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SUMMARY

Statistical process control consists of sophisticated and well-organized methods which contribute
to monitor and improve the quality of a product. Control charts are now routinely used in many
applied areas to enhance the quality of products. In this study, a general framework is presented to
construct univariate control charts for joint monitoring using the information theoretic approach.
To this end, we monitor a process by maximizing the entropy and by minimizing the cross en-
tropy. Information control charts are free from strict distributional assumptions, as information
charts are based on information discrepancy between the initial momentµ0 and the data moments
rt . These charts can jointly monitor mean and variance and thus provide a unified approach that
is helpful in reducing the labor for designing separate charts. Besides real data applications, in
this study, Monte Carlo simulations are used to assess the performance of the information charts
using the average run length as a performance criterion assuming different distributions including
normal, gamma, exponential, lognormal, Weibull and beta. Furthermore, a comparison with the
traditional charts is also given for each distribution.

Keywords: Shewhart chart; Information theoretic charts; Kullback-Leibler; Weibull distribution;
Lognormal distribution

1. INTRODUCTION

The historical background of quality is as ancient as the industry. The basic purpose to
use the quality control is to get rid of the system failure and consumers claims by pro-
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viding a quality product. Consequently, improving the quality of a product or service is
the main factor that links to the success of a business. Statistical process control (SPC)
is defined as the set of statistical tools that are used to monitor, control and hence, im-
prove the quality of the output of a production system. Among the SPC tools, control
charts are successfully used to monitor the quality of a process. A process is said to be
statistically in-control if it is monitored only in the presence of natural cause, which can
never be eliminated from the process. However, a process is said to be statistically out-
of-control when it is being monitored in the presence of external causes that are also
called as the special cause variation. The basic aim of a control chart is to detect the
assignable (external) cause as early as possible.

This article focuses on the information theoretic framework for process monitoring
using the maximum entropy (ME) function and minimum discrimination information
(MDI) function. More specifically, the aim of this study is to assess monitoring strategies
for different distributions using information theoretic methods for joint moments mon-
itoring of the process by a single control chart. The performance of the proposed charts
is evaluated using the average run length (ARL) criterion. Further, a comparison of the
information theoretic control charts with the traditional memory-less control charts is
also discussed in this study.

Many researchers focused on the mean monitoring (Ahmed et al., 2022; Raza et al.,
2021; Ali et al., 2021; Raza and Siddiqi, 2017; Aslam et al., 2018; Ali, 2017; Nabeel et al.,
2021), however, the joint monitoring of mean and variance is also a very popular topic,
see for example Saniga (1977), White and Schroeder (1987), Chen and Cheng (1998),
Celano et al. (2016), Ramadan (2018), Domangue and Patch (1991), Gan (1995), Chen
et al. (2001), Chen et al. (2004), Khoo et al. (2010), Mukherjee and Chakraborti (2012),
Mukherjee et al. (2015), Li et al. (2016) and references cited therein for monitoring mean
and variability (or location and spread). The use of information theory in statistical
problems is very common, see for example Jaynes (1957), Brockett (1991), Soofi et al.
(1995), Sawa (1978), and references cited therein.

Alwan et al. (1998) introduced a general theory for constructing control charts based
on the information theory to monitor the moments of a distribution using a single chart-
ing scheme. The proposed approach is based on the process moments which are mapped
to an in-control distribution moments and then the Kullback-Leibler (cross entropy) is
used with some constraints to mark the discrepancy between the in-control and moni-
toring moments. Thus, the information charts are made without using any specific dis-
tributional assumptions. The authors developed an information mean variance (IMV)
chart based on the normal distribution. By comparing IMV chart with the standard
chart using the average run length (ARL), it was shown that the IMV chart performs
better than the x̄ and s2 charts. Recently, Chang and Chen (2020) proposed a Kullback-
Leibler based control chart for monitoring linear profile for phase-II analysis. The au-
thors also made a comparison between the proposed and existing generalized likelihood
ratio (GLR) charts and numerically they showed that the proposed chart outperforms
the existing chart.

Chen et al. (2001) proposed a new exponentially weighted moving average (EWMA)
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chart to detect decrease and increase mean shifts in the process. Khoo et al. (2010) pro-
posed a maximum double EWMA chart by constructing the charting statistic using the
maximum of absolute values of two DEWMA statistics to control the mean and vari-
ance. The authors concluded that the proposed chart outperformed for detecting mod-
erate and small changes in mean or variance of a process than the Max-EWMA chart.
Chen et al. (2004) designed an EWMA-SC chart to efficiently monitor simultaneously
the mean and variation of a normal process. It is concluded that this chart is efficient in
detecting the source and the direction of out-of-control signal with the desirable proper-
ties. Mukherjee et al. (2015) proposed a control chart for monitoring the simultaneous
location and variation using a single chart assuming two-parameter exponential distri-
bution. The monitoring statistic of the proposed chart is based on the maximum like-
lihood estimator and it is concluded that the propose chart performs better when the
sample size is large. Li et al. (2016) proposed two maximum cumulative sums (CUSUM)
charts which naturally work better in the situation when the process parameters are un-
known. Using a numerical study, it is shown that the proposed charts outperform in
detecting small to moderate shifts in location and scale than the Shewhart type control
chart. Chang and Chen (2020) proposed a Kullback-Leibler based control chart for mon-
itoring linear profile for phase-II analysis. The authors also made a comparison between
the proposed and existing generalized likelihood ratio (GLR) chart and it is shown that
the proposed chart outperforms the existing chart. The average time to signal (ATS) is
used to assess the performance of the proposed control chart. Chatterjee et al. (2023)
proposed a parametric generally weighted moving average (GWMA) maximum control
chart for simultaneous monitoring the location and scale parameters. The author also
compared this chart with EWMA-Max and DEWMA-Max using the ARL criterion and
from the results it is noticed that GWMA-Max chart detects the small shift in simultane-
ously process efficiently. We refer to Takemoto and Arizono (2023) for recent directions
related to information theoretic charts.

