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SUMMARY

In this article, a new variant of Inverse Xgamma distribution is introduced by using the quadratic
rank transmutation map (QRTM), named as Transmuted Inverse Xgamma (TIXG) distribution.
The proposed model is positively skewed and has flexibility in the hazard rate function. A compre-
hensive account of mathematical and statistical properties of the newly obtained lifetime model
are provided. Explicit expressions for moments, moment generating function, quantile functions,
stochastic orderings, ageing intensity function and order statistics are formulated. We briefly dis-
cuss different classical estimations, including the maximum likelihood, maximum product spac-
ings, least square, weighted least square and Cramèr-Von-Mises estimation methods. Monte Carlo
simulation is carried out to compare the performance of the different estimation methods. Finally,
to demonstrate the applicability of the model in real life, an illustrative example is performed by
analyzing an environmental science dataset.

1. INTRODUCTION

The accuracy of any statistical research about real world events are determined by whether
the assumed models are adequate for fitting that phenomena or not. In many applied
fields, including engineering, health and economics etc. modeling and analyzing lifetime
data are the prerequisite parts of research. Although, some well-known distribution
families are frequently employed in modeling wide range of events, their modeling ca-
pabilities may not always meet expectations. Owing to this, considerable effort has been
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expended towards generating new families of distribution along with relevant statistical
methodologies. Few examples of them are exponentiated Pareto distribution by Nassar
et al. (2018), alpha power inverse Weibull distribution by Basheer (2019), three parame-
ter Fréchet model by Al-Babtain et al. (2020), Marshall-Olkin Gompertz distribution by
Eghwerido et al. (2021), new modified Lindley distribution by Chesneau et al. (2021),
exponentiated XGamma distribution by Yadav et al. (2021), exponential transformed
inverse Rayleigh distribution by Banerjee and Bhunia (2022), inverse A(α) distribution
by Bhunia and Banerjee (2022), etc.

Several techniques for generating new distributions have been proposed in the liter-
ature. The quadratic rank transmutation map (QRTM) technique is one of them and
that has been first proposed by Shaw and Buckley (2009). The construction of trans-
muted distribution is rather simple and defined as, a random variable X is said to follow
a transmuted distribution if its cumulative distribution function satisfies the following
relationships

F (x) =G(x) [(1+λ)−λG(x)] , |λ| ≤ 1, (1)

which is on differentiation yields the corresponding probability density function as

f (x) = g (x) [1+λ− 2λG(x)] . (2)

Here, λ is an additional parameter known as transmutation parameter, g (x) and G(x)
are the pdf and cdf of the baseline distribution respectively. Involvement of an extra
parameter in the transmuted distribution generally brings more flexibility, in addition
to possess the characteristics of baseline distribution. Recently, in two decades a lot of
research works have been found on the basis of QRTM. For examples, Transmuted Ex-
treme value distribution (Aryal and Tsokos, 2009), Transmuted Rayleigh distribution
(Merovci, 2013), Transmuted Weibull distribution (Khan et al., 2017), Transmuted Gen-
eralised Exponential distribution (Khan et al., 2017), Transmuted Xgamma distribution
(Biçer, 2019), etc.

In this era of generalizations, Sen et al. (2016) introduced Xgamma distribution with
one shape parameter by using a special finite mixture of two well known lifetime dis-
tributions i.e. exponential and Gamma distribution. Yadav et al. (2019) used inverse
transformation method of baseline variable to obtain the inverted form of Xgamma
distribution. As there is only one parameter involved in the inverse Xgamma distri-
bution, it did not give adequate flexibility for analyzing wide variety of lifetime data.
Consequently, to expand the modeling abilities of the inverse Xgamma distribution, it
is necessary to derive an alternative generalized form of this distribution. Therefore, the
Transmuted Inverse Xgamma (TIXG) distribution, as its name suggests, is a transmuted
variation of the Inverse Xgamma distribution, which is introduced in this article using
the QRTM approach.

The uniqueness of this study stems from the fact that, we provide an extensive expla-
nation of mathematical and statistical features of TIXG distribution with the hopes of
attracting further applications in biology, medical science, reliability, engineering and
many others applied field of study. Also, from frequentist perspective, we study five
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different estimation methods and compare their performance for varying sample sizes
with different combinations of parameter values through the Monte Carlo simulation
technique. Furthermore, to the best of our knowledge, no attempt has been made to
compare all of these TIXG estimators in terms of mathematical and statistical charac-
teristics. Another appealing feature of this distribution is its flexibility in hazard rate
function and practicability in modeling positively skewed data.

