+ρh)+δ j )

Γ (α(1+ρh)+δ j +β j )

≈
p
∏

j=1

p
2π[α(1+ρh)]α(1+ρh)+δ j−

1
2 e−α(1+ρh)

p
2π[α(1+ρh)]α(1+ρh)+δ j+β j−

1
2 e−α(1+ρh)

= α−
∑

j β j (1+ρh)−
∑

j β j .

Therefore,

E[vαh] = E[e−h(−α ln v)]→ (1+ρh)−
∑

j β j , for 1+ρh > 0, |α| →∞

and all other parameters are bounded. Observe that (1+ρh)−
∑

j β j is the moment gener-
ating function of a real scalar gamma variable with the scale parameter ρ> 0 and shape
parameter
∑

j β j with h replaced by −h and it is the Laplace transform of the gamma
density. Hence, we have the following Theorem.

THEOREM 1. Consider the real scalar variable v having the moment structure in
Eq. (8) for an arbitrary h. Then, when |α| → ∞, δ j ’s, β j ’s and ρ > 0 (real positive)
are bounded, then −α ln v goes to a real scalar gamma variable with scale parameter ρ and
shape parameter
∑

j β j . Convergence in distribution is considered here. When
∑

j β j =
γ
2 ,

γ = 1,2, . . . and ρ = 2, then −α ln v → χ 2
γ , when |α| →∞ and where χ 2

γ is a real scalar
central chisquare with γ degrees of freedom.

In statistical distributions, usually the parameters are real but the results in this pa-
per hold good for complex parameters as well. Hence, the conditions are stated for
complex parameters. When the parameters are real, then in all the conditions delete
“ℜ” notation. As, mentioned in Section 2, Theorem 1 holds for real and complex cases
of gamma products coming from likelihood ratio criteria and other similar situations or
from the determinants of type-1 beta matrix in the real case and the absolute value of
the determinant of type-1 beta matrix in the complex domain.
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4. APPROXIMATIONS AND ASYMPTOTIC NORMALITY

For obtaining an asymptotic normal form, we will appeal to the general asymptotic
expansion of gamma functions, namely

Γ (z +δ) =
p

2πz z+δ− 1
2 e
−z−
∑∞

k=1
(−1)k Bk+1(δ)

k(k+1)zk , |z | →∞, δ bounded,

where Bk (·) is Bernoulli polynomial of order k and the first two Bernoulli polynomials
are B2(δ) = δ

2 − δ + 1
6 and B3(δ) = δ

3 − 3
2δ

2 + 1
2δ, see for example Mathai (1993).

Note that the Stirling’s formula is the case k = 0 or the first term approximation of the
gamma function. Now, let us look at the expansion of all gammas in E[v h] of Eq. (8)
for |α| →∞ and all other parameters bounded. The following techniques are adopted
from Mathai (1999). From Section 3 we have, for k = 0 or under Stirling’s formula
E[v h]≈ 1 for |α| large. Now, we look at the additional terms for k = 1,2, . . .. For k = 1
the additional term coming from E[v h] is the following:

p
∏

j=1

Γ (α+δ j +β j )

Γ (α+δ j )
→ e

1
2α [(δ j+β j )

2−(δ j+β j )+
1
6 ]

e
1

2α [δ
2
j−δ j+

1
6 ]

= e
1

2α [
∑

j (2δ jβ j+β
2
j−β j )].

and
p
∏

j=1

Γ (α+δ j +ρh)

Γ (α+δ j +β j +ρh)
→ e

1
2α [(δ j+ρh)2−(δ j+ρh)+ 1

6 ]

e
1

2α [(β j+(δ j+ρh))2−(β j+(δ j+ρh))+ 1
6 ]

= e−
1

2α
∑

j [β
2
j+2β jδ j−β j+2β jρh].

Therefore the additional factor for k = 1 gives

E[v h]→ e−
1
α

∑

j (β j )ρh .