Mukherjee and Chakraborti (2012) proposed a single nonparametric Shewhart-type
control chart for joint monitoring the location and dispersion of the process in situation
when the both parameters are unknown. The charting statistic is based on the Wilcoxon
sum rank test that monitors the mean and dispersion by using the Ansari–Bradley statis-
tic. The effect of reference observations is also investigated and it is found that the refer-
ence sample size 100 or 150 is required to get the in-control ARL in the phase-I analysis.
Celano et al. (2016) conducted a study on the comparison of different control charts
which monitor the location and scale for observations having a location-scale distribu-
tion in a finite horizon process. The authors applied distribution-free singed rank statis-
tics to monitor the location and robust estimators to monitor the scale of the process.
Results showed that the singed rank statistics outperformed for monitoring the location
and Downton’s D estimator outperformed in monitoring the scale of the process for
non-normal data when the observations follow the uniform distribution. In addition,
if the data follow the normal distribution, Downton’s D estimator provides the best re-
sult to monitor the scale of the process. Chakraborti and Graham (2019) discussed non-
parametric charts. Chowdhury et al. (2015) proposed a distribution free nonparametric
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CUSUM Shewhart chart based on Lepage statistic for simultaneous monitoring. This
chart is compared with Shewhart chart and found that the CLS chart outperform than
existing chart for location and scale. Also, Chowdhury et al. (2014) proposed a nonpara-
metric control chart for joint monitoring the mean and variance of the process. This
proposed chart is based on the Cucconi statistic and named as the Shewhart-Cucconi
(SC) chart. Authors also compared proposed chart with Shewhart-Lepage chart and
found that the proposed chart is efficient in monitoring the joint process efficiently.
Chang and Wu (2022) also proposed exponential time-between-event chart by estimating
the rate parameter using the maximum likelihood estimator, the uniformly minimum
variance unbiased estimator, and the minimum mean squared error estimator.

Boone and Chakraborti (2012) considered two multivariate distribution-free control
charts. Das and Bhattacharya (2008) proposed a nonparametric control chart to moni-
tor scale the variability of a process. To check the efficiency of the proposed chart, the
authors compared it with the S-type Shewhart control chart and found that the pro-
posed chart outperformed than S-chart. Das (2009) proposed a multivariate nonpara-
metric control chart based on bivaraite sign test. The author also made a comparative
analysis between proposed and multivariate normal and t distribution charts. Ghadage
and Ghute (2023) proposed a nonparametric control chart to monitor the location and
scale parameters of the process. The proposed chart is compared with nonparametric
Shewhart-Cucconi (SC) and Shewhart-Lepage (SL) charts and found that the proposed
chart outperformed than the existing comparative chart. More recently, Xue et al. (2023)
proposed a novel nonparametric EWMA control chart to monitor count and continu-
ous data. The proposed chart is compared with the existing charts and found that the
proposed chart efficiently handle the situation of false alarm in monitoring the process.

McCracken and Chakraborti (2013) presented an overview study based on one and
two control chart scheme for the case of known and unknown parameters. This study
also discussed the joint monitoring scheme for the multivariate, auto-correlated and indi-
vidual process. Ramadan (2018) discussed a simple model for economic statistical design
of joint x̄-chart and s2-chart. Fuzzy multi-objective modeling constraints were used to
obtain the weighted average for measuring the satisfaction level. A comparative analysis
between joint x̄,s2 and x̄, s chart is presented to enhance the effectiveness in detecting
the special cause variations.

In this article, we consider the known standards for the information theoretic frame-
work, which is similar to Alwan et al. (1998), and using these in-control parameters we
study the in-control and out-of-control situations by using the Kullback-Leibler. Also,
we construct the joint control charts based on information theoretic framework and
compared them with Shewhart-type individual mean and variance control chart. To
this end, two-sided control limits are used and based on the ARL criterion, the deci-
sions are made.

The rest of the article is organized as follows. Section 2 introduces the main frame-
work for the information theoretic control charts. The performance of different infor-
mation theoretic control charts assuming exponential, gamma, Weibull, normal, log-
normal, and beta distribution is discussed in Section 3. Concluding remarks are given
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in Section 4.

2. INFORMATION THEORETIC CONTROL CHARTS

In this Section, the maximum entropy (ME) (Jaynes, 1957; Shore and Johnson, 1980) and
the minimum discrimination information (MDI) Kullback (1959) statistics are used to
design the information theoretic process control (ITPC) charts to monitor the process
moments. To this end, we assume that the actual data generating process is unknown
(Sawa, 1978) and some sort of averages are used to approximate the data generating dis-
tribution. The constrained functional optimization method utilizes the pre-specified
and true moments of the data to estimate f ∗0 (z |µ0,σ2

0 ) of the process distribution and
f ∗t (z |z̄t , s2

t ) for the in-control state at each monitoring time t . Then, an information
control function DKL( f ∗0 , f ∗t ) measures the difference between monitoring state and
in-control state. Let us monitor a number of process moments by

Sλ = E f [gλ(Z)] =
∫

gλ(z)dF (z), λi = 0,1,2, . . . ,λm (1)

where g0(z) = 1 and λi are the numbers of Lagrange multipliers to enforce the con-
straints that normalize the density, f and gλi

are absolutely integrable functions with
respect to d F . Further, let µ0 = (µ10,µ20, . . . ,µλm0

) represent the in-control moments
of the process based on the engineering design or assuming known parameters. The
in-control moments µ0 and data moments rt = ( r1t, r2t, . . . , rλmt

) computed from the
samples zt = ( zt1, zt2, . . . , ztn) at time t are the only information available to monitor
the process f (z |µ).

The conventional control charts assume that the process follows a specific distribu-
tion which may not be a true assumption in practice. The ITPC method consists of
three operational steps to monitor the moments. First, use the ME principle which
takes the in-control moments µλm0

as the input and results in a model f ∗0 (z |µ0) to ob-
tain an estimated model of the unknown process distribution f (z |µ) for the in-control
state. Then, the distribution of the process is estimated at each monitoring state. At
the third step, MDI statistic is used to detect the changes occurred in the monitoring
distribution as well as in-control state.

Entropy is defined as an average amount of uncertainty that a random variable pos-
sess or, equivalently, it is defined to represent the degree of randomness. Mathematically,
the entropy of a probability distribution can be expressed as

H (Z)≡H [ f (z)] =−
∫

log f (z)dF (z). (2)

A general model is formulated on the basis of ME principle at the in-control state for
process monitoring (Rajan et al., 2018)

S0 =
�

f (z |µ0) :
∫

gλ(z)dF (z |µ0) =µλm0
, λi = 0,1,2, . . . ,λm

	

. (3)
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In statistics, many distributions fulfill the moment constraints. The ME model f ∗0 (z |µ0)
is obtained by maximizing H (z |µ0) with respect to the density f over S0 for a stable or
in-control state. Using the variational calculus with Lagrangian multiplier

L =−
∫

log f (z |µ0)−
λm
∑

λi=0

ηλi

∫

[gλ(z)−µλ0
]dF(z|µ0), (4)

the result is obtained by taking the derivative ofL with respect to density f . The first
order condition of LagrangianL may not give the specified moments for an in-control
process but if exits it can be obtained in the form

f ∗0 (z |µ0) =C(µ0)exp

(

λm
∑

λi=1

ηλi
(µ0)gλ(z)

)

, (5)

where C(µ0) represents the normalizing constant for the density and ηλi
(µ0),

λi = 1, . . . ,λm are the Lagrange multiplier to enforce the constraints of Eq. (3) (Ka-
pur, 1989). The symbol f ∗0 denotes the estimated ME model of true distribution f to
monitor the moments of the process. The ME model f ∗0 (z |µ0) is just an information
theoretic (IT) estimate of f (z |µ) which utilizes moments constraint in Eq. (3) to esti-
mate the unknown true probability distribution f (z |µ). Using suitable gλ(z), most of
the parametric distributions can be written by the ME result, for example, Table 1 lists
many MEs for different distributions.