The remaining part of this study is organized as in the following sequence. In Section
2, TIXG distribution has been introduced and its survival properties are comprehen-
sively discussed. Explicit expression of various mathematical and statistical properties
are presented in Section 3. Different estimation methods of the unknown parameters
of TIXG distribution have been considered in Section 4. Next in Section 5, numeri-
cal results of the simulation study are presented for verifying the performance of the
estimation methods. In Section 6, an environmental data is considered to demonstrate
the superiority of the TIXG lifetime distribution over some well known distributions.
Finally, the conclusion of the study is addressed in Section 7.

2. TRANSMUTED INVERSE XGAMMA DISTRIBUTION

In this Section, we introduce the Transmuted Inverse Xgamma distribution by consider-
ing the Inverse Xgamma as baseline distribution and utilizing it in the QRTM formula
defined in Equations (1) and (2), respectively. Before going on to the subsequent deriva-
tions, firstly, we review the pdf and cdf of the Inverse Xgamma distribution and they
are expressed as

g (x;θ) =
θ2

(1+θ)x2

�

1+
θ

2x2

�

e−
θ
x , x > 0 (3)

and

G(x;θ) =
�

1+
θx + θ

2

2

(1+θ)x2

�

e−
θ
x , x > 0, (4)

respectively. θ > 0 is the shape parameter of the IXG distribution. Therefore, consid-
ering the pdf in Eq. (3) and cdf in Eq. (4) along with the above QRTM formula, the
TIXG is defined as follows. A random variable X is said to follow TIXG distribution
with parameters θ > 0 and −1≤ λ≤ 1 if it has the following cdf

F (x;θ,λ) = (1+λ)
��

1+
θx + θ2

2

(1+θ) x2
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θ
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(5)

and the corresponding pdf of TIXG distribution is expressed as

f (x;θ,λ) =
θ2

(1+θ)x2
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θ

2x2
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x
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Figure 1 – The pdf and cdf plots of TIXG distribution for different parameter choices.

The form of the newly obtained distribution is controlled by the parameter θ > 0,
much like in the IXG distribution. Also the transmuted parameter λ, determines the
behaviour of the distribution and gives more flexibility compared to the baseline dis-
tribution. The structure of the proposed distribution indicates that it is a more ad-
vanced model for analyzing complicated datasets. When λ = 0, the TIXG distribu-
tion reduces to the IXG distribution. In the rest of the paper, we will use the notation
X ∼ TIXG(θ,λ) to indicate a random variable X with positive values belongs to the
TIXG distribution with parameters θ and λ. Figure 1 illustrates some possible shapes
of the pdf and cdf of this distribution for the chosen values of the parameter. Clearly,
the proposed model is positively skewed and unimodal.

2.1. Survival properties

The basic elements of failure time for a given system or any biological phenomenon
include the survival function, hazard rate function and reversed hazard rate function,
which are discussed below.

• The survival function S(t ), is defined as the probability that an individual or any
item is survived at least t , (with t ≥ 0) unit of time and denoted as S(t ) = P (X ≥
t ) = 1− F (t ). Thus, the survival function of the TIXG distribution is expressed
as

S(t ) = λ
§�

1+
θx + θ

2

2

(1+θ)x2

�

e−
θ
x

ª

e2− (1+λ)
§�

1+
θx + θ

2

2

(1+θ)x2

�

e−
θ
x

ª

+ 1.
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Figure 2 – The survival function and hazard rate function plots of TIXG distribution for different
parameter choices.

• Another important characteristic of interest for quantifying the real life phenom-
ena of a lifetime distribution is the hazard rate function or failure rate function. It
can be interpreted as the conditional probability of failure, given it has survived
up to at least the time t (t ≥ 0) and is defined as h(t ) = f (t )

1−F (t ) =
f (t )
S(t ) , where f (t )

and S(t ) are the probability density and survival functions of the corresponding
distribution. Therefore, the hazard function for the TIXG distribution is given
as follows

h(t ) =
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.

• Reversed (or proportional) hazard rate function of a random life phenomenon is
defined as the ratio between the lifetime probability density and its distribution
function. For the TIXG distribution it is expressed as

H (t ) =
f (t )
F (t )

=

θ2

(1+θ)t 2

�

1+ θ
2t 2

�

e−
θ
t

�

1+λ− 2λ
§�
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(1+λ)
��
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2
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Figure 2 reveals the possible shapes of the survival function and hazard rate function
with different combinations of parameters θ and λ. The survival graph tends to decline
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Figure 3 – The reverse hazard rate function plot of TIXG distribution for different parameter
choices.

as time increases, therefore this distribution can be utilized in lifetime studies. Also, we
see that the shape of the hazard rate function initially increases and then starts to decline
and over the time it converges with some constant value. The reversed hazard rate func-
tion in Figure 3 also decreases with a reversed J-shape pattern. In real phenomenon, this
type of model is very useful. For example, the infant mortality rate is very high at initial
stages but gradually declines over the time when the immunity grows in their body and
with the improvement of medical facilities.