For k = 2 the additional factor leads to the following:

p
∏

j=1

Γ (α+δ j +β j )

Γ (α+δ j )
→ e−

1
6α2 [(δ j+β j )

3− 3
2 (δ j+β j )

2+ 1
2 (δ j+β j )]

e−
1

6α2 [δ
3
j−

3
2δ

2
j+

1
2δ j ]

= e−
1

6α2
∑

j [3δ
2
jβ j+3δ jβ

2
j+β

3
j−

3
2 (β

2
j+2β jδ j )+

1
2β j ].

and
p
∏

j=1

Γ (α+δ j +ρh)

Γ (α+β j +δ j +ρh)
→ e−

1
6α2 [(δ j+ρh)3− 3

2 (δ j+ρh)2+ 1
2 (δ j+ρh)]

e−
1

6α2 [(β j+(δ j+ρh))3− 3
2 (β j+(δ j+ρh))2+ 1

2 (β j+(δ j+ρh))]

= e
1

6α2
∑

j [β
3
j+3β2

j (δ j+ρh)+3β j (δ j+ρh)− 3
2β

2
j−3β j (δ j+ρh)+ 1

2β j ].
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Hence the additional factor corresponding to k = 2 goes to the following:

E[v h]→ e
1

2α2
∑

j (β jρ
2 h2+ε),

where ε contains only a linear term of h. Now, combining the cases k = 0,1,2 the h-th
moment of v goes to the following:

E[v h]→ e−
1
α

∑

j (β j )ρh+ 1
2α2 (
∑

j β jρ
2 h2)+ 1

2α2 (ε).

If h = i t , i =
p

(−1) and if h is replaced by αh then we have the following:

E[vαi t ] = E[ei tα ln v] = E[e−i t (−α ln v)]

→ e(
∑

j β j )ρ(−i t )− 1
2 (
∑

j β jρ
2)t 2

.

Observe that for k = 3, . . . the additional factors in the asymptotic formula for gamma
functions produce e0 when |α| → ∞. Hence, for |α| → ∞ and all other parameters
bounded, ρ> 0

−α ln v −ρ(
∑

j

β j )≈N1(0,ρ2
∑

j

β j )⇒

1
Æ

ρ2
∑

j β j

[−α ln v −ρ
∑

j

β j ]→N1(0,1).

Hence, we have the following asymptotic normality Theorem

THEOREM 2. Consider the real scalar variable defined in Eq. (8). For |α| → ∞ and
all other parameters bounded with ρ> 0 (real positive),

1
Æ

ρ2
∑

j β j

[−α ln v −ρ
∑

j

β j ]→N1(0,1),

a real scalar standard normal variable. Convergence in distribution is considered here.

5. CONCLUDING REMARKS

Observe that in the illustrative example of testing independence in a p-variate Gaussian
considered in Section 2, the h-th moment in Eq. (3) is in fact coming from the h-th mo-
ment of the determinant of a real type-1 beta matrix. For example, takeδ j =−(

p1
2 +

j−1
2 )

and β j =
p1
2 for j = 1, . . . , p2, then the general moment structure in (8) agrees with

that in Eq. (3). Therefore, in Eq. (3) the shape parameter in the asymptotic gamma is
ρ
∑

j β j = ρ
∑

j
p1
2 = ρ[

1
2 (p1 p2)]. Then, when ρ = 2 the asymptotic chisqure has the

degrees of freedom 2[ 1
2 (p1 p2)] = p1 p2 = the number of parameters restricted by the
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hypothesis there. Note that sections 3 and 4 results also hold good for the shape param-
eter being α j , depending on j , and |α j | →∞ for each α j , provided α j can be taken as
α j = α+ γ j where |α| →∞ whereas γ j is bounded. In a practical situation, a parame-
ter can be coming from two sources where the part coming from one source can go to
infinity whereas the other part is always bounded and the part going to infinity may be
common to all α j ’s. The h-th moment in (8) corresponds to the representation of the
real scalar variable v in the form v = vδ1 . . . vδp where v j , j = 1, . . . , p are mutually inde-
pendently distributed real scalar type-1 beta variables. As seen before, in the complex
case also the individual variables are real type-1 beta, the only difference being the j−1

2
in the real case is replaced by j − 1 in the complex case.

If we had started with real and complex Wishart distributions, instead of matrix-
variate gamma distributions, then the changes required are the following: In the real
case, replace α by n−1

2 and B by 1
2Σ
−1,Σ >O where n is the sample size, n > p where

p is the order of the Wishart matrix. In the complex case, replace α by n − 1 and B
by Σ−1,Σ = Σ∗ > O. These results on the complex domain will become handy when
tests of hypotheses, geometrical probability problems and other similar situations are
developed in the complex domain in future. The methods used in deriving asymptotic
results are novel and applicable to other similar problems.
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