TABLE 1
Maximum Entropy Distributions.

Parameter(s) of interest µλm
= E f [gλ(Z)] ME distribution

µ1 = E(Z), µ2 = E(Z −µ1)
2 Normal

µ1 = E |Z |, µ2 = E |Z −µ1| Laplace
µλ = E(Zλm ), λi = 1,2, . . . ,λm K-Exponential
µ1 = E(Z), z > 0 Exponential
µ1 = E(Z), µ2 = E(logZ), z > 0 Gamma
µ1 = E(Za) a ̸= 1 , µ2 = E(logZ), z > 0 Weibull
µ1 = E(Z), µ2 = E[(logZ)2], z > 0 Log-Normal
µ1 = E(Z), µ2 = E[log(1−Z)], 0< z < 1 Beta

2.1. Formulation of Monitoring Distribution

Two types of information are required to approximate the process distribution at the
monitoring point. The first one is the in-control process distribution f ∗0 (z |µ0) and the
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second one is the vector of data moments rt. In particular, we take into account the
distribution class

St =
§

f (z |rt) :
∫

gλ(z)dF (z |rt ) = rλt
,λi = 0,1, . . . ,λm

ª

, (6)

which is nearest to the in-control ME distribution f ∗0 (z |µ0) suitable to monitor the pro-
cess. The Kullback-Libeler discrimination information statistic DKL is used to calculate
the difference between reference distribution F ∗0 and monitoring process Ft .

DKL( ft : f ∗0 ) =
∫

log
�

ft

f ∗0

�

dFt (z)≥ 0. (7)

The equality holds if Ft = F ∗0 approximately. The function DKL is also called the cross
or relative entropy. The ITPC links the current information and the in-control distribu-
tion using the MDI theory. The MDI leads to probability which minimizes DkL( ft : f ∗0 )
in relation to ft over St . Thus, the MDI provides a general structure of the solution
(Kullback, 1959). Also, it would lead to a similar family as f ∗0 where parameters are
obtained by moments of data rt . In this case, the reference distribution f ∗0 (z |µ0) is the
ME model, one can derive the MDI solution in a simple form. To demonstrate it, we
expand DkL( ft : f ∗0 ) by using Equations from 3 to 6 as follows

DKL( ft : f0
∗) =
∫

log ft (z |rt)dF (z |rt)−
∫

log f0
∗(z |µ0)dF (z |rt)

=−H [ ft (z |rt)]−Et[log f0
∗(z|µ0)]

=−H [ ft (z |rt)]− logC(µ0)−
λm
∑

λi=1

ηλi
(µ0)Et[gλ(Z)]

=−H [ ft (z |rt)]− logC(µ0)−
λm
∑

λi=1

ηλi
(µ0)rt (8)

and the resulting MDI solution is

f ∗t (z |rt) =C (rt)exp
§ λm
∑

λi=1

ηλi
(rt)gλ(z)
ª

. (9)

Using the reference distribution f ∗0 and the moment constraints as given in Eq. (1), one
can obtain f ∗t (z |rt ) which is the information theoretic estimate of the true unknown
distribution f (z |µ) for the process monitoring variable.
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2.2. Information Control Function

The model in Eq. (9) is an approximate form of the constraint given in Eq. (5). Now, to
monitor the process at time t , the MDI function is used to measure the information dif-
ference between the monitoring state f ∗t (z |rt) and the in-control state f ∗0 (Z |µ0). If the
difference between monitoring state and in-control state is large, the process is consid-
ered as out-of-control. Thus, by determining the ME value we achieve the MDI control
function that can monitor shifts in the parameter values.

H [ f ∗t (z |rt)] =− logC (rt)−

(

λm
∑

λi=1

ηλi
(rt)rλt

)

(10)

Substituting Eq. (10) in Eq. (8), the MDI control function can be written as

Irt
= 2nDKL( ft : f ∗0 ) = 2n{−H [ f ∗t (z |rt)]− Et [log f ∗0 (Z |µ0)]}

= 2n
§

log
C(rt)
C(µ0)

+
λm
∑

λi=1

[ηλi
(rt)−ηλi

(µ0)]rλt

ª

. (11)

The function Irt
is the smallest information difference of variation between f ∗0 (z |µ0)

and f ∗t (z |rt) for process monitoring variable f (z |µ). Further, Irt
is also referred to as

the function of the in-control moments and monitoring moments value of a process.
By Irt

function, we analyze and compare the process monitoring to the in-control state
in a sequential order. If there is a difference between the moment values then the MDI
between f ∗0 (z |µ0) and f ∗t (z |rt)would also be different for a process monitoring variable
f (z |µ). If this information difference is sufficiently large and outside the control limits,
the process will be considered as the out-of-control.

To formulate the information control function, moment values be used to obtain
the Lagrangian multipliers ηλi

(rt) and ηλi
(µ0). Then, using Eq. (11) the information

control function Irt
is calculated. Some MDI functions DKL( ft : f ∗0 ) for different well-

known ME model distributions are shown in Table A.1 in the Appendix. We present
the performance evaluation of information theoretic control charts in the next Section
using these MDI functions.

3. PERFORMANCE OF THE INFORMATION THEORETIC CONTROL CHARTS

To study the performance of the MDI function based charts for different distributions
using Monte Carlo simulations as well as real data sets, we assess the performance by
using the zero-state ARL, which is a commonly used criterion. The ARL is defined
as the average number of points taken before detecting an out-of-control signal. More
specifically, when the subgroup size is larger than 1 (n > 1), the ARL is the average num-
ber of subgroups (samples) taken before an out-of-control signal shows up on a control
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chart. It is to be noted that Jalilibal et al. (2022) pointed out that the control chart per-
formance evaluated on the basis of zero-state ARL is fundamentally flawed. However,
in our opinion, the importance of zero-state ARL cannot be ignored as zero-state and
steady-state performances serve different perspectives. In particular, zero-state perfor-
mance is particularly more important for noting a shift at the beginning or within the
first few samples.