3. STATISTICAL PROPERTIES

In this Section, we discuss some important mathematical and statistical properties of
the TIXG distribution such as moments, moment generating functions, mode, quantile
functions, stochastic orderings, ageing intensity function and order statistics, etc.

3.1. Moments and inverse moments

The r th order raw moment of a random variable X having the TIXG(θ,λ) distribution
is obtained as follows

µ′r =E(X r )

=
∫ ∞

0
x r θ2
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θ

2x2
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θ
x
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(1+λ)θr
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− Γ (1− r )

2rλθ(r+1)

(1+θ)
− Γ (3− r )
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. (7)

The moment of the proposed distribution is expressed in Eq. (7) and we see that there
does not exist any classical moment for the TIXG distribution. Hence, our interest has
shifted to derive the inverse moments and the related measures from that expression.
The r th order inverse moment about the origin of this distribution is given as follows

µ′r−1 =E(X−r )
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The harmonic mean for the random variable X is to be obtained by putting r = 1 in
the above Eq. (8)
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3.2. Moment generating function and characteristic function

The moment generating function (mgf) of a random variable X having the TIXG(θ,λ)
distribution is derived by taking expectation of e tX as follows

MX (t ) = E(e tX )

=
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0
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. (9)

From the Eq. (9), it is clearly seen that the mgf of the proposed distribution does not
exist.
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As the characteristic function (cf) of any real-valued random variable always exist,
we obtain the cf of the TIXG distribution as follows

φX (t ) = E(e i tX )
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where, i =
p
−1 denotes an imaginary unit.

3.3. Mode

Mode of the TIXG(θ,λ) distribution can be found as a solution of the following equa-
tion,

∂

∂ x
log f (x) = 0

and by substituting the pdf in Eq. (6), we get
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After simplifying the above differentiation, finally the expression becomes
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By solving Eq. (10) numerically, we will be able to obtain the mode of the proposed
distribution.

3.4. Quantile function

Let Q(p) be the quantile function of order p of TIXG distribution where 0 < p < 1.
Then, the quantile function will be obtained by solving the following equation,

F (Q(p)) =P [X ≤Q(p)] = p
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Figure 4 – Plot of skewness of TIXG distribution for different parameter choices.

Figure 5 – Plot of kurtosis of TIXG distribution for different parameter choices.

By putting p = 0.25,0.5 and 0.75 in the above Eq. (11), we will obtain the first
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quartile, median and third quartile of the distribution, respectively.
Skewness and kurtosis are the statistical measures which are used to calculate the

degree of long tail and the degree of tail heaviness respectively. As there does not exist
any classical moment for TIXG distribution, it may not measure the moment-based
skewness and kurtosis of the distribution. However, on the basis of quantile function
we can measure the skewness and kurtosis of the distribution with the help of Bowley
measure of skewness (Bowley, 1920) and Moors measure of kurtosis (Moors, 1988).

The Bowley measure of skewness is given by

B =
Q( 34 )− 2Q( 12 )+Q( 14 )

Q( 34 )−Q( 14 )

and the Moors kurtosis, is based on octiles is given as

M =
Q( 78 )−Q( 58 )+Q( 38 )−Q( 18 )

Q( 68 )−Q( 28 )
.

A numerical computation needs to be performed to calculate the value of skewness and
kurtosis of the TIXG distribution. Plots of the skewness and kurtosis are displayed in
Figures 4 and 5, respectively. It indicates that the shape of both skewness and kurtosis
decreases when the parameter value increases.

3.5. Stochastic ordering

Stochastic ordering of positive continuous random variables is an important tool to
study the structural properties of complicated stochastic systems. There are several
forms of stochastic orderings that may be used to order random variables according
to their characteristics. In this study we consider the hazard rate, the mean residual
life and the likelihood ratio order for two independent TIXG random variables under
a restricted parameter space. A random variable X is said to be smaller than a random
variable Y with cdfs FX and FY respectively, in the following conditions.

• Stochastic order (X ≤st Y ) if FX (x)≥ FY (x) for all x,

• Hazard rate order (X ≤hr Y ) if hX (x)≥ hY (x) for all x,

• Mean residual life order (X ≤mrl Y ) if mX (x)≤ mY (x) for all x,

• Likelihood ratio order (X ≤lr Y ) if fX (x)
f Y (x) decreases in x.

The following implications based on this property are illustrated by Shaked and
Shanthikumar (1994), which are well known for establishing stochastic ordering of dis-
tributions.
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X ≤lr Y =⇒ X ≤hr Y =⇒ X ≤mrl Y

and, hence,

X ≤hr =⇒ X ≤st Y.

The following theorem shows that the TIXG distribution is ordered with reference
to “likelihood ratio” ordering.