3.1. IMVt Chart for Normal Distribution

Normal distribution is one of the most widely distributions in statistics and statistical
quality control. To develop the normal distribution control chart, we required two pa-
rameters, meanµ and variance σ2. For the information control chart, it is assumed that
the in-control parameters, i.e., (µ0,σ2

0 ) are known. Using the formulation of Section 2,
the population moments are defined as

µ10 =
∫

z f0(z)dz (12)

µ20 =
∫

(z −µ10)
2 f0(z)dz (13)

and S0 is determined by these two moments in Eq. (12) and Eq. (13). From Table 1, it is
observed that the ME result over the distribution in S0 is f ∗0 (z |µ0,σ2

0 ) that is a normal
with meanµ0 and variance σ2

0 where the model parameters are obtained by the moment
equations given in Table A.1. Let the sample mean and variance are denoted by r1t and
r2t , respectively. To express the class of St distributions, we replace µ10 and µ20 in Eq.
(12) and Eq. (13) by data moments r1 t and r2 t and then the MDI distribution in St with
relation to f ∗0 (z |µ0,σ2

0 ) = N (µ0,σ2
0 ) is estimated. Then the MDI equation becomes

f ∗t (z |z̄t , z2
t ) = N (z̄t , z2

t ) which is considered as the approximate distribution for the in-
control process that satisfies the moment constraints. Using the results of Table A.1,
the MDI control function for the normal distribution can be written as

2nDKLt
( ft
∗ : f0

∗|µ0,σ2, z̄t , z2
t ) = 2n
� (z̄t −µ0)

2

2σ2
0

+
1
2

� z2
t

σ2
0

− log
z2

t

σ2
0

− 1
��

=
n(z̄t −µ0)

2

σ2
0

+ n
� z2

t

σ2
0

− log
zt

2

σ2
0

− 1
�

. (14)

The first term in Eq. (14) evaluates the information discrepancy as a result of process
mean while the second term evaluates the process variability. This equation can be writ-
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ten as IMVt = IMt + IVt , where

IMt =2nDKLt
( f ∗t : f0

∗|µ0, z̄t ,σ
2) =

n(z̄t −µ0)
2

σ2
0

(15)

IVt =2nDKLt
( ft
∗ : f0

∗|σ2, z2
t ,µ0) = n
� zt

2

σ2
0

− log
zt

2

σ2
0

− 1
�

. (16)

Thus, IMt can be used to diagnose mean shift and IVt for the variance shift. By adding
and subtracting z2

t
σ2

0
in Eq. (16), it can be written as

(n− 1)z2
t

σ2
0

+
� z2

t

σ2
0

− n log
z2

t

σ2
0

− n
�

. (17)

Now using Eq. (17), the upper percentiles using µ0 = 0, σ2
0 = 1 and α = 0.0027 for

different n = 3, . . . , 15 are listed in Table 2 by using 100000 Monte Carlo simulation
runs. Here, it is to be noted that the lower percentiles are zero for the IMV chart. It is
clear from the table that the UCL decreased as the sample size increased.

TABLE 2
Upper Percentile of Information Mean variance IMVt Chart for Normal Distribution assuming

α= 0.0027.

n 3 4 5 6 7 8 9 10 11 12 13 14 15

UCL 16.03 14.98 13.90 13.40 13.10 12.98 12.73 12.40 12.05 11.95 11.80 11.68 11.62

3.1.1. Average Run Length for Normal Distribution
This Section presents the ARL study by using the Monte Carlo simulations to test the
effectiveness of the IMVt chart for the normal process. Using different sample sizes for
N (0,1) process, the ARL values with standard deviation of run length (SDRL) are re-
ported in Table 3. It is noticed from the table that ARL0 varies from sample to sample
and the nominal value (370) is achieved at n = 4. To study the out-of-control perfor-
mance, we introduced mean and variance shifts in the in-control process. To this end,
the in-control mean shifted from µ0 to out-of-control mean µ1 while the in-control
variance σ2

0 to σ2
1 . Thus, the mean shift is denoted by δ = µ0−µ1

σ0
and variance shift is

denoted by k = σ1
σ0

. Further, we suppose that δ and k ranges from 0 to 2 with the in-
crement of 0.2. It is notable that we only consider upward shifts because these are the
most important and must be detected as soon as possible. Table 4 lists the out-of-control
ARL for n=4 based on 100000 Monte Carlo simulations. It can be observed from the
table that the IMVt chart performs better when there is a mean shift for fixed variance
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shift. Similarly, a dispersion shift is detected more quickly for the fixed mean shift and
for fixed variance, a pure mean shift will take more points to detect it and vice versa.

TABLE 3
ARL and SDRL for information mean variance chart for Normal Distribution at α=0.0027.

α n 3 4 5 6 7 8 9 10 11 12 13 14 15

0.0027 ARL 283.40 372.50 337.30 355.20 328.30 360.80 323.35 315.30 278.54 261.60 240.80 239.60 229.08
SDRL 283.30 372.50 339.47 355.43 346.00 351.40 322.45 327.05 258.74 257.16 229.10 236.00 233.25

3.1.2. Real Data Application
To show a practical application of the normal IMVt chart, a data set about the number
of defects in painted automobile hoods is taken from Montgomery (2019). For com-
parisons, we apply the X̄ , S2 and IMVt charts, where the control limits for standard X̄
chart are given below in Eq. (18) and Eq. (19) and the control limits for variance chart
are given in Eq. (20) and Eq. (21).

LCL= µ̂− z α
2
∗ σ̂ , (18)

UCL= µ̂+ z α
2
∗ σ̂ , (19)

LCL=
S̄2

n− 1
∗χ 2

α
2
,n−1 , (20)

UCL=
S̄2

n− 1
∗χ 2

1− α2
,n−1 . (21)

It can be noticed from frame (a) of Figure 1 that the LCL(=1.44) of the X̄ chart does
not detect out-of-control signal. On the other hand, the S2 chart depicted in frame (b)
of Figure 1 signals out-of-control at the twenty-eight sample. Compared to these both
charts, IMVt chart depicted in frame (c) of Figure 1 signals out-of-control at the thirty-
second sample with the UCL. However, the IMV chart get first out-of-control signal at
6th point by using the LCL(=30.68). Hence, the IMVt chart outperforms the existing
control charts.

3.2. IMVt Chart for Gamma Distribution

Gamma distribution is a positively skewed and extensively used in statistics and qual-
ity control. For example, Torng et al. (2009) utilized Tukey control chart to monitor
the gamma distribution for short-run process. Derya and Canan (2012) used weighted
variance, weighted standard deviation, and skewness correction methods based control
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Figure 1 – Comparison of X̄ , S2 and IMVt Charts for the Number of Defects in Painted Automo-
bile Hoods.
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charts assuming gamma, Weibull, and log-normal distributions. Hao et al. (2016) pro-
posed gamma control chart with known parameter case and concluded that this chart is
efficient in detecting shifts in the scale parameter. Aslam et al. (2017) proposed a control
chart based on multiple dependent state sampling for gamma distributed quality char-
acteristics. We obtain the upper and lower percentiles of the gamma distribution based
chart using Monte Carlo simulations with the following MDI function.