THEOREM 1. Let X ∼ TIXG(θ1,λ1) and Y ∼ TIXG(θ2,λ2). If θ1 = θ2 = θ and
λ1 > λ2, then X ≤lr Y and hence it implies other orderings.

PROOF.
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Taking logarithm on both side of Eq. (12) and differentiating w.r.t. x by assuming
θ1 = θ2 = θ we get,
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⇒ φ′(x) < 0 if λ1 > λ2. Hence, φ(x) is decreasing in x if λ1 > λ2 and θ1 = θ2 = θ,
which implies that X ≤lr Y and hence, X ≤hr Y , X ≤mrl Y and X ≤st Y. 2

3.6. Ageing intensity function

Jiang et al. (2003) proposed a qualitative measure of a lifetime random variable X, termed
as Ageing intensity (AI) function for quantifying the ageing property of a unit which
is either be a component or a living being. The AI function for a random variable X,
denoted by LX (t ), is defined as the ratio of the instantaneous failure rate to the failure
rate average (Nanda et al., 2007), i.e.

LX (t ) =
h(t )
G(t )

, for any t > 0,
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where, G(t ) = 1
t

∫ t
0 h(u)du is the failure rate average and h(t ) is hazard rate function.

Then, finally AI can be written as

LX (t ) =
−t f (t )

S(t ) log S(t )
.

Now, by using the pdf and survival function of TIXG(θ,λ) distribution, the expression
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Figure 6 – The ageing intensity plot of TIXG distribution for different parameter choices.
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The larger the value of AI function, stronger is the tendency of ageing for the associated
random variable. Also, the failure rate function determines the AI function in an unique
way, but the converse is not true (Sen et al., 2018). For any lifetime distribution, if
LX (t ) = 1, then the associated failure rate is constant; if LX (t ) < 1, then the associated
failure rate is decreasing and if LX (t )> 1, then the associated failure rate is increasing. As
shown in Figure 6, the ageing intensity function varies with the choice of different values
of θ and λ. It is observed that AI also shows non-increasing pattern with increment in
time for different parameter choices.
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3.7. Order statistics

Suppose X(1),X(2), . . . ,X(n) denotes the order statistics of a random sample X1,X2, . . . ,Xn
from a continuous population with cdf FX (x) and pdf fX (x), then the pdf of X( j ) is
expressed as follows

fX( j )
(x) =

n !
( j − 1) !(n− j ) !

fX (x)[FX (x)]
j−1[1− FX (x)]

n− j , j = 1,2, . . . , n. (13)

Now, by using the pdf in Eq. (6) and cdf in Eq. (5) into Eq. (13), density of the j th order
statistic of the TIXG distribution is easily obtained as

fX( j )
(x) =

n !
( j − 1) !(n− j ) !

�

(1+λ)
§�

1+
θx + θ2

2

(1+θ)x2

�

e−
θ
x

ª

−λ
§�

1+
θx + θ2

2

(1+θ)x2

�

e−
θ
x

ª2
� j−1

�

λ
§�

1+
θx + θ2

2

(1+θ)x2

�

e−
θ
x

ª2

−
§�

1+
θx + θ2

2

(1+θ)x2

�

e−
θ
x

ª�

1+λ
�

+ 1

�n− j

θ2

(1+θ)x2

�

1+
θ

2x2

�

e−
θ
x

�

1+λ− 2λ
§�

1+
θx + θ2

2

(1+θ)x2

�

e−
θ
x

ª

�

. (14)

The density function of the smallest and largest order statistic X(1) and X(n) are derived
by putting j = 1 and j = n in the above Eq. (14), respectively. Therefore, the pdf of the
smallest order statistic X(1) is given by
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and the expression for the pdf of the largest order statistic X(n) is given by
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The corresponding j th order cdf FX( j )
(x) is given by the following expression

FX( j )
(x) =

n
∑

i= j

�

n
i

�

F i
X (x)[1− FX (x)]

(n−i) (15)
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and using FX (x) from Eq. (5), the above Eq. (15) can be written as
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4. METHODS OF ESTIMATION OF TIXG DISTRIBUTION

In this Section, we describe five different classical estimation methods to estimate the
parameters θ and λ of the TIXG distribution. All the estimation approaches are carried
out when both θ and λ are unknown.

4.1. Maximum likelihood estimation method

The maximum likelihood approach is frequently utilized among the available statisti-
cal estimation methods in literature because of its desirable properties such as consis-
tency, asymptotic efficiency, and invariance property (Casella and Berger, 2002). Let
X1,X2, . . . ,Xn be the random sample drawn from the TIXG(θ,λ) distribution with the
pdf in Eq.(6), then the likelihood function is expressed as
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Taking logarithm of the likelihood function, the expression of the log likelihood func-
tion can be written as
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Now, differentiating the logarithmic likelihood function given by Eq. (16) with respect
to the parameters θ and λ and equating them to zero, we have the following likelihood
expressions
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and
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The MLE of the parameters θ and λ will be obtained by solving the above nonlinear
system of equations given by Eq. (17) and Eq. (18), respectively. These nonlinear equa-
tions are difficult to solve analytically. However, to obtain the estimates θ̂MLE and λ̂MLE,
some numerical methods such as the Newton-Raphson algorithm is recommended.