2nDKLt
( f ∗t : f ∗0 |µ10,µ20, r1t , r2t ) =2n

�

− log
(θt )

kt Γ (kt )
(θ0)k0Γ (k0)

+
r1t

µ10
k0−

kt +(kt − k0)r2t

�

. (22)

This distribution has two unknown parameters, i.e., kt and θt , and we estimate them us-
ing the maximum likelihood method. In particular, Nelder-Mead iterative search (Hol-
land and Fitz-Simons, 1982; Delignette-Muller et al., 2015) using R language is used. To
study the performance, we set in-control parameters k0 = 1,θ0 = 1 using α= 0.0027 and
α=0.0047, respectively, and find the upper and lower percentiles (or LCL and UCL) for
n = 3, . . . , 15 using Monte Carlo simulations. The results of upper and lower percentiles
based on 100000 replications are listed in Table 5. It can be noticed from Table 5 that
as sample size increases, the LCL and UCL of gamma distribution decrease. For calcu-
lating the out-of-control ARL, we introduced artificial shifts in the parameters, i.e., k0
and θ0, n = 6,7 with fixed ARL0 = 200 to evaluate the performance of IMVt gamma
control chart. Table 6 assesses the effect of different sample sizes on the in-control ARL.
It is clear that n = 7 yields the ARL0 = 212. Next, we introduce different size shifts and
study the out-of-control performance of the IMVt control chart. The results listed in
Table 6 indicate that the chart is efficient for downward shifts in the scale parameter
while it takes more points to detect out-of-control signals if k is large. It is also noticed
that the large shifts are detected more quickly than small shifts.



Information Theoretic Control Charts 55

TABLE 5
Lower and Upper percentiles of IMVt Chart for Gamma Distribution.

α= 0.0027 α= 0.0047

n LCL UCL LCL UCL

3 24.05 152.14 29.10 200.40
4 14.31 52.12 14.08 56.63
5 11.03 36.94 11.00 29.48
6 7.26 33.50 9.23 28.56
7 7.24 19.57 7.20 27.50
8 7.23 15.52 7.15 15.17
9 7.10 14.40 7.10 14.30
10 6.90 13.60 6.96 13.39
11 6.85 12.80 6.85 12.92
12 6.72 12.74 6.32 12.71
13 6.43 12.57 6.15 12.60
14 6.35 12.50 6.07 12.55
15 6.23 11.86 6.00 12.52

TABLE 6
ARL and SDRL for IMVt chart for gamma distribution.

n 3 4 5 6 7 8 9 10 11 12 13 14 15

6 ARL 85.74 61.52 79.36 210.00 130.55 77.09 77.36 62.97 62.63 127.06 83.15 114.29 54.96
SDRL 70.14 58.84 68.45 93.75 81.66 61.08 67.85 56.52 59.30 86.12 70.72 83.07 53.37

7 ARL 92.18 84.76 66.30 118.35 212.40 95.70 53.70 67.05 48.65 92.15 91.40 113.30 107.20
SDRL 74.80 72.80 55.10 81.80 56.50 77.75 49.50 58.00 47.60 72.90 74.81 79.32 82.40
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Next, Table 7 and Table 8 list the out-of-control ARL for fixed scale parameter while
shifting the shape parameter of the gamma distribution. Table 9 lists ARL1 results as-
suming simultaneous shifts in the both parameters of the gamma distribution and it is
clear that upward shifts are detected more quickly than the downward shifts.

TABLE 7
ARL and SDRL assuming k0 fixed while θ0 varies.

n δ 0.60 0.65 0.70 0.75 0.80 0.85 0.90 0.95 1.05 1.10 1.15 1.20 1.25

6 ARL 1.0 1.10 1.36 4.52 21.05 88.90 133.42 134.85 162.35 21.30 8.30 4.02 1.20
SDRL 0.0 0.10 1.18 4.15 21.47 74.36 86.41 84.73 108.30 42.70 2.26 0.63 0.0

7 ARL 1.0 1.07 1.10 1.85 11.50 94.20 141.90 154.95 162.35 21.30 8.30 4.02 1.20
SDRL 0.0 0.10 0.90 1.25 9.35 75.60 92.60 85.90 70.55 20.22 8.17 3.98 0.80

TABLE 8
ARL and SDRL when θ0 parameter is fixed and k0 varies.

δ 0.60 0.65 0.70 0.75 0.80 0.85 0.90 0.95 1.05 1.10 1.15 1.20 1.25 1.30 1.35 1.40

ARL 1.0 1.04 1.20 2.10 6.24 41.31 103.52 146.18 146.33 125.5.0 19.5.0 3.33 1.36 1.06 1.01 1.0
SDRL 0 0.20 0.50 1.50 5.87 38.20 45.96 78.72 89.10 85.51 20.08 2.52 0.76 0.23 0.10 0
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Figure 2 – IMVt and Traditional Gamma Charts for the Failure Times of the Air Conditioning
Data.

3.2.1. Real Data Application for the Gamma IMVt Chart

A real life data set is taken from Gupta and Kundu (2003) which is about the failure times
of the air conditioning system. The traditional gamma mean chart is also implemented
to show the superiority of the proposed chart. Control limits for the traditional gamma
mean charts are constructed by using Equations (18) and (19). In particular, control
charts are constructed using α = 0.0027 and α = 0.0047, respectively. The graphical
depiction of the charts is given in Figure 2. It is noticed from frame (a) of Figure 2 for
α=0.0027 that the traditional gamma mean control chart does not indicate any out-of-
control signal but IMVt chart depicted in frame (b) of Figure 2 does indicate out-of-
control alarm at the fourth sample. Similarly, for α=0.0047 in frame (d) of Figure 2, the
traditional gamma mean control chart gives no out-of-control signal while IMVt control
chart, (frame (c) of Figure 2) gives out-of-control signals at the twenty-second observa-
tion for the failure times of the air conditioning system data. Thus, gamma IMVt chart
detects the out-of-control signals more efficiently than the traditional control charts.
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3.3. Exponential Distribution

Exponential distribution is a continuous probability distribution commonly used as the
benchmark model in reliability analysis. This distribution has a single parameter which
can be estimated by the method of maximum likelihood estimation (MLE). The MDI
equation to construct the information based exponential control chart is given as

2nDKLt
( f ∗t : f ∗0 |θ0, r1t ) = 2n

� r1t

µ10
− log

r1t

µ10
− 1
�

. (23)

Monte Carlo simulations have been used to find the upper percentile assuming θ0 =
1, α = 0.0027 and α = 0.0047 for different n as listed in Table 10 based on 100000
replications.

TABLE 10
Upper Percentiles of the IMt Chart for Exponential Distribution at α= 0.0027 and α= 0.0047.

n α=0.0047 α=0.0027

3 8.35 9.39
4 8.28 9.33
5 8.26 9.30
6 8.18 9.10
7 8.15 9.00
8 8.10 8.96
9 8.07 8.95
10 8.05 8.93
11 8.02 8.90
12 8.00 8.88
13 7.98 8.85
14 7.96 8.83
15 7.93 8.80

3.3.1. Average Run Length for the Exponential IMVt Chart
The results for ARL0 and SDRL0 are tabulated in Table 11 based on 100000 Monte Carlo
simulation runs. It can be observed from Table 11 that, for α= 0.0027 and α= 0.0047,
ARL0 varies with different sample sizes and at sample n = 5, we achieved the require in-
control ARL0. Moreover, Table 12 introduces different downward and upward shifts to
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evaluate the performance of exponential IMVt control chart. The in-and out-of-control
ARL values for the exponential IMVt control chart assuming n = 5 are discussed for
different downward and upward shift sizes. It is clear from Table 12 that the downward
shifts are detected more quickly as compared to the upward shifts.

TABLE 11
ARL and SDRL for information mean chart for exponential distribution.

α n 3 4 5 6 7 8 9 10 11 12 13 14 15

0.0027 ARL 346.87 349.38 372.80 335.85 321.10 328.60 326.55 315.30 316.50 325.40 330.28 320.38 308.00

SDRL 348.44 352.30 372.80 330.28 320.97 340.10 321.20 307.90 315.80 325.20 333.34 318.85 303.00

0.0047 ARL 201.90 207.72 216.18 208.70 205.14 204.63 205.70 206.50 199.00 199.25 203.80 198.00 193.65

SDRL 189.94 208.60 218.600 210.68 204.95 203.40 203.94 204.44 199.40 193.26 202.80 201.00 197.24

TABLE 12
ARL and SDRL for the Information based on Exponential Distribution.

α δ 0.5 0.6 0.7 0.8 0.9 1.0 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 2.0

0.0047 ARL 0.15 2.45 6.10 20.90 96.05 216.18 137.70 69.40 37.75 22.45 13.80 9.30 6.45 4.60 3.65 2.90

SDRL 0.80 1.90 5.55 20.25 96.30 218.60 139.60 68.10 37.65 21.85 13.15 8.80 5.85 4.15 3.05 2.30

0.0027 ARL 1.50 2.75 7.53 28.20 145.65 372.80 221.40 112.30 60.70 34.0 21.10 13.75 9.25 6.70 4.90 3.75

SDRL 0.90 2.15 6.75 27.60 144.80 372.80 221.80 113.15 59.60 32.60 20.60 13.10 8.75 5.95 4.34 3.20

3.3.2. Real Data Application of the IMVt Chart for Exponential Distribution
Using the data on the strength of 1.5cm glass fibers measured at the National Physical
Laboratory, England (Shanker et al., 2015), we compare IMVt chart with the traditional
exponential control chart assuming α= 0.0027 and α= 0.0047:

UCL= F −1
�

1− α
2

�

; (24)

LCL= F −1 (1−α) . (25)

We used Eq. (19) to construct IMVt chart and for the traditional control chart, the limits
are given in Equations (24) and (25). It is clear from Figure 3 that the control limits of
the traditional control charts are wider than the IMVt charts for both α=0.0027 and for
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Figure 3 – IMVt and Traditional Exponential Charts for Strength of 1.5cm Glass Fibers Data.

α=0.0047. Moreover, it is noticed from frame (a) of Figure 3 for α= 0.0027 that IMVt
control chart first out-of-control alarm at the thirteenth observation using UCL while
there is no out-of-control signal by the traditional chart (frame (b) of Figure 3). However,
the second point sample is out-of-control by the LCL(=0.19). Next, forα=0.0047, IMVt
chart (frame (c) of Figure 3) signals out-of-control at the sixth observation with UCL and
fourth by the LCL(=0.22) while there is no out-of-control signal by the traditional chart
(frame (d) of Figure 3). Thus, it can be said that the proposed information mean IMVt
chart is effective in detecting out-of-control signals than the traditional chart.
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3.4. IMVt Chart for Lognormal Distribution

Lognormal distribution is one of the commonly used distributions in applied statistics
(Huang et al., 2016). We use the MDI Eq. (26) to construct a lognormal joint mean
and variance control chart by setting µ0 = 0, σ2

0 = 0.5 for the in-control process with
α = 0.0027 and α = 0.0047. The lower and upper percentiles of the joint lognormal
control chart are given in Table 13 based on 100000 Monte Carlo simulations. It can be
noticed from Table 13 that for both α, the LCL and UCL become wider as the sample
size increase

2nDKLt
( f ∗t : f ∗0 |µ10,µ20, r1t , r2t ) = n

� (r1t −µ10)
2

(µ20−µ10)
+
� r2t − r 2

1t

µ20−µ2
10

−log
�

r2t − r 2
1t

µ20−µ2
10

�

−1
��

.

(26)

TABLE 13
Lower and Upper Percentiles of IMVt Chart for Lognormal Distribution assuming α= 0.0047 and

α= 0.0027.

α 0.0047 0.0027

n LCL UCL LCL UCL

3 -9.90 56.97 -10.48 63.32
4 -12.12 57.98 -12.72 70.10
5 -14.40 70.08 -15.21 76.05
6 -16.58 71.83 -16.80 88.03
7 -17.92 82.23 -18.83 92.02
8 -19.70 88.25 -20.70 94.98
9 -21.75 85.90 -22.95 105.02
10 -23.75 93.22 -23.23 108.13
11 -26.06 94.16 -26.54 116.10
12 -28.25 97.87 -28.56 117.25
13 -29.25 110.93 -29.17 122.85
14 -31.27 111.05 -32.08 134.62
15 -31.63 113.63 -32.70 134.90
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3.4.1. Average Run Length of the IMVt Chart assuming Lognormal Distribution
To evaluate the performance of the joint lognormal control chart, we introduce artificial
shifts in the process and study its performance. It can be observed from Table 14 that as
n increases the ARL0 and SDRL0 varies from sample to sample for both α=0.0027 and
α=0.0047, but the require in-control ARL0 is achieved for both α=0.0027 and α=0.0047
at sample of size n = 5. Table 15 refers to the ARL for α = 0.0047 while Table 16 for
α= 0.0027 for n = 5 using 100000 Monte Carlo simulation replications.

TABLE 14
ARL and SDRL for information mean variance chart for lognormal distribution at α=0.0027 and

α=0.0047.