4.2. Maximum product spacings method

For the estimation of unknown parameters of continuous univariate distributions, the
maximum product of spacings (MPS) technique introduced by Cheng and Amin (1979,
1983), provides a strong alternative to the MLE. They explored the consistency of MPS
estimators in details, concluding that MPS estimators are at least asymptotically as effi-
cient as MLE estimators upon exist. Ranneby (1984) also separately developed the same
procedure as an approximation to the Kullback-Leibler measure of information.

Let x1, x2, . . . , xn be the n ordered samples drawn from the TIXG(θ,λ) distribution
with the cdf given in Equation (5). The expression for uniform spacings based on two
consecutive cdfs is defined as follows

Di (θ,λ) = F (xi |θ,λ)− F (xi−1|θ,λ), i = 1,2, . . . , n+ 1,

where, F (x0|θ,λ) = 0 and F (xn+1|θ,λ) = 1 such that
∑n+1

i=1 Di (θ,λ) = 1.

The maximum product of spacings estimators, denoted as θ̂MPS and λ̂MPS, are ob-
tained by maximizing the geometric mean of the spacings,
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,

with respect to θ and λ or equivalently by maximizing the logarithm of the geometric
mean of sample spacings
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After some simplifications, Eq. (19) reduces to the following expression
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Therefore, the MPS estimate of the unknown parameters are obtained by setting the
partial derivatives of Eq. (20) with respect toθ and λ. By solving the resulting expression
after equating them to zero, it may be observed that the above non-linear equation is not
in closed form solution. So, we have used some iterative method like Newton-Raphson
to solve them numerically.

4.3. Methods of ordinary and weighted least square estimation

Swain et al. (1988) introduced least square (LS) and weighted least square (WLS) estima-
tions for estimating the parameters of Beta distributions.
Let X(1) <X(2) < . . .<X(n) be the ordered sample of size n having a distribution function
F (X(i)). According to the least square technique, the estimation of unknown parameters
θ and λ of TIXG distribution can be obtained by minimizing
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with respect to parameters θ and λ, respectively. Using the cdf from Eq. (5), we have
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We differentiate the above Eq. (21) with respect to θ and λ and, then, equate them
to zero to obtain the least square estimates, respectively.
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Also, the WLS estimates of the unknown parameters can be obtained by minimizing
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with respect to θ and λ, respectively. So, we have the following non-linear equations
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As the closed form solution of the estimates for unknown parameters is difficult to calcu-
late, so we derive the LS and WLS estimators by solving the above non-linear Equations
(22)-(23) and Equations (25)-(26), respectively, with the help of some iterative method
such as Newton-Raphson approach.

4.4. Cramér-Von-Mises method

The Cramér-Von-Mises (CVM) is a type of minimum distance estimator, also popularly
known as maximum goodness of-fit estimator. It is based on the difference between the
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estimate of the cumulative distribution function and the empirical distribution func-
tion (D’Agostino and Stephens, 1986; Luceño, 2006). Macdonald (1971) justified the
use of Cramèr-Von-Mises type minimal distance estimators by demonstrating empirical
evidence that their bias is smaller than that of other minimum distance estimators.

Let X(1),X(2), . . . ,X(n) be the ordered sample from the TIXG distribution. There-

fore, the Cramèr-Von-Mises estimators θ̂CVM and λ̂CVM are obtained by minimizing the
function C (θ,λ) with respect to θ and λ respectively where,
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By differentiating the above expression w.r.t. θ and λ, we have the following non-linear
equations,
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To obtain the CVM estimators from the above non-linear Equations (27) and (28), Newton-
Raphson approach is recommended.

5. SIMULATION STUDY AND DISCUSSION

In this Section, Monte Carlo simulation study is performed in order to compare the
behaviour of the different estimators of the TIXG distribution. The performance of the
estimators obtained in the previous Section are evaluated by using maximum likelihood,
maximum product spacings, least square, weighted least square and Cramér-Von-Mises
estimation methods based on their biases and mean square errors (MSEs).

Bias=
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TABLE 1
Estimates, Bias and MSE of the parameters of TIXG distribution when λ = - 0.25.