α n 3 4 5 6 7 8 9 10 11 12 13 14 15

0.0027 ARL 349.36 336.10 374.50 322.40 330.30 306.15 354.35 130.00 330.90 318.95 175.85 316.80 181.73
SDRL 351.24 332.60 372.40 317.40 340.62 307.90 335.40 131.15 327.40 308.10 181.72 312.85 171.90

0.0047 ARL 172.25 171.68 214.30 200.90 154.56 137.78 146.50 157.40 185.48 193.25 160.05 176.83 140.17
SDRL 152.32 163.30 216.30 202.10 157.80 135.20 153.60 163.56 177.23 188.90 154.32 178.92 125.10

It can be noticed from Table 15 and Table 16 that the chart detects efficiently upward
mean and variance shifts. For fixed variance, mean is detected more quickly as the SDRL
decreases with the shift size.
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Figure 4 – IMVt and Traditional Control Charts for Log-normal Distribution for Failure Times
of 59 Conductors.

3.4.2. Real Life Example for IMVt Lognormal Chart
A real life data set of failure times of 59 conductors in hours is taken from Doost-
parast et al. (2013) to present the comparison of traditional mean and IMVt charts using
α= 0.0027 and α= 0.0047, respectively.

The upper and lower percentiles of IMVt are calculated by using the MDI Eq. (26)
whereas the traditional mean chart control limits are computed by using the Equations
(18) and (19). It can be seen from frame (a) of Figure 4 for α=0.0027, IMVt chart signals
the first out-of-control alarm at the twenty-eights sample with UCL while there is no
out-of-control signal detected by the traditional chart depicted in frame (b) of Figure
4. Also, for α=0.0047, IMVt chart signals the first out-of-control signal at the forty-
ninth sample (frame (c) of Figure 4) with UCL while no out-of-control signal detected
by the traditional chart (frame (d) of Figure 4). With the LC L(= 27.47), the fourth
point is out-of-control by the IMV chart. We conclude that the lognormal information
mean-variance chart IMVt detects out-of-control signals more rapidly as compared to
the traditional chart.
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3.5. IMVt Chart for Weibull Distribution

Weibull distribution is a two-parameter positively skewed continuous probability dis-
tribution which is commonly used in statistics and reliability. We construct the infor-
mation based mean-variance chart using the MDI equation for the Weibull distribution.
We set in-control parameters k0 = 1 and θ0 = 1 and set the in-control ARL0 = 150 for
the Weibull distribution. Further, the unknown parameters kt and θt are estimated us-
ing the likelihood method with Nelder-Mead iterative search (Delignette-Muller et al.,
2015; Holland and Fitz-Simons, 1982). The MDI equation is

2nDKLt
( f ∗t : f ∗0 |µ10,µ20, r1t , r2t ) =2n

�

log
kt

k0
+
�

θt

θ0

�kt

Γ

�

1+
kt

k0

�

− 1−

log
r1t

µ10
+(kt − k0)r2t

�

(27)

and the percentiles are listed in Table 17 based on 100000 Monte Carlo simulation repli-
cations. It is noticed from Table 17 that as the sample size increases, the percentiles
decrease.

TABLE 17
Upper and lower percentiles for Weibull distribution at α=0.0047.

n 3 4 5 6 7 8 9 10 11 12 13 14 15

LCL 2.37 0.30 -0.50 -0.70 -1.00 -3.22 -3.92 -3.95 -4.12 -6.82 -6.90 -7.90 -8.10
UCL 148.23 29.27 28.70 28.28 27.90 27.30 23.07 22.90 22.66 22.05 20.98 20.20 20.05

3.5.1. Average Run Length of the IMVt Weibull Chart
We evaluate the performance of IMVt control chart using the ARL by introducing shifts
of different sizes. Table 18 is based on 100000 Monte Carlo simulations to assess the
effect of sample size to achieve the ARL0 = 150. Next, we introduce shifts in the pro-

TABLE 18
ARL and SDRL for IMVt chart for Weibull distribution.

n 3 4 5 6 7 8 9 10 11 12 13 14 15

ARL 89.40 58.20 52.20 77.06 130.10 159.15 84.65 73.43 90.60 69.30 55.30 89.30 70.71
SDRL 76.20 57.02 49.45 69.36 94.20 78.80 72.74 72.26 61.70 52.50 51.40 88.78 78.10

cess parameters. Tables 19, 20, and 21 list the ARL1 values assuming a fixed scale and
shifted shape, fixed shape and shifted scale, and both parameters shifted simultaneously,
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respectively. It clear that the chart detects out-of-control signal quickly when there is a
simultaneous shift in both scale and shape parameters of the Weibull distribution. Also,
the SDRL decreases as the shift size increases.

TABLE 19
ARL and SDRL for shift in k and fixed θ0.

δ 0.5 0.6 0.7 0.8 0.9 1.0 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 2.0

ARL 2.29 3.60 16.10 97.94 127.70 159.15 118.10 53.56 17.70 5.80 3.20 1.83 1.40 1.20 1.15 1
SDRL 1.70 3.25 14.45 89.05 84.10 78.80 81.84 49.43 17.25 4.80 3.05 1.20 0.80 0.45 0.40 0.20

TABLE 20
ARL and SDRL when shift in θ while k0 is fixed.

δ 0.5 0.6 0.7 0.8 0.9 1.0 1.1 1.2 1.3 1.4 1.5

ARL 1.0 1.0 1.05 3.10 76.56 159.15 16.13 2.10 1.20 1.0 1.0

SDRL 0 0 0.20 2.46 64.05 78.80 15.12 1.40 0.40 0.10 0

TABLE 21
ARL and SDRL when both parameters θ and k Shifted Simultaneously.

δ 0.5 0.6 0.7 0.8 0.9 1.0 1.1 1.2 1.3 1.4 1.5

ARL 1.0 1.0 1.04 1.75 29.05 159.15 5.05 1.10 1.05 1.0 1.0

SDRL 0 0 0.10 1.10 28.90 78.80 4.10 0.40 0.20 0 0

3.6. Real Data Application of the IMVt Chart for the Weibull Distribution

Real life data on the endurance of deep groove ball bearings is taken from Gupta and
Kundu (2001) to show the comparison of the proposed chart with the traditional Weibull
mean chart. We estimate the unknown parameters kt and βt by using the maximum
likelihood method with Nelder-Mead iterative search (Delignette-Muller et al., 2015).
The control limits for the traditional Weibull mean chart is set by using the Equations
(18) and (19). The resulting comparison of control charts is depicted in Figure 5. It can
be observed from the figure that the control limits for Weibull IMVt chart are wider
than the traditional chart. Moreover, it can be noticed from frame (a) of Figure 5 that
IMVt control chart signals the second sample as the out-of-control with UCL and third
sample by the LCL(=10506.6), whereas from frame (b) of Figure 5, it is noticed that the
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Figure 5 – IMVt and Traditional Control Charts for Weibull Distribution for Ball Bearings Data
assuming α= 0.0047.

traditional chart doe snot signal. Hence, the IMVt control chart for Weibull distribution
outperforms then the traditional Weibull mean chart in detecting out-of-control signals.