θ n Methods θ̂ |Bias θ̂| MSE θ̂ λ̂ |Bias λ̂| MSE λ̂

0.5 MLE 0.521 0.021 0.007 - 0.160 0.090 0.139
MPS 0.481 0.019 0.006 - 0.330 0.080 0.126

75 LS 0.518 0.018 0.006 - 0.188 0.062 0.119
WLS 0.517 0.017 0.006 - 0.184 0.066 0.125
CVM 0.532 0.032 0.008 - 0.126 0.124 0.141
MLE 0.507 0.007 0.004 - 0.217 0.033 0.098
MPS 0.478 0.022 0.005 - 0.349 0.099 0.109

150 LS 0.511 0.011 0.004 - 0.210 0.040 0.085
WLS 0.508 0.008 0.004 - 0.216 0.034 0.088
CVM 0.519 0.019 0.004 - 0.171 0.079 0.094
MLE 0.501 0.001 0.003 - 0.250 0.002 0.076
MPS 0.479 0.021 0.004 - 0.354 0.104 0.095

300 LS 0.507 0.007 0.003 - 0.226 0.024 0.064
WLS 0.506 0.006 0.003 - 0.231 0.019 0.064
CVM 0.513 0.013 0.003 - 0.202 0.048 0.066

0.75 MLE 0.780 0.030 0.016 -0.168 0.082 0.133
MPS 0.718 0.032 0.015 -0.341 0.091 0.128

75 LS 0.773 0.023 0.015 -0.204 0.046 0.118
WLS 0.773 0.023 0.015 -0.198 0.052 0.124
CVM 0.794 0.044 0.018 -0.148 0.102 0.140
MLE 0.758 0.008 0.010 -0.227 0.023 0.096
MPS 0.711 0.039 0.012 -0.362 0.112 0.114

150 LS 0.762 0.012 0.010 -0.225 0.025 0.084
WLS 0.759 0.009 0.009 -0.229 0.021 0.088
CVM 0.775 0.025 0.011 -0.190 0.060 0.093
MLE 0.749 0.001 0.007 -0.258 0.008 0.074
MPS 0.715 0.035 0.009 -0.361 0.111 0.097

300 LS 0.757 0.007 0.007 -0.240 0.010 0.064
WLS 0.755 0.005 0.006 -0.242 0.008 0.063
CVM 0.765 0.015 0.007 -0.218 0.032 0.067

1.0 MLE 1.039 0.039 0.030 - 0.175 0.075 0.132
MPS 0.953 0.047 0.029 - 0.347 0.097 0.130

75 LS 1.028 0.028 0.029 - 0.215 0.035 0.121
WLS 1.029 0.029 0.029 - 0.206 0.044 0.125
CVM 1.057 0.057 0.035 - 0.159 0.091 0.142
MLE 1.009 0.009 0.018 - 0.233 0.017 0.095
MPS 0.946 0.054 0.022 - 0.365 0.115 0.114

150 LS 1.012 0.012 0.019 - 0.237 0.013 0.088
WLS 1.011 0.011 0.018 - 0.233 0.017 0.087
CVM 1.031 0.031 0.021 - 0.1983 0.052 0.094
MLE 0.997 0.003 0.013 -0.261 0.011 0.073
MPS 0.949 0.051 0.018 -0.368 0.117 0.100

300 LS 1.007 0.007 0.013 -0.247 0.003 0.066
WLS 1.005 0.005 0.012 -0.247 0.003 0.064
CVM 1.018 0.018 0.014 -0.226 0.024 0.068
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TABLE 2
Estimates, Bias and MSE of the parameters of TIXG distribution when λ = 0.25.

θ n Methods θ̂ |Bias θ̂| MSE θ̂ λ̂ |Bias λ̂| MSE λ̂

0.5 MLE 0.498 0.002 0.004 0.224 0.026 0.129
MPS 0.464 0.036 0.007 0.041 0.208 0.223

75 LS 0.482 0.018 0.005 0.144 0.106 0.151
WLS 0.487 0.013 0.004 0.171 0.079 0.140
CVM 0.495 0.005 0.004 0.213 0.037 0.134
MLE 0.496 0.004 0.002 0.226 0.024 0.079
MPS 0.476 0.024 0.004 0.115 0.135 0.138

150 LS 0.489 0.011 0.003 0.189 0.061 0.085
WLS 0.493 0.007 0.002 0.209 0.041 0.074
CVM 0.496 0.004 0.003 0.225 0.025 0.077
MLE 0.499 0.001 0.001 0.239 0.011 0.039
MPS 0.488 0.012 0.002 0.185 0.065 0.059

300 LS 0.494 0.006 0.001 0.217 0.033 0.046
WLS 0.497 0.003 0.001 0.230 0.020 0.037
CVM 0.498 0.002 0.001 0.234 0.016 0.044