3.7. IMVt Chart for Beta Distribution

Beta distribution is a two-parameter continuous probability distribution and here we
use it to study the performance of the information theoretic chart. The MDI equation
for beta distribution is

2nDKLt
( f ∗t : f ∗0 |µ10,µ20, r1t , r2t ) = 2n

�

− log
B(ktβt )
B(k0β0)

− (kt − k0)r1t − (βt −β0)r2t

�

(28)
and to construct the control chart we set the in-control parameters k0 = 1, β0 = 1.5
and α=0.0047. The unknown parameters kt and βt are estimated by the maximum
likelihood method using the Nelder-Mead iterative search (Delignette-Muller et al., 2015;
Holland and Fitz-Simons, 1982). We used Monte Carlo simulation to estimate unknown
parameters and to find the lower and upper percentile of the beta distribution. The
results are listed in Table 22 based on 100000 Monte Carlo simulation runs. It is noticed
as the sample size increases, the difference between lower and upper percentile becomes
small.
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TABLE 22
Lower and Upper percentiles of IMVt Chart for Beta Distribution at α= 0.0047.

n 3 4 5 6 7 8 9 10 11 112 13 14 15

LCL -65.21 -65.20 -42.10 -40.37 -39.15 -37.30 -33.90 -32.10 -13.67 -9.15 -6.80 -6.40 -5.75
UCL -14.90 -13.10 -12.74 -11.95 -10.67 -10.23 -9.90 -8.84 -7.65 -6.10 -5.95 -4.60 -3.10

3.7.1. Average Run Length of the Beta IMVt Chart
This Section discusses the efficiency of the IMVt beta control chart. To this end, we
set α = 0.0047 and fix ARL ≈ 200. The in-control ARL0 is achieved at sample n = 9
and then we introduce shifts in the process to assess the out-of-control performance.
The results are listed in Tables 23, 24, and 25 based on 100000 Monte Carlo simulation
replications for n = 9. It is seen from the tables that when there is an upward shift in
the scale parameter β the proposed chart detects out-of-control signals more rapidly.

TABLE 23
ARL and SDRL of IMVt chart for beta distribution assuming simultaneous shifts in k0, and β0 at

α= 0.0047.

δ 1.5 1.6 1.7 1.8 1.9 2.0 2.1 2.2 2.3 2.4 2.5

ARL 205.10 176.95 137.87 121.00 71.80 29.10 16.15 9.60 5.45 3.60 2.85

SDRL 96.40 77.20 89.90 82.43 66.55 29.20 16.85 9.30 4.80 3.10 2.30
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Figure 6 – IMVt and Traditional Control Charts for Beta Distribution using Lear jet aircraft data
at α= 0.0047.

3.7.2. Real Data Example of the Beta IMVt Chart
A real data set of Storms which were seeded with AgI by a Lear jet aircraft is taken
from Mielke Jr (1975) and both the traditional and IMVt control charts are constructed.
The unknown parameters kt and βt are estimated by using the maximum likelihood
method with Nelder-Mead iterative search. The IMVt and the traditional beta charts are
constructed by using Equations (18) and (19). The resulting comparison is depicted in
Figure 6. It can be noticed from frame (a) of Figure 6 that the chart signals 10th sample as
the out-of-control with the LCL(=-13656.98) while thirteenth with the UCL. However,
frame (b) of Figure 6 of the traditional chart does not signal any out-of-control observa-
tion. Thus, the beta mean-variance information chart outperforms the traditional beta
mean chart in detecting an out-of-control signal.

4. CONCLUSION

This study assessed the performance of the univariate joint monitoring process con-
trol charts by using the information theoretic criteria based on the entropy laws and
Kullback-Libeler statistic. To this end, the minimum discrimination information (MDI)
equations are formulated to monitor jointly mean and variance using a single control
chart. We considered different distributions, including, normal, gamma, Weibull, log-
normal, exponential, and beta, and assessed the performance using different shift sizes.
Based on the Monte Carlo simulations as well as real life data sets, it is noticed that the
proposed charts are efficient than the traditional charts. It is worth mentioning that the
likelihood ratio statistic often works better than multiple standardised statistics combi-
nations. But still, a combination of isolated statistics, each focusing on a different aspect,
is preferred because it helps post-signal screening of the problematic characteristic (pa-
rameter), which is is not possible with the overall likelihood ratio.

In this research work, we formulated univariate joint monitoring schemes using in-
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formation theoretic criteria. However, in future, the work can be extended to multivari-
ate joint process monitoring assuming different distributions. Furthermore, adaptive
and self-starting memory-type charts can also be introduced.
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APPENDIX

A. MINIMUM DISCRIMINATION INFORMATION

TABLE A.1
Examples of Minimum Discrimination Information.

ME Distribution Moments Equation MDI Function DKL( ft : f ∗0 )

Normal µ1 =µ

f (z |µ,σ2) = 1
σ2
p

2π
e−(z−µ)

2/2σ2
µ2 = σ

2 (r1t−µ10)
2

2µ20
+ 1

2

�

r2 t
µ20
− log r2 t

µ20
− 1
�

Laplace

f (z |θ) = 1
2θ e−

|z |
θ µ1 = θ

�

r1 t
µ10
− log r1 t

µ10
− 1
�

Exponential

f (z |θ) = 1
θ e−

z
θ µ1 = θ

�

r1 t
µ10
− log r1 t

µ10
− 1
�

Gamma µ1 = kθ

f (z |k ,θ) = zk−1e−z/θ

θk Γ (k)
µ2 = logθ+ψ(k) − log (θt )

kt Γ (kt )
(θ0)

k0 Γ (k0)
+ r1t

µ10
k0− kt +(kt − k0)r2t

Weibull µ1 = θ
k

f (z |k ,θ) = k
θ

� z
k

�k−1 e−(z/θ)k µ2 = logθ+ ψ(1)
k log kt

k0
+
�

θt
θ0

�kt
Γ
�

1+ kt
k0

�

− 1− log r1t
µ10
+(kt − k0)r2t

Lognormal µ1 = σ

f (z |k ,θ) = 1
zk
p

2Π
e−

(log z−θ)2

2k2 µ2 = k2+θ2 (r1t−µ10)
2

2(µ20−µ10) +
1
2 [

r2t−r 2
1t

µ20−µ2
10
− log
�

r2t−r 2
1t

µ20−µ2
10

�

− 1]

Beta µ1 =ψ(k)−ψ(k +θ)

f (z : k ,θ) = zk−1(1−z)θ−1

Γ (k)Γ (θ) µ2 =ψ(θ)−ψ(k +θ) − log B(ktβt )
B(k0β0)

− (kt − k0)r1t − (βt −β0)r2t
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