0.75 MLE 0.747 0.003 0.009 0.225 0.024 0.122
MPS 0.695 0.055 0.015 0.047 0.202 0.218

75 LS 0.723 0.027 0.012 0.147 0.103 0.147
WLS 0.731 0.019 0.011 0.173 0.077 0.136
CVM 0.743 0.007 0.011 0.214 0.036 0.129
MLE 0.745 0.005 0.005 0.230 0.020 0.071
MPS 0.715 0.035 0.009 0.126 0.124 0.125

150 LS 0.734 0.016 0.006 0.194 0.056 0.079
WLS 0.740 0.010 0.005 0.213 0.037 0.069
CVM 0.744 0.006 0.006 0.228 0.022 0.072
MLE 0.749 0.001 0.002 0.243 0.007 0.032
MPS 0.734 0.016 0.003 0.193 0.057 0.049

300 LS 0.742 0.008 0.003 0.219 0.031 0.043
WLS 0.746 0.004 0.003 0.233 0.017 0.034
CVM 0.747 0.003 0.003 0.236 0.014 0.040

1.0 MLE 0.997 0.003 0.017 0.225 0.025 0.121
MPS 0.926 0.074 0.028 0.050 0.200 0.216

75 LS 0.964 0.036 0.022 0.148 0.102 0.146
WLS 0.975 0.025 0.019 0.176 0.074 0.132
CVM 0.991 0.009 0.020 0.215 0.035 0.128
MLE 0.995 0.005 0.009 0.232 0.018 0.067
MPS 0.954 0.046 0.015 0.131 0.119 0.119

150 LS 0.978 0.022 0.012 0.195 0.055 0.078
WLS 0.987 0.013 0.010 0.216 0.034 0.065
CVM 0.993 0.007 0.011 0.230 0.020 0.069
MLE 0.999 0.001 0.004 0.244 0.006 0.031
MPS 0.979 0.021 0.006 0.195 0.056 0.047

300 LS 0.989 0.011 0.006 0.221 0.029 0.041
WLS 0.995 0.005 0.005 0.235 0.015 0.032
CVM 0.996 0.004 0.006 0.238 0.012 0.038
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To generate pseudo-random numbers of sizes n = 75,150,300 from the TIXG distribu-
tion, we use inverse transformation method by solving F (x) = u numerically with the
help of uniroot() function in R (R Core Team, 2021, Version 3.6.1), where
u ∼ Unif(0,1). For this purpose, we set the parameter choices at θ = 0.5,0.75,1.0 and
the transmutation parameter λ = −0.25,0.25. To get the simulated results, we repeat
the process for K = 1000 times and calculate the average estimate, bias and MSE of the
corresponding estimators. The results of simulation study are presented in Tables 1 and
2.

According to the simulation results, it is clearly observed that as we increase the
sample sizes, the bias and MSE values of all the estimators decrease and it verifies the
consistency of the estimation methods used in this study. As we increase the value of θ,
the absolute value of bias also increases for the given values of λ and n considering all the
methods of estimation. In the case of λ = −0.25, when the sample size n ≥ 150, θ̂WLS
performs best since it yields low MSE values for all the chosen values of θ. Also, the
least square and weighted least square estimators λ̂LS, λ̂WLS produce least MSE values in
most of the considered cases. Additionally, while λ= 0.25, θ̂MLE and λ̂MLE outperform
the other estimators with the smaller MSE values for the considered values of θ.

6. REAL DATA APPLICATION

In this Section, we verify the potentiality of the proposed TIXG distribution by con-
sidering Vinyl chloride data obtained from clean upgradient monitoring wells. Vinyl
chloride is a volatile organic compound and both anthropogenic and carcinogenic in
nature. The data has been originally extracted from Bhaumik et al. (2009). Also Kr-
ishnamoorthy et al. (2008) and Bhaumik and Gibbons (2006) considered this data in
constructing prediction and tolerance intervals for gamma random variables. A Sum-
mary of the datasets including mean, median, coefficient of quantile deviation, Bowley’s
measure of skewness, Moor’s kurtosis measure etc. are provided in Table 3.

TABLE 3
Summary statistics for the Vinyl chloride data.

length Min Max Mean Median Coefficient of Bowley’s Moor’s
n x(1) x(n) x̄ Quartile Deviation Skewness Kurtosis

34 0.1 8.0 1.879 1.150 0.6639 0.3418 1.2215

We compare the fitting of the TIXG distribution with some other well known com-
parative models such as Transmuted Inverse Rayleigh (TIR) (Ahmad et al., 2014), Inverse
Xgamma (IXG) (Yadav et al., 2019), Length Biased Xgamma (LBXG) (Sen et al., 2017)
and Exponentiated Inverse Rayleigh (EIR) (Rao et al., 2019) distributions (Figure 7).

In Table 4 estimates of unknown parameters of TIXG distribution using different
estimation methods namely maximum likelihood, maximum product spacings, least
square, weighted least square and the Cramér-Von-Mises are provided along with some
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Figure 7 – Diagnostic plots of fitted TIXG distribution for Vinyl Chloride data. From upper-left
to lower-right: histogram, empirical vs theoretical cdf, P-P plot, fitted survival function plot.

corresponding goodness-of-fit measures. From this Table it is clearly seen that all the
estimation techniques worked well for the considered real dataset.

For the purpose of model comparison, we consider the CVM, the Anderson-Darling
(AD) and the Kolmogorov-Smirnov (KS) test statistics. These statistics are frequently
used to see how well a given cdf fits the empirical distribution of a dataset (Seal et al.,
2023). In addition, for more accuracy some goodness-of-fit measures including the Akaike
information criterion (AIC), Consistent Akaike information criterion (CAIC), Hannan-
Quinn information criterion (HQIC), Bayesian information criterion (BIC) and
-2 l̂ , where l̂ is the maximized log-likelihood, have been chosen for comparing the supe-
riority of the candidate model. Generally, the smaller value of these statistics indicates
the better fit to the data. The required computational works are carried out with R (R
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TABLE 4
Parameter estimates under different methods and the goodness-of-fit statistics for Vinyl chloride data.

Method θ̂ λ̂ -2logL AIC BIC HQIC CAIC

MLE 0.86 - 0.67 120.76 124.76 127.81 125.80 125.14
MPS 1.25 - 0.76 132.86 136.86 139.91 137.90 137.25
LS 1.04 - 0.61 122.87 126.87 129.92 127.91 127.26

WLS 0.96 - 0.72 121.91 125.91 128.96 126.95 126.29
CVM 1.00 - 0.70 122.57 126.57 129.62 127.61 126.95

Core Team, 2021, Version 3.6.1).

It is observed from the Table 5 that, TIXG distribution has the smallest value re-
garding the comparing criteria among all other competitive models. As a result, the
suggested TIXG model is considered as the best model for the Vinyl chloride data.

TABLE 5
Goodness-of-fit measures of the TIXG model and the other competing models for Vinyl chloride data.

Model MLE -2logL AIC CAIC HQIC BIC K-S CVM AD

TIXG θ̂= 0.86 120.76 124.76 125.14 125.80 127.81 0.12 0.19 1.28
λ̂= - 0.67

IXG θ̂= 1.07 125.31 127.31 127.44 127.83 128.84 0.17 0.41 2.33
LBXG θ̂= 1.68 128.86 130.86 130.99 131.38 132.39 0.25 0.64 4.85

EIR σ̂ = 0.29 127.42 131.42 131.81 132.46 134.47 0.20 0.45 2.40
α̂ = 0.20

TIR θ̂= 0.10 170.79 174.79 175.18 175.83 177.84 0.40 2.28 17.92
λ̂= - 0.78

In order to verify the shape of the failure rate function, a standard graphical approach
called Total Time on Test (TTT) plot for the considered dataset is provided in Figure
8. According to Aarset (1987), if the shape of the TTT plot is straight diagonal, the
hazard rate is constant. The failure rate function is increasing (decreasing) if the TTT
plot is concave (convex), whereas the bathtub shaped hazard is obtained when first is
convex and then concave. As from Figure 8, it has been seen that the TTT plot for
the considered dataset implies the decreasing nature of hazard rate function. Therefore,
the TIXG distribution provides a reasonable fit for modeling this dataset. The relative
histogram with the fitted densities, the empirical cdf, the empirical survival function
and P-P plots for the Vinyl chloride data are also displayed in Figure 7. These Figures
substantially supported the results presented in Tables 4 and 5, respectively.
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Figure 8 – Total Time on Test (TTT) plot.

7. CONCLUSION

In statistical research, the introduction of new lifetime distributions or modification to
already available lifetime distributions has become a time-honored trend. In this article,
a new two parameter TIXG distribution is introduced by using QRTM technique and
the baseline Inverse Xgamma distribution. Some of the important statistical properties
such as hazard rate function, survival function, moment generating function, character-
istic function, moments, skewness, kurtosis, order statistics, ageing intensity function
etc. are obtained. To estimate the unknown shape parameter θ and the transmutation
parameter λ, we consider five different estimation methods such as maximum likeli-
hood estimation, maximum product spacings, least square, weighted least square and
Cramèr-Von-Mises estimation methods. Further, we compare those estimators by using
Monte Carlo simulation for different sample sizes. The performance of the estimators
is evaluated on the basis of the bias and the MSE. Simulation results indicate that all the
estimators are asymptotically unbiased and consistent as the bias and MSE are gradu-
ally decreasing when the sample size increases. Further, a real data has been utilized to
demonstrate the applicability of the newly obtained model and it has been found that
the TIXG distribution provides better fit as compared to some of its competitive mod-
els. Therefore, it can be hoped that the proposed model might be taken as an alternative
model to analyze several lifetime datasets.
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